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The characteristic velocity with which charge spreads in structures with a highly mobile two- 
dimensional electron gas that are now available may be comparable to the velocity of light. One 
must take into account retardation effects in this case which qualitatively change the spreading 
kinetics. Retardation effects are most important in the quantum Hall effect regime which results 
in slow spreading even for a,, = 0. In these conditions a linear current introduced into the system 
induces electric polarization of the system that is proportional to a,. 

Relaxation of an initial density perturbation in a two- 
dimensional plasma, usually called charge spreading, differs 
qualitatively from the analogous process in the three-dimen- 
sional case. The main difference is due to the unique char- 
acter of two-dimensional Maxwellian relaxation. In the qua- 
sistatic approximation used in Refs. 1 and 2, the speed of 
spot spreading of the nonequilibrium charge is u = 27ru/T 
where T is the average dielectric permittivity of the sur- 
rounding media and u is the two-dimensional conductivity 
of the electron plasma. Of course, the speed of light does not 
enter into the quasistatic results so that the characteristic 
times t and distances x related to the relaxation process 
should also satisfy the inequality x<ct. However, this is not 
the only condition for the validity of the calculations. I. '  

Let F be the velocity of light in the materials of struc- 
tures to be considered. In the currently widely studied heter- 
ogeneous structures GaAs-GaAlAs for typical two-dimen- 
sional electron gas (TEG) densities of 3 4 ~  10" cm-2 the 
dimensionless parameter f l=  v/Z is comparable to unity 
even for a mobility of 2 x lo5 cm2 V -  ' s- ', which is an order 
of magnitude lower than the highest mobilities that have 
been reached at the present time. Thus the situation P >  1 
and even /?% 1, for which the results of Refs. 1 and 2 are 
inapplicable, are completely reelizable. Because v is the ve- 
locity of the physical signal (change of the local density in 
the monopolar case, or local conductivity in the bipolar case, 
see Ref. I ) ,  the question that arises is what is the nature of 
the spreading kinetics for P>, 1 (including distances x <Ft). 
This is the subject of the first part of this paper. The second 
part of the paper considers spreading in the quantum Hall 
effect (QHE) regime. It is clear that in the quasistatic ap- 
proximation for a,, -0 spreading due to electric fields 
stops. It turns out that due to retardation effects slow 
spreading still occurs; the charge fraction withdrawn from 
the injection region is - (axy/c) ', i.e., it is quantized accord- 
ing to a j2 law, where j is the number of filled Landau levels. 
The first-order effect in u,/c arises due to the reaction of the 
Hall conductor on the linear current carried by the TEG: in 
the direction transverse to the excited current an inhomo- 
geneous flow of electrons occurs and, accordingly, a charge 
density; i.e., local neutrality is destroyed. 

1. We begin with the simplest case of a monopolar injec- 
tion where an excess charge is introduced into the system. 
Although this situation is difficult to realize experimentally, 
it is the clearest case of how the quasistatic result generalizes 

taking into account retardation effects. We will subsequent- 
ly consider the more realistic case: separation of electrons 
from donors in some part of the structure containing the 
TEG. 

We write the expressions for the potentials A and q, 
following from the wave equations and the continuity equa- 
tion in a Fourier representation of the coordinates x, y and 
time (for time the transformation is one-sided): 

2n 2n 
(PLW = - p (k, w) e-RIzl, Ar, = - j (k, W) e-'+IZI ( 1 ) ER cR 

k j  (k, a )  = u p  (k, w) -ipo(k). 

Here, R = (k2 - W , / Z ~ ) " ~ ,  F = C/E ' /~ ,  p and j are the sur- 
face charge density and current assuming that the conduct- 
ing plane z = 0 is immersed in a medium with dielectric con- 
stant E andp, is the injected charge density for t = 0. Using 
the equation for the current j = u[ (iw/c)A - zkq,] and 
solving Eq. ( 1 ) for the density p we obtain, after transform- 
ing to an x-, t-representation for the initial density 
p o ( x , ~ )  = NJ(x) 

No ut 6 ( ( ~ t )  '-x2) 
P(Z, t )=-  

TI x~+u"~"x~/c~)  [ l - x 2 / ( ~ t ) ' ]  ' (2)  

whereB(x) =Oforx<OandB(x)  = l f o r x > O . F o r F - w  
one obtains the quasistatic result [Eq. (4)  of Ref. 1 1. The 
density distribution in space is critically dependent on the 
parameter f i  = v f i .  For 8 >  (2/3) 'I' the curvature of the 
p ( x )  function changes sign at x = 0. Considering the depen- 
dence of the density on t for fixed x in the case& 1 together 
with the singularity due to the perturbation front at t = xfi, 
a maximum occurs in the region t-x/u; for 8% 1 the p ( t )  
function monotonically increases in the region t > x/Z. We 
neglected diffusion in Eq. (2 )  which is allowable for x - vt if 
x $ D /u-a, where a, is the effective Bohr radius. 

Now let electrons be injected into the two-dimensional 
system separated from donors situated at a distance A from 
the plane z = 0 (the GaAs-GaAlAs lattice). Thus we are 
considering the kinetics of shielding of a linearly charged 
inhomogeneity in the TEG. One can again suppose that the 
diffusion contribution can be neglected if the inequality 
x $ A $ a,, is satisfied. Because of the complexity of the gen- 
eral equation, we present only the results for 8% 1 valid in- 
side a small vicinity of the perturbation front F t  - 1x1, Ixl/ 
8: 
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Fort-  cc we obtain the static shielding of a linear charge in a 
two-dimensional system: p - A/x2. We recall that for small 
0 the function p ( t )  has a maximum for t -x/u (see Ref. 1 ) 
whereas Eq. ( 3  ) describes a monotonic decrease of p( t )  . 

2. We consider the relaxation of an initial perturbation 
in the idealized QHE regime: a,, = a,, = 0, a, = - a YX 

= a , .  The potential part of the electric field does not con- 
tribute to the spreading, due to the antisymmetry of the u , ~  
tensor. The role of the rotational part of the field can be 
understood from the following qualitative arguments. The 
linear chargep(x,t) creates the x-component of the electric 
field which generates the y-component of the current j, (x,t) 
proportional to a,, . This current creates the vector potential 
A, (x,t) and the electric field E, (x,t) appears which pro- 
duces the current j, (x,t) driving the spreading. One can see 
that to lowest order the effect is proportional to ( a , / c )  2. 

Solving the system of equations ( 1 ) taking into account 
the tensorial relation between the current and the field we 
obtain for monopolar injection with the same initial condi- 
tions. 

and for the case of donor ionization (we suppose x $ A) 

One can show from the general formula valid for all x in the 
case (4b) that the fraction of charge withdrawn from the 
injection region for t- cc is equal to a*/( 1 + a 2 )  as in case 
(4a).  

The qualitative arguments given above are also correct 
in the case of perturbations of a linear current system. Con- 
sider a thin wire with current I ( t )  situated parallel to the y- 
axis at a distance A from the plane of the TEG. A calculation 
shows that the surface current excited in the x-direction 
differs only by the factor (1  + a2)-I  from the value 
( - al/c)6'Ay /at where A, is the vector potential compo- 
nent created by the given current without taking into effect 
the screening action of the TEG. If a current is turned on for 
t > 0 according to I ( t )  = I, ( 1 - e - Y ' ) ,  at the perturbation 
front j, (x,t) and p(x , t )  are proportional to y(Zt - 1x1 ) ' I2.  

In the interior part of the region subjected to perturbations 
we have for 1x1 <Ft and x2/Z2t2< yt 

It is easy to see that all the square-root singularities in the 
above obtained equations are smoothed out due to the finite 
sizes of the regions of initial perturbations. 

We consider the magnitude of the correction due to the 
finite value of a,, considering, of course, that a,, <a,. 
Without writing the complicated general formula, we con- 
sider again the chain leading to spreading due to the rota- 
tional fields: Ex -j, - A, - E, -j, , and compare the result 
with the current of direct spreading j, = a,, E x .  In the indi- 
cated chain the factor a, occurs twice, A, and j, are related 
by Eq. ( 1) for z = 0 through the coefficient 2.rr/cR, and the 
factor iw/c arises from the transition A, -E,. It follows 
from this that in the region of growth 1x1 -2t together with 
the terms a2S(x  + Zt) in Eq. (4a) a smearing out of the 
density occurs proportional to (Z2t * - x') I " .  Its integrat- 
ed contribution to the total charge is -a2(o,xc/a,2). 
Thus, for u,,/a,, <u,,/c- lo-' the influence of direct 
spreading in the region of the perturbation front is negligibly 
small. 

As one might expect at small distances, 1x1 -a,,t <Zt, 
the finiteness of a,, leads to a slow spreading according to a 
quasistatic law. Together with the term S ( x )  in Eq. (4a) one 
obtains 

N o  v't 
P = n ( ~ + a 2 ) ( u ' t ) z + ~ 2  . 

Hence, the difference between the present work and Ref. 1 is 
a weak renormalization of the velocity of spreading 
u* = 2?ra,,/&(1 + a 2 ) .  In the best presently available sam- 
ples where a,,/a,, - lopX, the velocity u* all told may be 
several cm s- I. 

A calculation of the effect of finite a,, in the case of a 
linear current in a TEG leads to analogous changes. At dis- 
tances x <Zt for yt$ 1 the current is described by the equa- 
tion [see Eq. ( 5 )  1 

- 0 ( ) v.t 
( l+a2)  c (v't) 2+x2 

It was assumed for simplicity in the last equation that the 
exciting linear current was placed directly in the plane of the 
TEG; this is valid for u*t$ A. 

We are grateful to E. G .  Batyeva for useful remarks. 
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