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The nonlinear Schrodinger equation model is used to show that beyond the critical point ( D u >  2, 
where D is the dimensionality of space and a the degree of nonlinearity), the three-dimensional 
wave collapse can be spread out in time. The energy of a wave packet is then absorbed by the 
collapsing cavity during the stage following the establishment of the singularity at  the center of 
the packet. 

1. INTRODUCTION sional case for any a .  It is therefore expected that, in the 
The appearance of singularities in the solutions of non- three-dimensional case, the preferential absorption of wave 

linear equations of motion is typical for many physical prob- energy by collapsing cavities does not occur at the usual 
lems in which nonlinear dissipation or high-frequency ab- stage at which the singularity is formed ( t  < to), but at the 

sorption is ignored. Examples of this include the next stage, after the singularity has appeared ( t >  to). We 
self-focusing of wave beams and self-compression of wave shall call the latter the focal stage. 

packets in nonlinear media, self-focusing of electromag- 
netic waves in plasmas,' and the collapse of Langmuir 2. FOCAL STAGE OF COLLAPSE-THE STATIONARY MODEL 

As a rule, collapse occurs at the conclusion of the 
nonlinear stage of modulational instability in conservative 
systems of high dimensionality. Singular behavior of dissipa- 
tive structures is also possible. Chemotactic collapse, de- 
scribed by equations with mutual diffusion, is an example of 
this. 

Collapse is the result of competition between the mech- 
anisms of nonlinear focusing of space-time trajectories of 
quasiparticles and their wave dispersion when nonlinear re- 
fraction predominates over dispersion at all stages, right up 
to the formation, in finite time, of the field singularity. Other 
things being equal, the competition between the above mech- 
anisms depends on the dimensionality of the system, so that 
the character of collapse is different for systems of different 
dimensionality. 

The phenomenon of wave collapse is particularly well 
demonstrated for the solutions of the nonlinear Schrodinger 
equation 

These solutions were first investigated in the theory of self- 
focusing of waves ( D  = 2)  in media with cubic nonlinearity 
(a = 1; Refs. 1-5). Equation ( 1 ) is a modelx,' for Langmuir 
collapse of high dimensionality ( D  = 3).  The idea of col- 
lapsing cavities is introduced to explain the absorption of 
waves in plasmas.h37 The relevance of this problem is indicat- 
ed by the number of publications that have appeared in the 
very recent past.Y-' ' 

Some of the general properties of ( 1)  are determined 
exclusively by D u  (e.g., the stability of solitons), and the 
authors of Ref. 11 used this as a basis for their analysis of 
collavses in the so-called postcritical case (OD> 2 ) ,  in 

To  gain an idea about the field structure in the neigh- 
borhood of the singularity during the focal stage of collapse, 
let us consider a symmetric solution of ( 1)  for a time-inde- 
pendent energy flux flowing into the singularity. Such solu- 
tions are described by 

For time-independent fields \V = \Voexp( - iRt) ,  equation 
( 2 )  reduces to 

We now assume that R = xi > 0, and consider solutions of 
( 3 )  in the form of waves converging on the point r = 0, 
which have the following asymptotic form as r-  cc : 

Taking the required solution in the form 

and substituting it in ( 3 ) ,  we obtain the following set of 
equations for U and p: 

U2"r-(D- ""t xo2=~. '  ' - U r ' / U +  ( D - 1 )  (D-3)  /4r2, 
( 6 )  

( U2cp,') ,'=O, 

where, according to (4 ) ,  p - -- K,, as r -  a. Assuming that 
U 2 p :  = C =  c onst < 0 ,  which correspond to a constant en- 
ergy flux in the required solution, we find that the amplitude 
distribution U(r)  is the solution of the equation 

which they employed numerical simulation of the solutions 
of ( 1) with D = 1 and a high degree of nonlinearity (a = 3).  

The last term in (7)  vanishes for D = 1 and D = 3. 

In this paper, we draw attention to the nonequivalent behav- 
Equation ( 7 )  has no singular solutions in the one-di- 

ior of collavsing cavities of different dimensionality. In par- 
mensional case: . .- 

ticular, in the three-dimensional case, there are cavities in UI ,,,+-, U ,  U" 1,,,>0, U'Ir>(~<(j. 
which energy dissipation in the singularity is continuous in 
time. There are no such solutions of ( 1 ) in the one-dimen- The collapse of one-dimensional fields for u > 2 does not 
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therefore lead to the existence of a singularity spread in time 
in the post-focal region, and proceeds in accordance with the 
scenarios described in Refs. 11 and 12. 

In  the three-dimensional case ( D  = 3 ) ,  there is a singu- 
lar solution corresponding to U/r -  co as r-0. To  find its 
asymptotic form in the neighborhood of r = 0, we change 
the variables as follows: 

and obtain the above equation in the form 

For p = exp( - 1/6) -0, we can neglect terms containing 
p'. The solution of the remaining equation 

in the neighborhood ofthe point 6 = O(p = 0 )  will be sought 
in the form 

Substituting ( 10) in ( 9 ) ,  and retaining the leading terms for 
q < 1, we obtain 

which has the solution q = $6 In 6. Thus, in the three-di- 
mensional case, a singular solution of ( 5 )  exists and is de- 
scribed by the functions 

The constant lC 1 is determined by the energy flux density 
/ U 2 / p  : flowing into the field singularity. 

3. DISTRIBUTED COLLAPSE 

I t  is known that the self-contraction of a wave packet 
described by ( 1 ) is different in character for different D and 
a .  In the critical case ( D a  = 2),  and at the time to at which 
the singularity appears, it receives a finite energy flux from 
the initial wave packet, (i.e., the integral N = ~ I \ V 1 ~ d x ,  is 
finite).".'4 This is referred to as strong c ~ l l a p s e . ~  Figure 
1 ( a )  illustrates the space-time trajectories (rays) of quasi- 
particles in a strong collapse. At the final stage ( t -  t o ) ,  col- 
lapse is instantaneous ("nonaberrational"). In  general, the 
picture is analogous to that described in Ref. 13, i.e., it is 
multifocal in character, and a photon of energy Nis  absorbed 
in each singularity. 

In the postcritical case ( D a  > 2) ,  the energy flux is zero 
(N = 0 )  at the singularity. The corresponding picture of 
space-time rays is shown in Fig. 1 ( b )  fo r t  < t,,. For r#O and 
t = to, the rays are oriented toward the center of the cavity. It 
may be expected that, in the three-dimensional case, the ori- 
entation of rays corresponding to the influx of energy into 
the singularity will ensure that the absorption of the field, 
especially at the focal stage of collapse, will be distributed in 
time, i.e., the singularity that arises at time t = to can be 
maintained for a finite time by the energy flux flowing to- 
ward it from the periphery of the cavity. A "focal filament" 

FIG. 1. Space-time focusing in the critical (Do = 2) and postcritical 
(Du > 2)  regions. 

(Fig. l b )  is formed as result. An analytic proof ofthis propo- 
sition does not seem to possible at present, but it has been 
confirmed by numerical experiments. 

To avoid difficulties with integration of the conserva- 
tion equation ( 2 )  for t > t,,, we assume that the medium ex- 
hibits multiphoton absorption that limits the intensity to a 
certain value. The parameters can then be chosen so  that this 
absorption is confined to a small neighborhood of the point 
r = 0, which simulates quite well the singularity as an energy 
sink. Let us now replace ( 2 )  with (a = 1 ) 

which we shall integrate for sufficiently small values of the 
multiphoton absorption coefficient a. Figure 2 shows the 
field amplitude as a function of t for r = 0, D = 3, n = 8, 
a = 3.9.10-'I, and initial distribution 
Y (r,O) = 7 exp( - 1.125r2). For comparison, the figure 
also shows the analogous results for two-dimensional col- 
lapse ( D  = 2)  and the same initial condition. I t  is clear that 
the three-dimensional collapse is distributed in time and that 
the two-dimensional collapse is multifocal. The total energy 
N of the three-dimensional cluster after t = t,, decreases 
monotonically as a consequence of absorption near r = 0, 
which is in contrast to the abrupt change found for the two- 
dimensional collapse (Fig. 3 ). 

We note that the time-distributed collapse effect, ob- 
tained within the framework of the nonlinear Schrodinger 

FIG. 2. Field amplitude at the center of the cavlty as a funct~on of tlme 

1126 Sov. Phys. JETP 68 (6), June 1989 Vlasov et aL 1 126 



FIG. 3. Total energy in the cavity as a function of time. 
FIG. 5. Second harmonic gain as a function of field strength at the center 
of the cavity. 

equation with a local nonlinearity, is only outwardly similar 
to the "funnel effect" described for the collapse of Langmuir 
waves in Ref. 15. The latter requires a singularity in the sen Y in the form of ( 15). It is interesting to consider the 

neighborhood of r = 0 that is stronger than r-2, and (5 )  and stability of the symmetric solution with respect to the lowest 

( 12) show that this does not occur in distributed three-di- harmonics I = 1 and I = 2. The I = 1 harmonic can be dis- 
posed of by suitably choosing the origin of coordinates. mensional collapses. 
Whenever it differs from zero, this means that the collapse is 
not located at the origin r = 0. 

4. STABILITY OF THREE-DIMENSIONAL COLLAPSE 

Direct numerical simulation shows that asymmetric 
perturbations are not trapped by a field singularity in a 
three-dimensional collapse in a cubic medium. This can be 
demonstrated by expanding the collapsing solution of ( 1 ) 
for D = 3, a = 1 at the focal stage in terms of spherical har- 
monics (using the coordinates r,O,p ) 

where T'"(r, t)  is the radial field function, 

are spherical harmonics, and s represents the set of azi- 
muthal ( m )  and polar (I)  indices. 

We shall suppose that the field structure near the singu- 
larity is nearly spherically symmetric, so that the amplitudes 
of all the harmonics other than Y 'O.O' are small. This means 
that, in the equations for the harmonics that are obtained 
after substituting ( 15 ) in ( 1 ) , we can neglect the squares of 
all amplitudes other than the fundamental. The amplitudes 
Y'"'(r,t) are found to be related by a set of equations that 
describes the effect of a powerful harmonic on all the others. 
The amplitudes of the fundamental are described by a non- 
linear equation, whereas those of the weak harmonics are the 
solutions of linear equations with variable coefficients. 
These equations involve only the polar index I because of the 
symmetry of the fundamental and the fact that we have cho- 

Figures 4 and 5 show the calculated amplitudes of the 
harmonics for the initial distribution 

Collapse of the fundamental occurs for A > 2.1 (Fig. 4).  At 
the beginning of the collapse development, the amplitude of 
the mode T'2-0'(r,t) is found to vary, but then, after a certain 
time has elapsed, it becomes constant. The energy 
Nz = J I  Y'230' I2dx, does not increase for A< 3; for large A it 
increases but the total gain K = N,(t)/N,(O) remains finite 
(Fig. 5 ) .  This shows that the symmetric three-dimensional 
collapse is stable against perturbations that violate its sym- 
metry. 

We may therefore conclude that, for Da > 2, three-di- 
mensional collapse differs from one-dimensional collapse by 
the essential fact that it is spread out in time. Numerical 
experiments with one-dimensional collapse cannot serve as a 
basis for conclusions about the structure of collapsing cav- 
ities in the three-dimensional case. For D = 3, the energy of 
the initial wave packet is dissipated preferentially not at the 
focal stage, but after the establishment of the singularity 
which acts as a sink for the energy of the cluster. In real 
media, the absorption of energy at the center of the packet is 
due to nonlinear or high-frequency dissipation. We may ex- 
pect that, under asymmetric initial conditions, the resulting 
collapsing wave packets will be symmetrized (symmetric 
perturbations have higher growth rates) and decay preferen- 
tially at the focal stage t > to. 

NOTE added in proof (I6 April 1989). Distributed collapse was first de- 
scribed by the present authors in a lecture presented at the Eighth AII- 
Union on Nonlinear Waves (Gor'kii, March 1987) and in Proceedings of 
the Third International Group on Nonlinear and Turbulent Processes in 
Physics (Kiev, 13-26 April, 1987, Vol. 2, p. 210). In arecent paper, V. M. 
Malkin has shown [Pis'ma Zh. Eksp. Teor. Fiz. 48,603 ( 1988) ] that the 
singular self-similar solution of ( 2 )  can serve as a model of distributed 
collapse. 
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