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The quenching of nonhydrogenic Rydberg states by collisions with alkali metal ions is discussed 
on the assumption that the process is due to nonadiabatic transitions between Rydberg states with 
different principal quantum number n. The transitions are generated by the rotation of the 
internuclear axis and the interaction between the Rydberg electron and the alkali metal atom. It is 
shown that this mechanism leads to large (of the order of 1000 a.u. ) cross sections that depend on 
the quantum number n (a shallow maximum is formed). The neighborhood of the point at which 
the relative velocity of the atoms is zero provides a significant contribution to the cross section. It 
is shown that the transitions are mostly due to the polarization coupling between the Rydberg 
electron and the alkali metal atom. The quenching cross sections are found to depend on the 
nature of the Rydberg atom, and there is a weak dependence on the gas temperature. 

1. INTRODUCTION 

The quenching cross sections of nonhydrogenic 
(S,P,D) Rydberg states of alkali metal atoms have been 
measured during the last decade for thermal collisions with 
atoms of the same type in the ground state. The measure- 
ments were made for both highly-excited partners with prin- 
cipal quantum number of the outermost electron n 2 30 
(Ref. 1) and for relatively weakly excited atoms with n 5 15 
(Ref. 2) .  The theoretical description of processes with high- 
ly excited atoms, proposed in Refs. 3 and 4 and based either 
on the impulse approximation or on the binary theory of the 
formfactors, is entirely satisfactory for n R 30, but is in con- 
flict with experiment for lower n. Quenching reactions were 
not examined theoretically in a systematic way for 
15 5 n 5 30. This region is actually of particular interest be- 
cause of the discovery of oscillations on the spectral charac- 
teristics of the quenching of nS and nD Rydberg states, i.e., 
level width and shift, in collisions between the alkali-metal 
Rydberg atoms and neutrals of the same kind. These oscilla- 
tions have not, so far, received a satisfactory explanation. It 
is therefore interesting to consider whether oscillations of 
the type discussed in Refs. 5-7 occur in the cross sections for 
the quenching of the individual S, P, and D levels or, if there 
are no oscillations, whether the cross sections themselves 
exhibits a sharp peak in the required range of values of n. 

We shall discuss nonadiabatic transitions due to the ro- 
tation of the internuclear axis and the radial motion of the 
atoms. Because of the high polarizability a of the neutral 
atom (a= 10' a.u. for the alkali-metal atom), we find that, 
in the range 15 5 n 5 30 that is of interest to us, the resonance 
kinematic condition 

more specific to any great extent because, first, the high po- 
larizability of the perturbing atom leads to a substantial 
modification of the Rydberg states and, second, nonadiaba- 
tic transitions can also occur for other configurations of 
heavy particles that differ from the resonant configurations 
satisfying ( 1 ) . Nevertheless, the proposed mechanism can 
lead to substantial cross sections and therefore deserves con- 
sideration. The aim of this research was to formulate the 
problem and to perform approximate calculations that ex- 
hibit the basic features of this quenching mechanism. 

2. DETERMINATION OF ADIABATIC STATES, ENERGY 
CURVES, AND MATRIX ELEMENTS 

We shall assume that the motion of the heavy particles 
can be treated classically (although it may well happen that 
a more accurate description will be necessary in more accu- 
rate cross section calculations). The origin of coordinates 
will be placed in the nucleus of the charged core A +, the Z 
axis will lie along the normal to the collision plane, and the X 
axis along the internuclear axis. The Hamiltonian for the 
Rydberg electron then takes the form (in atomic units) 

8=Bo(p)-o(s, R)L+P(p,  R)+HtPhert, (2)  

where R( t )  is the vector connecting the two nuclei (R,  
= R, 7 0) ,  p is the position vector of the electron relative 
to A ', Ho( p )  is the Hamiltonian oithe highly excited elec- 
tron in the Rydberg atom A **  (nl),  L,  is thezcomponent of 
the angular momentum of the electron, w(s,R) = sv, /R *is 
the angular velocity of the internuclear axis, s is the impact 
~arameter, v, is the relative velocity of the atoms at infinity 
V( p,R) is the operator for the interaction between the elec- 
tron in atom B and the dipole induced in it by the positive ion 

associated with orbiting is satisfied, where w,,, is the orbital p (p, R) =D+I?,, ( i p - ~ !  ), D - - . ~ ~ ( ~ - ~ ) ~ .  p - ~ i  -.3, 

frequency, E,  and E, are the initial and final energies of the 
Rydberg electron, and k is the order of the resonance. It is 
readily verified that, for 15 5 n 5 30, there are groups of defi- 

A 

( 3 )  

nite final states that fall into resonance with the given initial and V,, describes the polarization interaction betwzen the 
state almost exactly. Hence we may expect that the transi- Rydberg electron and the isolated term B. The term H,,,,, is 
tion probability may increase for these values of n and for the effective potential energy operator associated with the 
impact parameters s for which ( 1 ) is satisfied. Unfortunate- fact that the coordinate frame is not inertial."' It takes the 
ly, these simple qualitative considerations cannot be made form of an interaction operator between the electron and the 
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effective electric field, and is directly proportional to the ac- 
celeration of the heavy particles. Since this acceleration is 
inversely proportional to the mass of the gore of A +, and 
decreases with increasing R( t ) ,  the term H,,,,, may be re- 
garded as small, although its inclusion via perturbation the- 
ory presents no difficulty. 

For a highly excited state with 15 5 n 5 30, the wave 
function of the Rydberg electron occupies a large volume 
( p 5 n2). However, the volume is large enough to enable us 
to consider the interaction between the Rydberg electron 
and the quasimolecular core A +B as very small, so that we 
can use the impulse approximation. On the other hand, the 
volume is small enough to ensure that the usual adiabatic 
approximation should wo~k.  Hence we canAtake the eigen- 
functions of the gperator H,,( p) - w(s,R)L, as our basis. 
The interaction V( p,R) leads to the mixing of these states 
and to transitions betwep them. We must therefore evaluate 
the matrix elements of V( p,R) in this basis. 

First, we must take into account the nonhydrogenic 
character of the states of the Rydberg electron. The simplest 
way of doing this is to introduce the effective (nonintegral) 
orbital quantum number 1 * (Refs. 11 and 12) that is related 
to the quantum defect S, : I * = I + S. We shall adopt this 
approach but, since the matrix elements that are significant 
for our analysis will be evaluated in the quasiclassical ap- 
proximation, comparable results can also be obtained by tak- 
ing the quantum deffect into account by other methods. 

The interaction operator contains two terms, namely, 
the interaction of the Rydberg electron with the dipole in- 
duced in B and the polarization-type interaction between 
this electron and the atom B. Despite the apparent simplicity 
of the physical problem, the complexity of the calculation is 
determined by the high polarizability a of atom B. 
Allowance for the induced dipole is essentially simpler: all 
that needs to be done is to use the one-center expansion of the 
dipole interaction in terms of the Legendre polynomials," 
and then proceed to states with electron angular momentum 
quantized along the internuclear axis: 

where m , ,m2 are the components of the angular momentum 
of the Rydberg electron along the Z axis, CkEi,12 

D ., .. (0,7~/2,77/2) are the Clebsch-Gordan coefficients 
and the Wigner function,'%nd F,,, ( p )  is the radial wave 
function of the Rydberg electron that can be taken in the 
following form in the range 1 '/2 < R < n', n ) 1, p < n' in 
which we are interested: 

where n* is the effective principal quantum number. After 
evaluating the asymptotic behavior of the integrals in (4 )  
with R (see Appendix), we obtain 

Much more complicated is the evaluation of the contri- 
bution of the polarization interaction between the Rydberg 
electron and atom B: 

where p ,  = p - R, Band q, are the angular coordinates of the 
Rydberg electron in the system attached to the core of A +. 
Integration with respect to the angles is simplified if we use 
the approximation 8 4  1 that is directly associated with the 
short range of the polarization interaction (see Appendix): 

where 

p,,(R)= [-ll(n')2+2/R-(l+1/2)'lR2]"2 

The basic problem now is to evaluate the radial inte- 
grals in (8) .  The point is that the effective interaction 
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between the electron and atom B is not known, so that the 
evaluation cannot be carried out without some further sim- 
plifying assumptions (we shall not examine here the possi- 
bility or otherwise of ab initio calculations). We note, first, 
that these integrals are equal to the Born amplitude for the 
elastic scattering of electrons off the energy shell. Since in 
ourcasen,-n2,1,-l,,wehavep ,,, ,  ( R ) - p  ,,,,, ( R ) , a n d t h e  
Born amplitude in ( 8 )  off the energy shell can be approxi- 
mately replaced with the Born amplitude for the scattering 
of an electron with momentum 

on the energy shell. Once the integrals in ( 8 )  have been ex- 
pressed in terms of the partial scattering amplitudes, they 
can be naturally expressed in terms of the potential scatter- 
ing phases S, ( p +  ). 

In accordance z i t h  the definition of the pseudopoten- 
tial,'"he operator V e ~  ( pI ) is defined so that its expecta- 
tion value evaluated over the basis states InLM) gives the 
asymptotically correct value for the shift AE,, , of an isolat- 
ed nonhydrogenic level. It follows from ( 8 )  that the radial 
integrals depend on Ionly viap,,, (R ) and are independent of 
M, so that we confine our attention to the case M = 0, L = 0. 

There are at present several published e x p r e s s i ~ n s ~ ~ ' ~ ~ ' ~  
for A E , , ~ ,  . The formula in Ref. 16 (sin S, from Ref. 18 re- 
placed with tg S , )  leads to difficulties when the phase 
6, ( p , )  passes through n/2. The evaluation of the matrix 
elements from the formulas given in Refs. 8 and 17 results in 
values of the same order. Since the result given in Ref. 8 leads 
to a simpler dependence of 11::;:;::: onp,, we have written the 
radial integrals in ( 8 )  with the aid of Ref. 8 in terms of the 
scattering phase (s-singlet and t-triplet) of an electron of 
momentum p +  in the following form: 

sin 6:"" ( p + )  
x il ( P , , ~ , ( R ) ~ ~ ) P I ~ ~ P ~  + - 

2p+ 

Substitution of ( 9 )  in (8 )  gives 

1 x ( 2k + -) sin 8:;'' ( p + )  
k=O 

2 

3 1 + I .~~,(R)P,!:: , (R)  ( 2k f -) sin 6::; ( p + ) ]  - . 
k=O 2 P+ 

As in the derivation of ( 6 ) ,  we extract from 
F,,,,, (R )Ff,212 (F) and Fbf), ( R )  F:,!:, - - (R ) n  the part that does 

not oscillate with R. This is done using (A.5) and substitut- 
ing it in ( 10). The latter then assumes the form 

When the sum over 1 is evacuated, the first lo phases 
(O<l<l,, - 1 )  can be taken from strong-coupling calcula- 
t i o n ~ , ' ~ - ~ "  while the phases with l>,l,, can be calculated in the 
Born approximation: 

I,-1 
1  sin 61'"' (p , )  anp+lo = - Z ( L + ~ ) -  - 2(4L02-1) ' (12) 

I = O  P+ 

We note that the use of the exact phases for I < I,, means that 
we have indirectly taken into account both polarization and 
exchange scattering. In particular, the contribution of the 
low-lying 3 P r e ~ ~ n a n c e  is taken into account in this way. We 
emphasize that the approach that we have adopted to the 
evaluation of the matrix elements is qualitative in character, 
and that ab initio calculations of these matrix elements 
would be very desirable. For sufficiently large R (e.g., for 
potassium, R 2 17 a.u.), when only elastic scattering of the 
Rydberg electron by atom B is possible ( p?+ (R) /2)  is less 
than the excitation energy of the atom), and 12/2&R and 
(2R)  'I2/n < 1, the matrix element ( 11 ) assumes the follow- 
ing form after the substitution of ( 12) in ( 11 ) with p +  (R ) 

(2/R)"?=p: 

nrlzmr 51 n n,,,,,.. (R;  s, t) - (-1) m1((21,+l) ( % + I ) )  '19~!I . . (0 ,  - 2 ' 2  -) 

The expression given by ( 12) can be evaluated with the 
help of the phases.'X-20 It is found that in the above range of 
values of R ,  for which ( 13) is valid, this expression can be 
approximated by a linear function of the momentum p: 

i.e., in our range of values of R, we can confine our attention 
to the first few terms in the Taylor expansion of ( 12). 

We note that, for lSI, - a,, ~ 0 . 5 ,  the matrix elements 
(6 ) ,  ( 1 1 ) , and ( 13) are numerically small and a more care- 
ful evaluation of the radial integrals becomes necessary for 
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the determination of I ::;$;:: ,Hi;\;:;. 
An important point here is that both the above interac- 

tions are symmetric under reflection in the collision plane. 
Hence the only nonzero matrix elements are those evaluated 
between states of the same parity I + m. More than that, the 
matrix element ( 1 1 ), ( 13) between states with odd 1 + m 
contains an additional small quantity because the electron 
wave function is then found to vanish in the collision plane 
and higher order terms have to be taken into account in the 
expansion of the spherical harmonic in (7 )  if a nonzero re- 
sult is to be obtained. 

3. DESCRIPTION OFTRANSITIONS 

We now turn to the evaluation of the probabilities of 
nonadiabatic transitions. We shall use the two-level approxi- 
mation (the multiplicity indices s, t will at times be neglect- 
ed). For the adiabatic energy curves we take the diagonal 
elements of the Hamiltonian (2) :  

1 S u 
- m + zn::n" ( R )  +nn:lnll ( R )  . 

2(n ' ) '  R 

These curves depend on the internuclear distance R and the 
impact parameters, as well as the velocity u, . The crossing 
of such curves signifies that, for R = R, (s,u, ), the electron 
transition frequency is a multiple of the angular frequency 
o(s,R, = sv_ /R of the internuclear axis. The splitting of 
the adiabatic terms at R = R, is, as usualAgiven by the off- 
diagonal matrix elements of the operator V( p,R): 

The dynamics of nuclei in our range of internuclear dis- 
tances is determined by the polarization interaction - a/ 
2R '. The description of the transitions requires theestablish- 
ment of a relationship between the transition point R = R, 
and the point R = Rst at which the heavy particles stop. For 
R, > R,,, the transitions can be described (qualitatively) in 
terms of the Landau-Zener approximation, and for R, < R,, 
we have tunneling transitions. From the standpoint of the 
dynamics of electron transitions, a special case arises when 
the transition point R falls into the neighborhood of the orbi- 
tal radius R,,,,, and the energy of relative motion of the 
heavy particles is equal to the height of the effective potential 
barrier. For a given collision velocity u, , orbiting occurs for 
a particular impact parameters,,,, = (4a/,uu2_ ) 'I4 ( ,u is the 
reduced mass of the atoms) and radius R,,,, (orbital radius) 
given by R,,,, = s ,,, /2"" The equation 

gives the relation between {n,I,m ,) and {n21,m2) for which 
the coupling between electron motion and the rotation of the 
internuclear axis can be substantially amplified. It is clear 
that this equation is an improved version of ( 1 ) . 

In this paper, we present only approximate calculations 
of transition cross sections based on the Landau-Zener and 
Nikitin models.'' The basic objection to these models (other 
than the nonlinear character of the terms in the neighbor- 

hood of the transition point R ,  ) is the substantial contribu- 
tion of the stopping point R,, (a  singular point of the nuclear 
motion) to the cross section. Existing models of transitions 
near the turning point are relatively complicated" and their 
validity in our problem is not beyond challenge. To improve 
on the approximate calculations of the probability of transi- 
tions between the chosen two states, we have to carry out a 
numerical integration of the equations for the strong cou- 
pling between two channels in the quantum-mechanical de- 
scription of the dynamics of nuclear motion. Nevertheless, 
to obtain qualitative results, we shall confine our attention to 
two simple models. 

Thus, the inelastic transition cross sections were calcu- 
lated from the formula 

where P ( s )  is the probability of the inelastic process. In the 
Landau-Zener model, 

P ( s )  =2 e s p ( - q )  [I - exp( -q )  1, (17) 

where 

When we take into account the effect or orbiting on the tran- 
sition probability, we use the Nikitin formula" 

P ( s )  =2  exp ( n t ,  cos O)sh(nE ( i - cos  0 ) / 2 )  

Xsl i (nE ( l f c o s  0 ) / 2 )  stl-' ( n t , ) .  
(18) 

Here the parameters 6 and 0 are chosen as follows: 

xu, Fu, /o, 
W = -  , & = I  R,, <R,  

R :  - F / ( R , ,  - R ,  ), R,, > R ,  
. (19) 

The parameters of the Nikitin model are specified so that the 
results calculated from it become identical with the Landau- 
Zener results as R is allowed to depart from R,, (R, > R,, ), 
whereas for R, zR,,, we obtain the correct result for the 
transition probability, namely, ?j(s) ~ 0 . 5 .  In contrast to the 
Landau-Zener model, the Nikitin model gives a nonzero re- 
sult for ?j(s) at R, = R,, , although this value is actually too 
high; for R, < R,, , the probability P(s) falls rapidly with 
increasing R,, - R, . 

As an example, let us consider a collision between K** 
and K with energy E = 0.045 eV ( T  = 520 K according to 
Refs. 5 and 6) .  Using the results reported in Ref. 18, we find 
that c"' = 48.006, d"' = 7.484, c"' = 16.374, and 
d"' = 16.825. Figure 1 shows the level diagram for potas- 
sium. The calculation was performed for the S- Pand  S- D 
transitions. Unfortunately, in the former case, the matrix 
elements (6 )  and (13) are anomalously small because 
c o s ( ~ ( 6 ,  - 6, ) ) =:O (this rule obtains for all alkali metals), 
and the transitions are highly suppressed for 15 5 n 5 30. 
Moreover, they must be calculated more accurately for a 
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FIG. I .  Rydberg level schemeof the potassium atom. The shaded region 
shows the set of hydrodynamic states with 1>3. 

h 

correct description of the process, and the term H,,,,,, that 
we discarded in (2 )  must be taken into account. Calcula- 
tions performed for the S -  P transitions do not therefore 
inspire much confidence, and will not be reproduced here. 
Much more reliable are calculations of cross sections for 
transitions from S to D ( m =  - 2 )  states 
( I cos ( ~ ( 6 ,  - S, ) ) I z 1. Figures 2a and b show the results 
for the singlet and triplet cases, obtained by discarding the 
interaction with the induced dipole. Figure 3 shows the cross 
sections obtained without the polarization interaction. It is 
clear that the Nikitin model gives higher cross sections than 
the Landau-Zener model. There is no significant difference 
between singlet and triplet scattering. Of the two interac- 
tions involving the Rydberg electron, namely, the interac- 
tion with the induced dipole and the polarization interaction 
with B, the latter is the dominant one. 

The Landau-Zener model and the Nikitin model give 
very different results when they are used to describe transi- 
tions (see Fig. 2).  We shall now consider some of the details 
in order to establish the origin of these differences. When the 
quenching cross section is calculated, it is convenient to take 
the independent variable to be the transition point R,, and 
the impact parameter can be determined from 

FIG. 3. Curves I and 2 show the cross sections for the transition 
nS-n - 2, D(m = - 2 )  in the K atom, calculated from Eqs. (18) and 
( 17) without taking into account the polarization interaction of the Ryd- 
berg electron with the perturbed atom. 

For fixed R, ,  the impact parameter s is then found to de- 
crease as n-' with increasing n ,  and the parameter s,, that 
corresponds to coincident transition and stopping points 
R, (sO,n) = R,, (so), increases as nbv ,  /S, where S = IS, 
- S,, 1. Although, as n increases, the point R, may fall out- 

side the classically allowed region for the Rydberg electron, 
this actually occurs for n > S/v, - lo2, i.e., for large n for 
which our model is definitely invalid (we are assuming that 
(2sO) '/'/n < 1 ). The characteristic parameter - 2.rrlaI2F - ' 
that determines the transition behaves as nPhs-  ' for large n 
and s, which leads to a Landau-Zener cross section that de- 
creases with increasing n. Hence, for large n,  the cross sec- 
tions can be described by means of perturbation theory, 
which leaves us with the hope that it may be possible to 
reconcile the adiabatic and impulse approximations. This is 
a complicated question that will not be discussed any further 
here. 

To understand the basic difference between the magni- 
tudes of cross sections calculated on the basis of the different 
ways of describing transitions, we turn to Fig. 4 which shows 
the "partial" cross section 

FIG. 2. Singlet and triplet cases (a  and b, respective- 
ly):  1.2-cross sections calculated from the Nikitin 
formula ( 18) and the Landau-Zener formula ( 17) 
for the nS-n - 2,D (m = - 2 )  transition 
(b  = - 2 )  in theK**(nS) atomat 520K; 1',2'-the 
same cross sections calculated without taking into 
account the interaction between the Rydberg elec- 
tron and the induced dipole. 
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FIG. 4. Curves I and 2 show the "partial" cross sections C ( S ) ,  calculated 
from Eqs. (18)  and ( 1 7 )  for the triplet transition 2 8 s - 2 6 0  ( m  = - 2 )  
in the atom K** ( 2 8 s ) .  

a(s)= j ~ ( s ) s d s  
0 

as a function of s for the triplet transition with n = 28. It is 
clear that, for R,  > R,, , for which the transition point lies in 
the region that is classically allowed for the nuclei, curves 1 
and 2 coincide, and this was used to determine the param- 
eters of the Nikitin model (19).  However, for R, <R,,  
(s>so), we consider the Landau-Zener probability to be 
identically zero, whereas in actual fact the transition proba- 
bility is not zero. This was taken into account in our approxi- 
mation, using the Nikitin model. Since the impact parameter 
(S > so, 1 ) is large, the neighborhood of the turning point 
provides a sizable contribution, so that the transition cross 
section calculated from the Nikitin formulas is larger than 
the Landau-Zener cross section. However, the results 
shown in Fig. 4 must not be taken too literally. As noted 
above, the Nikitin model overestimates the transition proba- 
bility in our case for R,  5 R,, . Moreover, for large R (small 
p ) ,  the linear approximation to the sum in ( 12) ceases to 
work. For example, the phase 8:'' ( p )  exhibits a reso- 

FIG. 5. Curves I and 2 show the cross sections for the s~nglet transitions 
nS-n - 2, D ( m  = - 2 )  in the system Rb**(nS) + K, calculated from 
Eqs. ( 1 8 )  and ( 1 7 ) ,  respectively, for T = 714 K and mean velocity 
v,  = 3.06. a.u.; l', 2'show the corresponding results for T = 520 K 
and v,  = 2.59.10W4 a.u. 

nance, 18-20.22 and the characteristic Ramsauer minimum ap- 

pears in the sum in ( 12) for triplet scattering, which was not 
taken into account in this approximation. Hence a transition 
to a slow reduction in o ( n )  with increasing n seems the most 
likely. 

Figure 5 shows thecalculateds- D transition cross sec- 
tions for the Rb**(nS) + K system. In this case, 
/ cos ( r (S ,  - 6, ) ) I - 1, and for the same given temperature, 
the relative collision velocity for the pair Rb** + K is 
smaller than for K** + K. Figure 5 shows the quenching 
sections for the same collision velocity as for K** + K (and, 
hence, different temperatures) and also for the same tem- 
peratures (different velocities). Only the singlet cross sec- 
tions are considered because they are only slightly different 
from the cross sections for triplet transitions. 

Comparison of Figs. 2 and 5 shows that the behavior of 
the S- D transitions is qualitatively similar, but the magni- 
tude of the cross sections is significantly affected by the char- 
acter of the Rydberg electron. This conclusion is in direct 
conflict with the conclusions derived from the impulse ap- 
proximation (in which the transition cross section depends 
to a considerable extent on the perturbing atom), but agrees 
with experimental data.'.6 It is important to note that our 
calculations show that the S- D transition cross section for 
the pair K** + K is greater than for Rb** + K. The broad- 
ening cross sections measured in Ref. 5 are in a similar rela- 
tionship. Our theory does not predict a significant tempera- 
ture dependence. On the other hand, the experiments were 
performed at more or less constant temperature T--, 500-550 
K. 

4. CONCLUSION 

Our results must be regarded as a semiquantitative esti- 
mate of the partial cross section for the S- D transition that 
illustrates our mechanism. The analysis presented above 
shows that, despite its apparent simplicity, our problem is 
very complex, and has given rise to questions that require 
accurate numerical analysis. First, we must have a more ac- 
curate solution of the problem of transitions between nonlin- 
ear terms, especially near the turning point. This in turn 
involves the numerical solution of the problem of strong cou- 
pling of two channels with allowance for the quantum-me- 
chanical motion of the nuclei. Particular attention must be 
paid at this point to the effect of the motion of the atoms 
during orbiting on the electron transitions. The S-- P transi- 
tion must be described more accurately [which involves the 
evaluation of the term representing the asymptotic behavior 
of matrix elements of the form indicated by ( 4 )  and ( 7 )  1 .  
Another important requirement is the correct description of 
the scattering of a slow electron by atom B (choice of pseu- 
dopotential and extention beyond the linear approximation) 
when the sum ( 12) is evaluated. 

Our discussion shows that the cross sections do not 
have features such as oscillations in n (or a sharp peak) for 
the S - D  transition. Orbiting can give rise to an increase in 
the transition probability up to W-0.5 at R,, , , .  However, 
since the orbiting radius is relatively small, i.e., R,,,, =.20 
a.u., the rotation effect is not expected to provide a large 
contribution to the transition cross section. 

The authors are greatly indebted to V. S. Marchenko 
and I. I. Fabrikant for useful discussions. 
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APPENDIX 

Consider the integral 
R 

Substituting (5)  into this expression, we obtain 

For R ) I t,, 1'2, we replace the Bessel functions with their 
asymptotic forms and discard the rapidly oscillating term in 
the integrand. The integral (A1 ) can then be evaluated: 

I<-P"[cos ( ~ ( / , ' - l , ' ) )  j / (n((2L+3) (nl 'n2')%fi'h]. (A21 

which gives (A3) for I, . Thus the method of Fourier com- 
ponents enables us to specify more accurately the range of 
validity of (A2)  and (A3)  : 

L'K2 (n ' )  '. R>,lZ/2 a n d  ( 2 R )  ' I 2  < n*. 

Now consider the integral (7 ) .  Since, asp - cc , we have 
U, ,  - - a/2p4, we may consider that U,, is a short range 
potential, so that the main contribution to ( 7 )  is provided by 
the immediate neighborhood of the atom B. This enables us 
to replace F,,, ( p )  in (7)' with its quasiclassical representa- 
tionx: 

F,, (p) =F,, ( R )  cos (p,, ( R )  p , ~ )  +F::' ( R )  sin(pnt ( R ) P , T ) ,  

(A5) 
where 

Similarly, for the second integral in (4)  we obtain 
p,, ( R )  = [ - ( n ' ) - ~ 2 / ~ - ( 1 ' + ' / 2 ) 2 1 R ~ ]  L ,  .t=RIR, 

I,=2" [cos(n(12'- l , ' ) )]  / [ n ( 2 L - I )  ( ~ z , ' n ~ * ) ~ ' K " ~  . (A3) 
F:,' ( R )  =/I,:' ( K )  dl.', i ( p )  l a p  1 P = R .  

This of is but the Moreover, the short-range character of (I,, us to as- 
same result can be obtained by the more rigorous quasiclassi- sume that 6-p/R < 1 and replace the spherical harmonic in 
cal method involving the Fourier  component^.'".'^ In partic- (7) with the approximate expression 
ular,supposethatnl,n,~l,but In, - n 2 ~ / n l < l a n d I , - 1 2 .  
Then Y L , ( ~ ,  cp) =[ ( 2 L + l ) / 4 n ] ' h + 0 ( 0 2 ) .  (A61 

2 jnc*)? 

'1 cos  [(a,* - n,*) t / (~z ,*)~  -1- n%TT,2T,J dp 
, 

0 l l i C *  pLp,,,* (P) 

where n: is the mean of n: and n: (the effective quantum 
number), 1, is the mean of the angular momenta 1, = I: 
+ 1/2andi,=1:+ 1/2,i, = I ,  *I2, 

‘0,; ( p )  = [- (nc*)  ---r . /p2+2/p] :", 

andp:,,< is the shortest distance to the ion A +. Assuming that 

2, and using the classical parametrization of the 
Coulomb trajectory,25 we obtain 

x S cos [ (n;-n2') (%-sill t) +nT- 1 
(2-cos ' S ) L  dE (-44) 

subject to the conditions 1;  <2(nr) ' ,  R )i f /2, 
{ c  = [ (2R) "'/n,*] < 1. Sincel, is a small parameter, we can 
write (A4) in the form 

where 

When 6, < 1 

Substituting (A5) and (A6) in (7 ) ,  using the spherical har- 
monic expansion (A5) ,  summing over L and M, and inte- 
grating with respect to the angles gives (8 ) .  
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