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A nonlinear theory of stimulated Mandel'shtam-Brillouin scattering in plasmas is constructed. 
The theory takes into account pump wave depletion, hydrodynamic nonlinearity, and trapping of 
particles by the ion-sound wave field. The parameter ranges for which each of the above 
mechanisms of saturation of such scattering is important are discussed. The scattering dynamics 
under conditions where the effect of trapped particles is most important is discussed. Finally, 
theoretical results are compared with the experimental data. 

1. INTRODUCTION 

Stimulated Brillouin scattering SBS is one of the most 
important processes accompanying the interaction of high- 
intensity laser radiation with matter. In this connection, an 
analysis of the mechanisms of nonlinear saturation of SBS is 
of prime importance since they determine the magnitude of 
the nonlinear reflection of the laser radiation. In the case of 
condensed media nonlinear SBS is associated, as a rule, with 
depletion of the pump field. In this case the nonlinear reflec- 
tion coefficient can attain values close to unity if the intensi- 
ty of the pump field sufficiently exceeds a threshold value.' 
In experiments with SBS in plasmas such high values of the 
reflection coefficient are rarely observed. As a rule, satura- 
tion of SBS takes place at a lower level-around 5-20%.2.3 
This is connected with the appearance of the ion-sound wave 
nonlinearity. The theory of nonlinear saturation of SBS due 
to the hydrodynamic nonlinearity of the ion-sound wave was 
developed in Refs. 4 and 5. Here the suppression of scatter- 
ing is caused by the generation of higher harmonics of the ion 
sound wave and their damping4 and d i spers i~n .~  This mech- 
anism of nonlinear saturation of SBS is most important in a 
strongly nonisothermal plasma, when the number of reso- 
nant particles in the ion sound wave is relatively small. This 
situation is close to that realized, for example, in the experi- 
ments described in Ref. 6. 

In a weakly nonisothermal plasma with infrequent 
collisions, the trapping of ions resonant with the ion sound 
wave can play an important role in the nonlinear saturation 
of SBS. Apparently, this nonlinear mechanism proved to be 
most important under the conditions of the experiment in 
Ref. 7. The estimates made in Refs. 7-9 on the basis of Ref. 
10 of the nonlinear saturation of SBS due to the nonlinear 
frequency shift of the ion sound due to the trapped resonant 
particles are in qualitative agreement with the experimental 
data. However, its quantitative explanation requires the de- 
velopment of aconsistent theory. This has to do with the fact 
that the trapping of ions is manifested not only in the nonlin- 
ear frequency shift of the wave, but also in the generation of 
harmonics and in nonlinear damping, which was not taken 
into account in Refs. 7-9. In addition, the question of the 
relation of the kinetic and hydrodynamic mechanisms of the 
ion-sound nonlinearity in the saturation of SBS requires a 
more detailed quantitative analysis since even under the con- 
ditions of the experiment in Ref. 7 higher harmonics of the 
ion sound are observed. 

In the present article a consistent nonlinear theory SBS 

is constructed based on the model of a one-dimensional ho- 
mogeneous polasma layer which takes into account both the 
trapping of resonant particles by the ion-sound wave field 
and its hydrodynamic instability (that of the wave field) and 
the depletion of the pump wave field. The conditions under 
which each of the indicated nonlinear mechanisms is impor- 
tant are determined. The nonlinear dynamics of SBS under 
conditions under which the effect of the trapping of particles 
is important has been investigated. A comparison of the 
theoretical results with experimental data is made.'-",' ' 

2. EQUATION FOR THE ION-SOUND WAVES 

The effect of the trapped particles on the damping and 
the dispersion characteristics of waves in a plasma has been 
considered in a number of  article^.'"'^ The results of theory 
depend to a significant extent on how the field is switched on 
and on whether particle collisions are taken into account. 
The collisionless approach to the description of the effect of 
particle trapping on the dynamics of ion-sound solitons was 
developed in Refs. 15-17. However, for SBS the approach of 
Refs. 12 and 18, which describes the formation of the parti- 
cle distribution function in the vicinity of the trapping re- 
gion, taking collisions into account, is more suited to the 
experiment. It was used to treat the decay of a sinusoidal 
Langmuir wave " and of an ion sound wave.I4 The effect of 
trapped particles on the dispersion of waves in such an ap- 
proach has not been examined. 

We assume that the amplitude of the ion sound wave 
and the high-frequency electromagnetic waves which par- 
ticipate in the SBS process are small, and in the equation for 
the potential of the ion sound wave we will take account only 
of the first nonlinear terms in the expansion in powers of the 
amplitudes of the interacting waves. Here the terms which 
describe the intrinsic nonlinearity of the ion sound wave and 
the terms which describe the effect of the high-frequency 
fields enter into this equation additively. Therefore in the 
present section, following the approach of Ref. 18, we obtain 
an expression for the perturbation of the density and the 
damping rate of a plane ion sound wave which has a spatial 
period of 2r /k  and arbitrary shape. The contribution of the 
electromagnetic waves will be taken into account in the fol- 
lowing section. 

We represent the potential of the ion sound wave 
@(x,t)>Oin theform@(x,t) = @,,(kx - ku,t), wherecP,,is 
the amplitude, up is the phase velocity, and O(g(y) < 1 is a 
periodic function (g(y +_ 277) = g(y))  which describes the 
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shape of the wave [for a sinusoidal waveg(y) = sin2(y/2) 1. 
To  describe the perturbation of the density of particles 

of type a Sn, ( a )  in the wave field, we use the kinetic equa- 
tion with the collision integral in the Landau form. Assum- 
ing that the distribution function over the velocity compo- 
nents which are perpendicular to the x axis is Maxwellian 
with temperature T,, for the one-dimensional distribution 
functionf;, (v, ,x,t) we have 

where u,,, = ( T, /ma ) ' I 2  is the thermal speed and v, is the 
characteristic collision frequency. For the electrons 

g u T ,  ) 

~ , = 2 ' ~ n ' ~ ~ ( l + Z )  e4iiji,A/me2v~,3, 

where Z is the average charge of the ions, Ti, is the average 
density of the electrons (averaged over one period) 
(- n ,  - - Zni ) ,  - and A is the Coulomb logarithm. For the ions 
(up  >u,,), assuming that the nonisothermality of the plasma 
is not too strong, i.e., assuming that 

T,/Ti<3 (2nmi/Zn,)'"-lo2, 

we only take the ion-ion collisions into account: 

The quantity h, takes account of the relative motion of the 
electrons and ions caused by the entrainment current. Asso- 
ciating the reference frame with the ions, we set w, = h, = 0 
and 6,  = w , / ( l  +z), where 

+ rn 

Turning now to the trapped particles, we further as- 
sume that the characteristic time of the oscillations of the 
trapped particles in the wave T ,  = k - ' ( I e, I @,,/mu ) ' I 2  is 
small in comparison with the relaxation time associated with 
collisions of the particles in the resonant region 
r,, = Y; ' lec2 IQo/T,. The existence of the small parameter 

allows us to construct an approximate solution of Eq. ( 1 ) . In 
order to find Sn, ( a ) ,  the zeroth-order approximate solu- 
tion in the parameter (2)  suffices. To determine the damp- 
ing rate the first-order correction is necessary. The solution 
of Eq. ( 1 ) under conditions (2 )  for a potential of sinusoidal 
shape and small amplitude pO, = 1 e, 1 Qo/ T, < 1 was ob- 
tained in Ref. 18. The analogous solution for a potential of 
arbitrary shape is presented in Appendix A. For the trapped 
particles it has the following form: 

where E, (y,v, ) is the dimensionless energy of the particles 
of type a in the potential p,, = pO,g, (y) 
[g i  (y) = g(y) ,g, (y ) = 1 - g(y)  ] in the reference frame 
moving with the phase velocity of the wave: 

For the untrapped particles (E, (y,v, ) > do, ) we have 

fa; (Y. v) = C a  exp [-ea (Y, u) 3 

where 

is the adiabatic invariant, and the minus and plus signs cor- 
respond respectively to the particles running ahead of the 
wave and those remaining behind it. The constant C, in Eqs. 
(3 )  and ( 4 )  is determined from the normalization condition 

To obtain a nonlinear equation for the potential @(y)  it 
is necessary to calculate the perturbation of the density 
n, (y) accurate to terms -a,:. The corresponding calcula- 
tion is presented in Appendix B. Here we will discuss only 
the final result. It follows from Eqs. ( 3 )  and (4)  that the 
density should be expanded in powers of pOcr '/',and accord- 
ing to linear wave theory the expansion should begin with 
the term proportional to p,,, . We obtain 

where 

b1(y)=(J2--1) (g(Y)--(g)), h ( y )  = ( g ( ~ ) - ( g ) )  
X(h2~olJ l ) ln  qo+(h21J,)F(g(y) ), 

b3(y)='Jr(g2(y) -(gS)) [ (h2-3)Jz-h2+ 21, 
Cc 

The angular brackets denote averages over one wave period. 
We will use expression (6 )  to determine the perturba- 

tion of the charge density Sp = lei [ Z n ,  (y) - n, (y) 1 .  Tak- 
ing into account that up z u ,  = [ ( Z T ,  + 3T, )/m, ] ' I 2 $  u,,, 
and up < u , ~ ,  and also the coupling between p,,, and p,,, , we 
find 
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ZT "2 ( ['o .) "P (- ln (% Toe) 

Here the term which is proportional to p,, agrees with linear 
theory, and the difference between v, and LI, is due to the 
spatial dispersion of ion sound. The term proportional to 
p :, describes the well-known4 hydrodynamic nonlinearity 
of ion sound. The contribution of the kinetic effects is de- 
scribed by the terms proportional to p ii'. It turns out that 
the contribution of the ions in these terms predominate un- 
der the condition 

Assuming that this condition is satisfied, from here on we 
neglect electron trapping, omitting the second term in each 
of the square brackets in Eq. ( 7 )  (in the second and third 
terms). From a comparison of the second ( -p ::') and 
fourth ( - p i , , )  terms in Eq. ( 7 )  it is possible to conclude 
that the hydrodynamic nonlinearity is important only for 
very strong nonisothermality of the plasma, when 

Under conditions when ZT, T, 5 15-20, this inequality is 
not satisfied even for the maximum permissible values of 
pOc 5 T,/ZT, in Eq. ( 7 ) .  Therefore if the conditions 

and ( 2 )  are satisfied, the nonlinearity of the ion sound wave 
is caused by the trapping of ions. 

We note that Eq. ( 7 )  contains two terms which are pro- 
portional to p d?, and that the first of these, which is linear in 
g, is ln(T,/ZT,p,,, ) > 1 tines greater than the second, which 
is nonlinear in g. Hence it follows that under conditions ( 9 )  
when the effect of kinetic nonlinearity predominates, satura- 
tion of the amplitude of the ion sound wave takes place as a 
result of nonlinear dispersion without noticeable distortion 
of the shape of the wave. Generation of higher harmonics of 
the ion sound wave, which is described by the third term in 
Eq. (7 )  and is proportional t o p  ;b2F(g), is an accompanying 
effect. 

In order to describe the ion-sound wave under condi- 
tions of kinetic nonlinearity it is necessary to also take into 

account the effect of trapped particles on the damping decre- 
ment of this wave. Here, bearing in mind that under condi- 
tions ( 9 )  the generation of higher harmonics of the soupd 
field is a small effect, it is possible to  limit ourselves to the 
expression for the nonlinear damping decrement of the sinu- 
soidal ion sound wave. l 4  Taking into account that the main 
contribution to the damping decrement under conditions 
( 9 )  comes from the ion collisions (see Appendix C ) ,  we 
obtain 

where for a sinusoidal wave cOz0.69 (Ref. 13), (dg/ 
dy) = 1/8. According to Refs. 12-14, y, = y,, T ~ / T , , ~ ,  where 
y,, is the Landau linear damping decrement for the ions." 

3. THE EQUATION OF NONLINEAR INTERACTION FOR SBS 

Let us consider the problem of SBS behind the pump 
wave with frequency w,,, which is incident upon a homoge- 
neous slab of plasma of thickness 1. We represent the electric 
field in the plasma in the form 

E ( x ,  t )  =l/*E (x, t )  e-ioof+ C.C. 

where 

E (x, t )  =Eo (x) e1'"+EI (x) e-'4x+iat 

is a superposition of the incident wave EO(x)  and the Stokes 
wave E, ( x ) .  Neglecting the decay of the electromagnetic 
waves, for the amplitudes Eo and El we have from Mawell's 
equations the following truncated equations: 

where 
kaz= ( W o Z - ~ p 2 )  /c2, 0 ~ ~ = 4 n e ~ i i ~ / m ~ ,  

Gn,, * , = ( n , ( y )  eTiU) 

are the components of the electron density at the beat fre- 
quency of the electromagnetic waves, 
y = k ( x  - up t) ,k = 2ko,up = w/k, and c is the velocity of 
light. 

The coupling of the density perturbations with the po- 
tential p,,, of the low-frequency oscillations 

where n, = m,w:/4~e ' ,~ , ,  = p,,g,, are the harmonics of 
the potential, andg,, = (g(y) exp( - iny ) ), follows from the 
equation of motion of the electrons, taking into account the 
ponderomotive force. In particular, for a harmonic sound 
wave, when g ( y )  = sin2[(y - y. )D l ,  we have g ,  
= - dexp( - iy, ) and /p l  1 = ipoc>. It is necessary to in- 

clude the equation for the potential of the low-frequency 
oscillations along with the above nonlinear effects the pon- 
deromotive force, the damping and spatial dispersion of the 
sound, the inhomogeneity of the potential in the scale of the 
amplification of the electromagnetic waves, and time de- 
pendence. All of these effects have been previously consid- 
ered in the theory of SBS (see, e.g., Refs. 2,4, and 5).  There- 
fore we immediately present the final truncated equations 
for the harmonics of the potential p, and p2, assuming that 
lp, 1 p ,  I and neglecting the backcoupling of the second 
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harmonic on the first: 

Here 

fj,=-'/, ( vS2 /up2- I -k2rD2)  - [ w - u s  ( k )  110, 8 2 = 8 1 + 3 / 2 k Z r ~ 2  

is the linear detuning of the frequencies of the first and sec- 
ond harmonics of the ion-sound, r ,  is the Debye radius, 
A = A,, I y,, I ' /' is the nonlinear frequency shift, 

and 
n 

is the amplitude of the second harmonic of the nonlinear 
addition to the charge density ( 7 )  (in the equation for y,, the 
contribution proportional to F ( g )  is not assumed to be small 
in comparison with A). 

Equations ( 11 )-( 13) describe SBS, taking into account 
the kinetic nonlinearity and depletion of the pump wave. 
Equation (13) here makes it possible to determine the am- 
plitude of the second harmonic of the sound. 

According to the procedure of their derivation, Eqs. 
( 1 1 )-( 13) are valid under the condition that the amplitudes 
of the interacting waves are small: 

and the additional condition that the SBS increment y is 
small in comparison with the inverse relaxation time of the 
distribution function of the ions in the trapping region: 

~ ' > T , , = v ~ - '  Iqi IZTc/Ti>~a. 

4. NONLINEAR SATURATION OF THE ABSOLUTE 
INSTABILITY OF OPPOSITELY DIRECTED WAVES 

Let us consider the steady-state nonlinear solutions of 
Eqs. ( 11 )-( 13), neglecting the damping of sound (y ,  ~ 0 ) .  
( In  the linear approximation in y,, and El this system satis- 
fies the condition of absolute instability."') We introduce 
the dimensionless variables e,,, = E,,,, /(8an, T, ) "',vl,, 
= i ~ , , ~ ,  and we rewrite Eqs. ( 11 )-( 13) in the form 

1  de ,  a i 
v ; e 0 - - e , l e o 1 2 ,  

ko  d x  d 4 

where 
A = A , ~ v , ~ ' ~ ~ ,  a = o p 2 1 k 0 2 ~ 2 ,  

8 V: ZT, + 

The system (14), taking into account the boundary condi- 
tions 

has three first integrals 

where R = le, (O)/e,,(O) 1 '  is the reflection coefficient. 
The spatial dependence of all of the quantities is deter- 

mined from the equation 

The effect of the nonlinear frequency shift on the satu- 
ration of SBS becomes important when the term Im(e,,e:vT) 
in Eq. ( 17) is significant. In this case the first two terms in 
Im(e,,eTv:) [Eq. ( 16) 1 are associated with dephasing 
caused by the ponderomotive force, and the last term ( -A,,) 
is associated with dephasing caused by the trapped particles. 

The reflection coefficient R is found by solution of Eq. 
( 17) with the help ofthe boundary condition Iv, ( I )  1' = IR / 
a, which follows from Eqs. ( 15) and ( 16).  Accordingly, the 
equation for R has the form 

1 

1  2 
p 3- k , l ( ~ I ) ' ~  =--I d z { ( l - r 2 )  ( I - R z 2 )  

Jt Z "  

Setting R = 0, we find the threshold of absolute instability 
(p = 1) at 8 ,  = AI. We note an important fact. Since the 
boundary condition ( 15) at x = I requires that leOeTvT 1 = 0, 
it is consequently also necessary at x = 1 that the condition 
Im(eOeTv:) = 0 be satisfied. Since only one free parameter 
6 ,  enters into Im(e,,e:v~), this means that a steady-state 
solution is possible only for a certain value of the detuning: 

Let us consider the solution of Eq. (18) close to the 
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instability threshold ( p  - 1 9 1 ). In this case, under condi- 
tions when a31R & A:, when the effect of the trapped parti- 
cles is important, we have 

R-a2 (p-1)2/Ao4 (k01)'. 

This expression describes a situation in which the growth of 
reflection with increase o f p  is significantly slower than the 
pump depletion [R z 4 ( p  - 1 ) ]  and the generation of the 
second harmonic of sound due to the hydrodynamic nonlin- 
earity [ R z 4 a 2 ( p  - 1) / (4  + a 2 ) ]  (Ref. 4).  

Under conditions when the threshold is significantly 
exceeded (p) 1 ), assuming that R 4 1, from Eq. ( 18) we find 

This steady-state solution, because of the dependence of the 
detuning ( 19) on the pump intensity, may not hold at large 
P . 

We solved Eqs. ( 1 1 )-( 13) numerically with the bound- 
ary conditions ( 15) and initial conditions v,  ( t  = 0 )  = 0, 
e l  ( t  = 0 )  = el,,- lop4. The results of our calculations show 
(Fig. 1 ) that forp 2 2 steady state is, in fact, not established. 
The amplitudes of the electromagnetic waves and the sound 
wave oscillate in time about some mean value. Oscillations of 
the wave amplitudes in space are also observed. The depend- 
ence of the time-averaged reflection coefficient on the inten- 
sity of the pump wave is shown in Fig. 2. It can be seen that 
the dependence of the reflection coefficient on the intensity 
is close to a power law. 

We can make qualitative estimates of the dependences 
of the nonlinear reflection in the trans-threshold regime on 

the basis of Eqs. ( 1 1 )-( 13 ) , assuming that the initial value 
of the detuning 6,  is small in comparison with the value of A 
arising in the nonlinear state. Then from a comparison of the 
terms on the right-hand side of Eq. ( 12) with the term p lA 
we find the characteristic scales of the temporal and spatial 
oscillations: 

The quantity Sw characterizes the width of the spectrum of 
the scattered radiation, and SI characterizes the length at 
which the coherence of beating of the electromagnetic waves 
with the acoustic oscillations breaks down, i.e., SI is the ef- 
fective gain length. From a comparison of the nonlinear fre- 
quency shift and the ponderomotive force in Eq. (12) we 
find a relation between the mean values of the reflection co- 
efficient x and the potential G I  of the first harmonic 
A ~ )  1 .  In addition, from Eq. (1  1) we have - 
R "'-a/Gl IkSl. 

Using the last two relations along with Eq. (20), we 
obtain a linear dependence for the amplitude of the first har- 
monic and the reflection coefficient on the intensity of the 
pump wave: 

Here the coefficients were determined on the basis of the 
results of numerical calculations. Formulas (21) are valid 
for I &  10-'Al/a! These numerical calculations confirm 
these dependences (Figs. 2 and 3 ) . We note that according 
to Eq. (20), under the conditions of nonlinear saturation 
(21 ), the width of the SBS spectrum S o  grows proportional- 
ly with w ( a I )  'I2, but the coherence length SI decays propor- 
tionally with l /ko(a I )  ' I2 .  This agrees with the experimental 
data."' 

From Eq. ( 13) we estimate the amplitude of the second 
harmonic of the sound. Under conditions of small pump in- 
tensity, when 6,-6k it$ > (a1) and the linear correction 
to the dispersion of the second harmonic of the sound is 
large, we find that the ratio of amplitudes is 

m2 4F2 v.' (7 ) %  ( V( ) 1,,,, -=-- - exp -- 
i$t ~ ' 6 ~  uTq 2 v T i  

grows proportionally with I ' I 2 .  For ( a I )  I1'>,6k if,, this 
growth ceases and the ratio of amplitudes depends only lo- 

FIG. 1 .  The reflection coefficient R vs time and the perturbation of the 
density v ,  vs the spatial coordinate for a rectangular pump pulse with 
u , / u , ,  = 2 ,  a = n , / ( n ,  - n , )  = 1/9, k , , l=  120, v , / c = 2 . 1 0 - ' ,  
I,,,, = 6.10 -'; a )  I / I  ,,,, = 4 ,  h) I / I  ,,,, = 9 .  

FIG. 2. Dependence of the time-averaged hack-reflection coefficient on 
the pump intens~ty: u , / u ,  = 2, a = 0.1, A,,/ = 120, u , / c  = 2 .  lo-', and 
I, , , ,  = 6 .  10 '. 
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6. CONCLUSION 

FIG. 3. Dependence of the time-averaged back reflection coefficient on 
the plasma density for u,/u,, = 2, k,l = 120, u, /c  = 2.  I = 3 .  lop2; 
the curves represent the theoretical dependence based on Eq. (21 ), 0- 
calculation. 

garithmically on the pump intensity: 

5. NONLINEAR REFLECTION,TAKING INTO ACCOUNT THE 
DAMPING OF SOUND 

The case considered above corresponds, strictly speak- 
ing, to the excitation of sound of sufficiently large amplitude, 
when the nonlinear frequency shift h0l$, I ' I '  is large in com- 
parison with the damping rate ( 10). Using the estimate (2 1 ) 
for $,, we obtain a condition under which the results of the 
previous section are valid: 

in addition to this, it is necessary to satisfy the condition 
a I >  ( ~ k , , l ) ~  in order to exceed the threshold of absolute in- 
stability. Expressing I in terms of the reflection coefficient, 
we arrive at the inequality 

a' Ti ( ~t ) ' ln-x [(k.~. ) I h  ] R>Io-- - - 
A 2  ZT, kv8 8 v  i 

For smaller values of I ,  when condition (23) is not satisfied, 
it is necessary to take the damping of sound into account. 
However, the steady-state solution of SBS is possible only 
when the condition of linear damping is satisfied, condition 
( 2 )  is not satisfied, and there is no trapping. Such a steady- 
state solution 

R%E exp (oaIko l /4y , )  

obtains when 

~ < ' / ~ ~ ( ~ , ~ k ~ l / o )  ( ~ i / Z ~ e ) ~ ( v i ~ k u ~ ~ ) " ~  

(here E = le, ( I )  12/1 is the value of the intensity of the scat- 
tered wave at the entrance to the slab). For larger values of 
it is necessary to take account of nonlinear damping of the 
form ( 10). However, in this case the nonlinear saturation of 
SBS does not occur. Therefore only the effect of the nonlin- 
ear frequency shift leads to a reduction of the scattering. For 
this reason estimates (21) for the reflection coefficient and 
$, apply only under conditions (23),  but also at lower inten- 
sities if only condition (2 )  is satisfied. 

In the present article we have developed a nonlinear 
theory of SBS in a plasma under conditions when ion trap- 
ping by the ion sound wave field is an important mechanism 
of saturation. Let us determine the range of parameters of 
the laser radiation and the plasma for which this nonlinear 
effect is important. 

In order that particle trapping govern the nonlinear sat- 
uration of SBS, it is necessary to satisfy a number of condi- 
tions: inequalities (2 )  and (9 ) ,  the requirement that the re- 
flection coefficient calculated according to Eq. (21 ) be small 
in comparison with unity (i.e., that the depletion of the 
pump wave not have any significant effect on the saturation 
of SBS), and the requirement that either the threshold of 
absolute ( a I >  ( ~ / k , l ) ~ )  instability or the threshold of con- 
vective ( a 1  > 20y, /wk,l) instability be exceeded. 

Under experimental conditions (see, e.g., Refs. 6-9, 
11) inequality (9 )  is usually satisfied, but k,,l> w/y , ,  the 
SBS has the character of a convective instability. In this case 
conditions (2) ,  the requirement that R < 1, and the condi- 
tions of exceeding the threshold of SBS taking Eqs. (21 ) into 
account, can be written in the form of three restrictions on 
the intensity of the incident wave for which the effect of 
nonlinear saturation of SBS due to trapping of ions should 
obtain. These three restrictions have respectively the follow- 
ing form: 

A: T i  ( V i  )" 
aI>-- - 

50 ZT,  kuTi ' 

Comparing the first and the second inequalities, we obtain 
values of the density of the plasma a = n,/(n, - n, ) which 
the effect of trapping of the ions can be important for SBS: 

Comparing the first and the third inequalities, we obtain a 
restriction a <A: (k0lw/4000y, I", which usually turns out 
to be less severe than restriction (26).  Under conditions (9 )  
the parameter A,, is of the order of unity, but v, < ku , , . There- 
fore particle trapping has a substantial effect on SBS only for 
low-density plasmas, when a < 1 and condition (26) are sat- 
isfied. 

Experiments have been carried out7."n which the stim- 
ulated Brillouin scattering of radiation from a CO, laser in 
an argon plasma with relative density a= (2-5) . lop'  was 
investigated. According to the published estimates, 
k,,l=: lo3, 2-53, T ,  -550 eV, T, ~ 4 0  eV, y, /wzO.l ,  where- 
fore v,/ku,, S0.1, and, correspondingly, condition (26) is 
satisfied and inequality (25c) turns out to be more restric- 
tive than inequality (25a). Therefore nonlinear saturation of 
SBS is observed at radiation intensities 2-3 times greater 
than the threshold value (I,,, ~ 0 . 0 3 ) .  Inequality (25b) is 
satisfied over the entire investigated region 12 0.2 (the ener- 
gy flux density of the laser radiation is q 5 5.10" W/cm2); 
therefore there is observed a redution of SBS reflection at a 
low level (R 5 5% ), which is comparable with the value that 
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followsfrom Eq. (21 ), R z  1-3%. The ratio oftheamplitude 
of the second and the first harmonics of the sound which was 
observed in the experiments @,/GI ~ 0 . 2  is also in good 
agreement with the theoretical value (22). 

The relation (2  1 ) allows an understanding of the rea- 
son for the substantial discrepancy between the reflection 
coefficients measured in Refs. 7 and 8 and those measured in 
Refs. 6 and 9. In the last two references a plasma with a 
higher density (a 5 0.2) was investigated. Correspondingly, 
by virtue of the abrupt dependence of R on the density in 
formula (21), the observed values of the FMBS reflection 
coefficient were already a few tens of percent. 

Further increase of the plasma density leads to the re- 
sult that relation (26) breaks down and particle trapping 
does not cause a marked reduction of the reflection coeffi- 
cient. For this reason, in experiments with solid-state tar- 
gets, where all possible values of a are realized, the ion non- 
linearities do not lead to a reduction of the reflection 
coefficient, but only narrow the region of densities at which 
significant SBS is possible. Thus, for example, under the con- 
ditions of the experiment in Ref. 11, according to condition 
(26), significant (R -20%) SBS takes place in a plasma 
with density n,/n, 20.25. 

For a more detailed study of the effect of ion nonlineari- 
ties on nonlinear saturation of SBS it would be desirable to 
carry out experiments similar to those in Refs. 6-9 in a plas- 
ma with a high density and to investigate the dependence of 
the reflection coefficient on the density and the degree of 
nonisothermality of the plasma. 

The authors are grateful to V. A. Turikov for his help in 
familiarizing us with the literature on particle trapping. 

APPENDIX A: SOLUTION OF THE KINETIC EQUATION(1) 

We transform to a coordinate system moving with the 
phase velocity of the wave, and introduce the notations 

Then Eq. ( 1 )  for f, (u,,x,t) = . % ( ~ , , y )  takes the form 

where E, = pa (y) + ut/2, and the plus and minus signs 
correspond, respectively, to particles running ahead of the 
wave (u, > 0 )  and remaining behind it (u,, <O). Further 
calculation (in Appendices A and B) does not depend on the 
kind of particle; we will therefore drop the index a. 

It follows from Eq. (A.  1 ) that the distribution function 
to lowest order in v does not depend on position. For trapped 
particles ( E  < p,,) the entire right-hand side of Eq. ( A  1 ) as 
well should not depend on the spatial coordinate. By virtue 
of this, the factor in front of ( E  - p) "' on the right-hand 
side should be equal to zero. Hence for trapped particles we 
obtain Eq. ( 3 ) .  

For untrapped particles ( E  > p,,) the distribution func- 
tion to lowest order in Y is found from the condition that the 
time-averaged first-order correction (averaged over one 
wave period) should not depend on position. Applied to Eq. 

(A1 ), this condition has the form 

(a/&) [*(2"(&-(P) I") (dLT'o'/d~i-Fco') +hFco)]=O. 

Solution of this equation, taking into account the continuity 
of the distribution function on the separatrix ( E  = p,,), gives 
Eq. (4). 

APPENDIX B: CALCULATION OFTHE PERTURBATION OF 
THE PARTICLE DENSITY IN THE WAVE FIELD 
nfYl= sf: dv,  flV*,Y) 

Let us represent n (y) in the form of a sum of integrals of 
functions of the trapped and untrapped particles. For the 
trapped particles we have 

'PO 

n,, ( y )  =21h I dc $(E) =2.2'hC(po'b (l-g)lb 
v I V )  

(8-cp) '" 

Calculation of the density of the untrapped particles 

de h de' 
=2IhC j 

(&-(P)% e - ~ c h [ ~  Sml 
'Ca ?a 

turns out to be more complicated. Following Ref. 18, we 
divide the integration region in Eq. (B2) (p,,, cc ) into two 
regions (p0 ,c I )  and (E,,  cc ) choosing E ,  on the basis of the 
condition p , , < ~ ,  9 1. We calculate the first integral by an 
expansion in powers of p , /~ ,  & 1 and p,,g 1 out to terms in 
p i. We calculate the second integral by an expansion in 
powers of po/tI & 1. Then, joining these two expansions to- 
gether by means of the free parameter E ,  and combining Eqs. 
(B1 ) and (B2), we obtain 

The coefficients a,, and a ,  do not depend on the spatial coor- 
dinate y, the coefficient a,(y) is linear in the function g(y),  
and the coefficient a,(y) contains both linear and quadratic 
terms in g (y) .  The terms in a,p which are linear in g(y)  
can be discarded as small corrections to the term a2p,,. Next, 
making use of the normalization condition ( 5 ) ,  we obtain 
Eq. (6 ) .  The term proportional to p y2 is absent since 
a ,  = const. 

APPENDIX C: CALCULATION OF THE NONLINEAR DAMPING 
RATE OFTHE ION SOUND WAVE 

We define the damping rate of the sound by the relation 
y, = w / ~ w ,  where 

is the energy density of the ion sound wave, and w = (Ej ) is 
the power dissipated per unit volume. In the conventional 
notation we write 
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Making use of Eq. ( 1 ) and the fact that the entrainment 
current is independent of the spatial coordinate, we obtain" 

a 

Here it is already possible to use the zeroth-order solution 
for fa since in Eq. (C1 ) the collision frequency appears only 
explicitly. Retaining only terms in p A'* and making use of 
explicit expressions for the collision frequencies, we repre- 
sent Eq. (C1 ) in the form 

Keeping only the second term in the square brackets in this 
expression, which is due to the ion-ion collisions, we obtain 
an expression for y, [ Eq. ( 10) 1. 
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