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The adiabatic approximation is used to construct periodic solutions to the system of Vlasov- 
Poisson equations, which describe quasistationary Langmuir waves. A nonlinear dispersion 
relation is derived in the small-amplitude limit. Finally, the contribution of resonant particles to 
the energy and momentum of the waves is determined. 

1. INTRODUCTION 

In the theory of stationary plasma waves two ap- 
proaches to the solution of the problem are well known. The 
first of these, based on the linearization of the system of Vla- 
sov-Poisson equations, leads to the Van Kampen modes. I.' 
The second is based on a rigorous solution of the equations 
and is valid for waves of arbitrary intensity and spatial con- 
figuration. These solutions are known as Bernstein-Greene- 
Kruskal (BGK)  waves.'.' However, even periodic BGK so- 
lutions form a very wide class. Partially for this reason the 
form of the stationary (in the wave frame) charged particle 
distribution function is frequently postulated without justifi- 
cation, and the electrostatic potential of a small-amplitude 
wave is assumed to be ~ i n u s o i d a l . ~ - ~  Obviously, the most 
natural choice of the stationary particle distribution can be 
made by considering waves with slowly varying parameters. 
Indeed, under actual conditions the waves are frequently 
excited by weak sources so that the intensity of the oscilla- 
tions grows very slowly. Then the generation process can be 
assumed to be adiabatic, and the excited wave can be as- 
sumed quasistationary. In this case the form of the distribu- 
tion function, and with it the profile of the self-consistent 
potential, are uniquely determined. 

In the present article a rigorous solution of the system of 
Vlasov-Poisson equations is constructed which corresponds 
to quasistationary plasma waves of finite amplitude. A non- 
linear dispersion relation is derived. I t  is shown that even in 
the limit of infinitely small amplitudes the periodic wave, 
generally speaking, is not strictly harmonic. Finally, expres- 
sions are found for the momentum and energy of the quasi- 
stationary waves, correctly taking into account the contribu- 
tion of the resonant particles. 

2. REFERENCE EQUATIONS AND FORMULATION OF THE 
PROBLEM 

Let us consider the problem of the excitation of a Lang- 
muir wave by a weak source in a collisionless plasma in the 
one-dimensional case. We will begin with the kinetic Vlasov 
equation with an external periodic "driving force" and the 
Poisson equation'' 

Here we assume the external force to arise from a potential, 
as is frequently the case in practice, for example, in the exci- 

tation of a plasma wave by a periodic high-frequency poten- 
tial ( a  beat wave). 

Let a periodic perturbation with wavelength A = 2 r / k  
with an initially ( t +  - ) infinitesimally small amplitude 
( A  -0)  propagate with variable phase velocity V,, ( t ) .  By 
not excluding variations of the phase velocity beforehand we 
thereby allow for the possibility of a nonlinear frequency 
shift."' We will denote the limiting value of the wave veloc- 
ity by A+O (t-  - co ) by V,,, = w0/k.  

Introducing the dimensionless variables 
t 

we transform to the noninertial reference system associated 
with the wave (the tilde aboveyand v i s  omitted for brevity) 

af v df a af au a j  -+ ---- (@+@ ) ---- = o  
at 2 aa a g  ert 

r lu dt d u  ' ( 4 )  

In this system all quantities are assumed to depend weakly 
on time ( d  /dr- @,,, --+O), i.e., the perturbations are quasi- 
stationary. As a particular case, it is possible with the help of 
Eqc. ( 4 )  and ( 5 )  to describe the excitation of a stationary 
wave by a weak external source, acting over a finite time with 
continuous growth and decay of its intensity. Similarly, it is 
possible to consider the process of feeding additional energy 
to an already existing BGK wave. 

Thus, the problem reduces to the solution of Eqs. ( 4 )  
and ( 5 )  with periodic boundary conditions and initial condi- 
tions ( t -  - c o )  I@,,, / < / @ / + O ,  f-A)(v), whereA,isanar- 
bitrary smooth function, for example, a Maxwellian. 

3. ADIABATIC APPROXIMATION 

A very effective method for solving equations of the 
form of Eq. (4 )  is based on the adiabatic approximation. It 
has been used to treat the dynamics of charged particles in a 
potential well with slowly varying parameters9 and in the 
field of a monochromatic wave,'."' and also the evolution of 
quasimonochromatic wave packets interacting with reso- 
nant particles.' ' * I 2  In our case the main difference from the 
previous articles is connected with the presence of the last 
term in Eq. (4 ) ,  which contains the inertial force. 
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Following Best7 and G u r e ~ i c h , ~  we transform in Eq. 
( 4 )  to a new variable, the total energy of the electron 
W  = v2/4 + @({,r): 

where the + sign corresponds to the particles moving from 
left to right and right to left, respectively. For slow variation 
of the wave parameters (I3 /dr-  aeXt g 1 ) the distribution 
function can be represented in the form of the two leading 
terms of the expansion in I3 /dr  

Then to first order in I3 /dr, according to Eq. (6) ,  we have 

For particles undergoing unbounded motion (untrapped 
particles), it follows from the conditions of the periodicity of 
the distribution function that 

; i f 2  

The solution of this equation is an arbitrary function of the 
integral of motion 

.1/2 

2 
I,=u L- j dE(W-@)% 

- - n / z  
(8  

and according to the initial conditions 

Note that the form of the distribution function to lowest 
order in I3 /I37 does not depend on the nature of the source 
@ext . 

For trapped particles, taking into account the equality 
of the number of electrons moving in both directions, 
F+ = F- = F0/2, and taking into account the requirement of 
zero increase off upon making the complete contour around 
the particle trajectory $ df(I3F/I36) = 0, for the function 
F,, = F+ + F we find from Eq. (7)  

E. 1. 

where &, are the coordinates of the turning points satisfy- 
ing the relation W  = @( + &,T). By direct substitution it is 
easy to show that the solution of this equation is an arbitrary 
function FO = F,,(J) of the adiabatic invariant 

Eo 

We find the actual from of Fo by invoking the constancy 
of the total number of particles within one wavelength 

Assuming without loss of generality that a,,, = 0 and a,,, 
=A, we reverse the order of integration and then, trans- 

forming to an integral over I+  and J respectively for the 
untrapped ( W> A) and trapped ( 0  < W <  A) particles, we 
rewrite Eq. ( 1 1 ) in the form 

cc u -R R 

where the instantaneous phase velocity of the wave is 
uniquely determined by its amplitude u = u(A)'', and the 
value of the invariant J o n  the separatrix in the phase plane 
separating the trajectories of the untrapped and the trapped 
particles ( W = A) is denoted by 

n/z 

2 
R=R ( A )  = - - dg (A-@)'A. 

'I -n/z 

We introduce the complex function i i=ii(R) 
= u [ A  (R ) 1. Then, differentiating Eq. ( 12) with respect to 

R, we find F, in explicit form: 

Thus, the distribution function of the trapped particles is 
equal to 

where fi = i i(J) .  This expression, which takes into account 
all of the peculiarities of entrainment of the particles trapped 
by a wave with slowly varying amplitude, phase, and shape, 
can be of use in a number of applied problems. 

4. STRUCTURE OFTHE QUASISTATIONARY WAVE 

Let us go on to the solution of the Poisson equation. We 
represent the electrostatic potential of the wave in the form 

= Aa({,A), where A = @,,, (ami, = O), and the func- 
tion a ,  which varies between the limits 0 and 1, describes the 
shape of the wave while satisfying the boundary conditions 

Replacing the integration variable in Eq. ( 5 )  by W  = v2/ 
4 + @, we rewrite Eq. ( 5 )  in the form 

In contrast with Ref. 3, in our case the electron distribu- 
tion function depends on two variables and, moreover, ac- 
cording to Eqs. (9)  and ( 13), up to the determination of the 
profile of the wave in explicit form it is, generally speaking, a 
functional of a ((,A ) . It is not hard to see that a ( f  ,A ) is an 
even function about the maxima (6 = + ~ / 2 )  and the mini- 
mum (6 = 0 )  of the potential. Therefore it is sufficient to 
consider the behavior of a in the interval of monotonicity 
(0,?7/2). 

Taking Eq. ( 14a) into account and repeating the calcu- 
lations in Ref. 3, we reduce Eq. ( 15) to the equation of a 
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nonlinear oscillator where we have introduced the following notation: 
m 

with effective potential Y defined by 

Since Eq. ( 16) is solvable by quadratures, the problem of 
determining the profile of the wave can be taken to be solved 
if the function Y ( a , A  ) is determined explicitly. 

In the derivation of Eqs. ( 16) and ( 17) the small non- 
stationary corrections to the distribution function F +  -d / 
b '~-0  were neglected. Therefore in the calculation-of the 
right-hand side of Eq. ( 17) forf ,  the expression [see Eqs. 
(9 )  and (13) I 

should be used, where the adiabatic invariants (8 )  and ( 10) 
can be represented with the help of Eq. ( 16) in the form of a 
functional of Y ( a , A  ) 

1 W I A  

For the potential 7r ,  Eqs. (14) and (16) lead to the 
obvious restriction 

In addition to this, according to Eq. ( 17) and as a result of 
Eq. (14b) we find the following restriction on f 

OD OD 

Equations ( 17)-(20) completely determine the struc- 
ture of the wave, i.e., the form of 7 r (a ,A)  and F( W,A) for 
arbitrary amplitudes, and also the nonlinear dispersion law 
w = w (k,A ) for a plasma with an arbitrary perturbed distri- 
bution f ~ n c t i o n . ~ '  The solution of system (17)-(20) in the 
general case can be found with the help of numerical meth- 
ods. In what follows we will dwell in more detail on the 
important case of small amplitudes (A - 0) .  

Let us expand the phase velocity and the potential in a 
series in half-integer powers of the amplitude 

~(A)=u,+u,A'~+u,A+ . . . , (21a) 

Leaving out the details of the calculation of the right-hand 
side of Eq. ( 17), we present the final expression for the lead- 
ing term in Eq. (21b) 
Yo (a) = P p  (a - 2C1) 

+ 16f;u, {( dxx" ((x - ( ( x2  - a)." ( w )  
0 

and 9 is the principal value symbol. The first term in Eq. 
(22) is the contribution of the nonresonant particles 
( W%A). The terms which contain integrals are due to the 
trapped electrons. And, finally, the remaining term is the 
contribution of the untrapped resonant particles ( W k  A).  
For now the quantity u ,  will play the role of a free parameter. 
However, the value of u ,  will be completely determined after 
the calculation of the next correction to Y ( a , A ) ,  which as 
will be clear in what follows also leads to a unique dispersion 
law w, = w,(k) even as A-0, in contrast with well-known 
results. ' 

Running ahead, we note that the self-consistent solu- 
tion of the next correction (proportional to A 'I2) is impossi- 
ble in the case of zero phase shift, i.e., it is necessary that 
u ,  # O  (see also Refs. 5-8). Then according to Eq. (22) a 
quasistationary wave with arbitrarily small amplitude is not 
harmonic. The exception consists of the case f l, = 0, when 
Eq. (22) leads to a dispersion relation in Vlasov form, which 
in the standard notation has the form P, = 2, and the poten- 
tial corresponds to a sinusoidal wave 

and correspondingly 

The anharmonicity of the wave becomes especially strong if 
its phase velocity is comparable with the thermal velocity of 
the electrons V,,, - V,. The nature of this anharmonicity is 
closely connected with the increase of the number of elec- 
trons trapped in the potential wells which accelerate (in the 
laboratory system, slow down) in the process of excitation 
by the wave. The physical mechanism of the given phenome- 
non is revealed in the fact that as the phase velocity of the 
wave varies with growth of its amplitude, the resonant parti- 
cles give a contribution to the perturbation of the density of 
the order of A, as well as one of the order of A 'I2. The devi- 
ation from harmonicity of the rigorous solution to some ex- 
tent explains the difficulties of going over from the Van 
Kampen modes to the BGK waves.' In this connection we 
note that both approaches lead to the Vlasov dispersion rela- 
tion only for f A = 0. 

Let us consider in more detail a typical situation when 
the number of resonant particles in the tail of the distribution 
is small and f < 1 (the case of the Maxwellian distribution 
for V,,,,, k 3 V, ). Under these conditions the wave is close to 
harmonic and Eq. (22) can be solved by the method of 
successive approximations. Taking into account Eqs. ( 14b) 
and (19) and the expression for C ,  from Eq. (23),  we find 
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where 
i 

2  1 - i ,  a = - [ j d x x ~ o ( x ) ~ ( x ) - ~ ] ,  
5% 0 

Zo=E ( x )  - ( I - x 2 )  K ( x )  

and K ( x )  and E ( x )  are complete elliptic integrals with 
modulus ?t of the first and second kind, and the phase veloc- 
ity u,, is determined by the dispersion relation 

In this approximation4' (fh 1) ,  calculating the right-hand 
side of Eq. ( 17) with accuracy up to terms in A 5 1 2 ,  we can 
determine the form of the first correction to the potential Y" 
[see Eq. (21b)l  

I 2.2, R, (a) = 4f,," { b  - ;; 1 d m 2  (n) 
0 

2 2  " f dxx  ( x 2  - a)"' ($) +- a ( l  - a )  
a'la 

where 

and the first correction to the phase velocity ( 2  1 ), assuming 
the validity of Eqs. (19) and (20), is equal to 

u,= 1 6/0" DIP2, (27) 

where - 

Expressions (16) and (24)-(27) determine the spatial 
dependence of the electrostatic potential of the quasistation- 
ary wave to first order in A "'. In the more general situation 
the profile of the potential can be found by using numerical 
methods for an exact determination of 7/,, from Eq. (22),  
the corresponding expression for 7", ,  and the solution of Eq. 
(16).  

5. THE NONLINEAR DISPERSION RELATION 

Using Eqs. (25) and (27) and transforming back from 
the dimensionless quantities to the standard notation ( 3 ) ,  it 

is easy to derive a dispersion relation of the form 
c., 

V p h ( A )  =O ( k ,  A ) l k .  

This equation differs from the Vlasov equation by the 
presence of two terms which describe the contribution of the 
resonant particles. The last term of Eq. (28) describes the 
effect of the nonlinear frequency shift and is associated with 
the perturbation of the resonant electron density of order 
A ' I 2 .  The third term, which does not disappear even in the 
limit of infinitesimally small amplitudes, deserves special at- 
tention, and, at the same time, has no analog in the linear 
theory. Its occurrence is due to the same cause as the anhar- 
monicity of the wave (see Sec. 4 )  which does not disappear 
as A --0, i.e., the linear (in amplitude) perturbation of the 
resonant particle density. In its turn, the modulation of the 
resonant electron density, which is proportional to A ,  is asso- 
ciated with the asymmetric character of the trapping of the 
particles overtaking the wave and remaining behind it under 
conditions of varying phase velocity. This result, strange at 
first glance, allows, nevertheless, a simple, qualitative expla- 
nation. 

Let us compare the process of trapping of the electrons 
in the potential wells of a wave of growing amplitude with 
fixed phase velocity (in the absence of a nonlinear frequency 
shift) and with decreasing phase velocity. We will consider 
the perturbation of the distribution function of the trapped 
particles, making use of the expansion of the unperturbed 
distribution function near the resonance 

For a fixed value of V,,, in the trapping region the well- 
known distribution in the form of a spatially modulated pla- 
teau develops. " The form of the distribution function in the 
[ = 0 plane, which corresponds to the minimum of the po- 
tential well, where the perturbation off -Af;, is at its maxi- 
mum, is shown in Fig. 1 by the dashed line. The particles are 
trapped symmetrically with respect to the point V =  V,,,  
and the perturbation of the trapped particle density is 

However, if the phase velocity of the wave decreases with 
growth of the amplitude, the number of trapped particles 
moving with velocity V=: V,,, (A) is less than its value at the 
endpoints of the trapping region V = V,,, + V ,  ( V ,  - A  ' I '  

is the halfwidth of the trapping region) by the quantity 

since these particles were trapped earlier as A - 0 and, corre- 
spondingly, at a larger value of the phase velocity V,, (0 ) .  
With increase of the amplitude these particles become en- 
trained by the wave (shown in Fig. 1 by an arrow) and al- 
ways remain at the bottom of the well. The qualitative form 
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FIG. 1 .  

of the distribution function is shown in the figure by a solid 
line. Decrease of the density of the trapped electrons is nu- 
merically equal to the area of the hatched region and is equal 
in order of magnitude to V,AJ In  our case the wave velocity 
grows as a result of the nonlinear variation of the phase, 
whereby 

[see Eq. (27) 1 .  Then the perturbation of the trapped parti- 
cle density, arising as a result of the asymmetry of trapping, 
is found to be proportional to the first power of the ampli- 
tude [see Eq. (28) 1 

A rigorous calculation of the perturbation of the electron 
density, taking into account the untrapped electrons and the 
spatial dependence 

can be carried out by a simple differentiation of Eqs. (22),  
(24),  and (26) .  

Thus, the nonlinear phase shift, which by itself is due to 
the perturbation ofthe density n,,, -A ' I 2 ,  entails thegenera- 
tion of harmonics of the resonant electron density in its lead- 
ing term n,,, - A ,  which is also reflected in the third term in 
Eq. (28). We note that this effect is highly nonlinear and in 
principle cannot be described within the linear approxima- 
tion. In this sense the standard approach of preliminary lin- 
earization of the kinetic equation is not sufficiently system- 
atic since it does not take into account the strong 
perturbation of the particle trajectories near the resonance. 
For the same reason the question of the contribution of the 
resonant particles to the dispersion relation in the linear the- 
ory of stationary waves is necessarily circumvented by inte- 
gration of the expression containing the resonant denomina- 
tor (w - k V) - ' in the principal-value sense, and the role of 
the resonant particles is thereby in effect ignored. On the 
other hand, the method proposed in Ref. 3 and taken as a 
basis above (the rigorous solution of the nonlinear equations 
with subsequent taking of the limit A -0)  allows one to cor- 
rectly determine the contribution of the resonant particles to 
the dispersion properties of the plasma. 

Relation (28) differs from the well-known results of 
Refs. 1-3, which contain an indeterminacy (the absence of a 

unique dependence w = w ( k ) ,  the arbitrariness of the choice 
of the resonant particle distribution function, and the inde- 
terminacy of their contribution to the dielectric constant), 
which is a consequence of the absence of information on the 
character of the evolution of the wave in the given stationary 
state. This indeterminacy can be eliminated, however, by 
solution of the evolutionary problem. In fact, as was shown 
above, specifying the means of excitation of the stationary 
wave (here adiabatic) leads to a completely determined dis- 
persion law w = w(k,A). The solution of Eq. (28) has the 
form 

where St,,(k) is the solution of the Vlasnov dispersion equa- 
tion 

m 

0, = ( ek  2Q,/m) ' I 2  is the characteristic frequency of theos- 
cillations of the trapped particles in the potential wells of the 
wave, and Q, = (p,,, - p,,, )/2. 

6. MOMENTUM AND ENERGY OF THE WAVE 

Knowing the form of the distribution function ( 18), it 
is possible by direct calculation to determine the momentum 
of the wave and its energy. In the fixed reference system 
associated with the ions at rest the momentum density and 
the kinetic energy density of the electrons, averaged over one 
wavelength, are equal to 

where the angular brackets denote the average 
nlZ  1 

and the dimensionless momentum and energy of the elec- 
trons in the system associated with the wave are given by 

m - 
P=ZS dW(f+-f-), W - ~ I  dW(f++f-) (W-Aa)'". 

A ,\a 

The trapped particles do not contribute to the momentum 
since for them f+ = f- = F0/2 (see Sec. 3 ) .  Calculation, ac- 
curate to terms oforderA ' within the restrictions invoked in 
the derivation of Eqs. (24) and (26) ( V,,,, > 3 V,-), leads to 
the result 
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In this approximation the electrostatic energy of the 
wave is equal to 

Transforming back from dimensionless quantities to the 
standard notation, we find expressions for the total energy 
and the momentum of the wave 

(31) 
where R,, and E,, are determined by Eq. ( 30). 

The first term in Eq. ( 3  1 ) has the usual form. The sec- 
ond term describes the contribution of the resonant particles 
which is due to the characteristic modulated-plateau defor- 
mation of the distribution function in the vicinity of the 
phase velocity of the wave.I3 This division of the energy of 
the wave into two "blocks" was noted in Ref. 14. It should be 
emphasized that the second term in Eq. (31) is of lower 
order in the wave amplitude, by virtue of which the store of 
energy carried by the resonant particles can play an impor- 
tant role in various problems of plasma radiophysics (see, 
e.g., Refs. 15 and 16). 

7. CONCLUSION 

As is well known, quite a wide class of plasma wave 
phenomena exist in which the oscillations evolve rather 
slowly. We have demonstrated above a method of kinetic 
description of such processes in the instance of perturbations 
of the simplest type-periodic Langmuir waves. A nonlinear 
dispersion law has been found for the quasistationary natu- 
ral oscillations of a collisionless plasma. I t  has been estab- 
lished that for slow excitation of the wave there exists a 
unique coupling between the frequency and the wave vector, 
and the wave is not harmonic even in the limit of infinitely 
small amplitudes. The dispersion equation, nevertheless, 
differs from the Vlasov equation by the presence of a term 
which takes into account the contribution of the resonant 
electrons. This term [see Eq. (28) 1 was derived by a rigor- 
ous analysis of the self-consistent processes of trapping of the 
particles and variation of the phase velocity of the wave with 
growth of its amplitude. At the same time, the usual proce- 
dure of preliminary linearization of the kinetic equation does 
not permit an expansion of the solution in half-integer pow- 
ers of the amplitude and thereby in effect ignores the effects 
of trapping. 

The main virtue of the proposed approach thus consists 
in the possibility of correctly taking into account the contri- 
bution of the resonant particles to the dispersion characteris- 
tics of the plasma and their participation in processes of en- 
ergy and momentum exchange with the wave. In addition, in 
spite of the fact that a large part of the results of the present 
article were obtained in the small-amplitude approximation, 
there are no fundamental obstacles (restrictions on the wave 

amplitude A or the form of&,) to carrying out a more general 
investigation. The only limitation is the well-known require- 
ment of adiabaticity of trapping of the particles by the poten- 
tial wells,".e., slowness of variation of the wave parameters 
in the time scale of the characteristic period of motion of the 
particles. 

I t  is well known that the wave-particle interaction can 
have an influence on the dynamics of the development of an 
entire list of wave processes in a plasma, such as the nonlin- 
ear interaction of waves, the development of parametric in- 
stabilities, etc. A study of these phenomena at  the level of the 
kinetic description can be carried out within the framework 
of the adiabatic approximation for waves of finite amplitude 
(see Sec. 3) ,  and in fact this is all the more to be preferred 
since the standard method of linearization of the kinetic 
equation is hardly a systematic approach for the study of 
processes in which resonant particles participate. 

From a practical point of view the proposed approach 
can be useful in the investigation of wave processes in a labo- 
ratory plasma and in space plasmas, and also in problems of 
advanced technology." In particular, on the basis of this 
method it is possible to investigate the dispersion properties 
of plasmas and the energy distribution of accelerated 
trapped particles, and to determine the detailed shape of the 
profile of the self-consistent electrostatic potential. 

"The ions for simplicity are assumed to be fixed. 
2'Strictly speaking, we assume here a monotonically increasing wave am- 

plitude. In addition, in the derivation of Eq. ( 12), note was taken of the 
inequality 1 u - u , ,  < R, which can be easily verified aposteriori (see Sec. 
4 ) .  Generalization to the case of attenuating waves does not require 
much work although here one must take account of the irreversible char- 
acter of trapping of the particles. ' ' . "  

"Here we do not touch on the question of the stability of such waves. 
4'We do not present the more general expression for T", (a) because of its 

cumbersomeness. 
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