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An analysis is made of the absorption of light due to spin flip of an electron bound to a shallow 
donor in a semimagnetic semiconductor. It is shown that the exchange interaction of a carrier 
with a magnetic impurity gives rise not only to a giant spin splitting of the electron levels in an 
external magnetic field, but also to additional (apart from the usual spin-orbit) electric dipole 
transitions that alter the spin states of the carrier and magnetic impurity. The intensity of 
magnetic dipole transitions is low. Calculations are made of the energy positions and profiles of 
the absorption lines when the latter are governed by magnetic impurity fluctuations. 

1. INTRODUCTION 

Optical properties of semimagnetic semiconductors, 
representing solid solutions containing up to 10 % of the 
magnetic impurity ions in the paramagnetic phase, are con- 
tinuing to attract much interest. The characteristic features 
of the behavior of carriers in silch materials are governed 
largely by their exchange interaction with spins of this impu- 
rity. In particular, this interaction is responsible for the 
"giant" spin splitting h, of the levels of a carrier in a mag- 
netic field (characterized by a large effective g factor of - 100 in the linear magnetization region). A consequence of 
the giant splitting is that spin transitions in moderate mag- 
netic fields 3- 1-10 T lie within the infrared range; such 
transitions have been observed on several occasions 5-7 

We shall show that the strongest spin transitions are of 
the electric dipole type. At first sight one might expect the 
large value of the effectiveg factor of a carrier in a semimag- 
netic semiconductor to ensure that the intensity of the mag- 
netic dipole transitions (paramagnetic resonance) is much 
higher than in an ordinary semiconductor. However, it is 
found that the change in the ESR intensity is slight because 
the g factor governing this intensity is small, in contrast to 
the effective g factor which occurs in the transition energy. 

A theory of the electric-dipole spin (combined) reso- 
nance (EDSR) was first tackled by E.I. Rashba; it was 
shown that the resonance may be due to the spin-orbit inter- 
action in the Hamiltonian used in the effective-mass meth- 
od,' to the nonparabolicity of the energy band s p e ~ t r u m , ~  
and to inhomogeneities that lower the symmetry of a crys- 
tal.'021' The optical spin transitions classified as the EDSR 
and observed in a semimagnetic semiconductor have always 
been interpretedL2,l3 on the basis of a traditional model of the 
spin-orbit interaction. l4 

In an earlier paperI5 we drew attention to the fact that in 
the case of a semimagnetic semiconductor there may be also 
a different EDSR mechanism, which is the exchange interac- 
tion that not only can account for the giant spin splitting but 
may induce on a par with the traditional spin-orbit mecha- 
nism specific spin transitions (spin flip of a carrier may be 
accompanied by a change in the spin of a paramagnetic im- 
purity, known as the flip-flop process). 

In the present paper we shall give the results of calcula- 
tions carried out for spin transitions of a carrier bound to a 
shallow center in a wide-gap semiconductor. This case cor- 

responds to narrow isolated EDSR lines and it has been in- 
vestigated experimentally on several  occasion^.^^^ 

Since the magnetic-impurity concentration n in a semi- 
magnetic solid solution is high, the wave function of a carrier 
at a shallow center extends over a large number of paramag- 
netic ions. Therefore, we encounter a small parameter 
(nu3)-'I2, where a is the characteristic size of the wave 
function of a carrier (in the case of a hydrogen-like center 
this is the effective Bohr radius). The existence of such a 
small parameter results, firstly, in the validity of the descrip- 
tion of the spin-independent interaction of a carrier with a 
magnetic impurity by band parameters representing a vir- 
tual crystal with the same composition as the real crystal. 
Secondly, the spin splitting energy h, becomes large-even 
in weak magnetic fields-compared with its fluctuation as- 
sociated with the different numbers, positions, and spin 
states of the magnetic impurity in the vicinity of different 
centers. The absorption lines are narrow and, moreover, we 
can ignore the magnetic polaron effect, i.e., the change in the 
spectrum of impurities due to a carrier. Finally, the existence 
of such a parameter makes it possible to consider on the basis 
of perturbation theory the off-diagonal (in respect of the 
spin states of a carrier) part of the exchange interaction, 
which is responsible for the spin flip transitions. 

This new exchange mechanism allows the absorption of 
light due to transitions of a carrier accompanied by spin flip 
and occurring between any levels of an impurity center, i.e., 
it provides a richer spectrum compared with the traditional 
spin-orbit EDSR. In the case of a transition between the spin 
sublevels of the lowest donor level this mechanism results in 
an additional absorption peak, which is shifted relative to 
the spin-orbit EDSR line by an amount equal to the Zeeman 
energy of the magnetic impurity. Calculations carried out 
for the exchange in spin-orbit EDSR mechanisms show that 
their intensities are comparable even for hexagonal crystals 
in which the spin-orbit EDSR mechanism is strongest; the 
absorption lines corresponding to each of these mechanisms 
may be identified because of the different angular and polar- 
ization dependences. In the case of cubic semimagnetic semi- 
conductors the exchange mechanism should be the principal 
reason for the spin absorption of light. 

We shall allow for fluctuations in the system of magnet- 
ic impurities, which broaden the absorption lines. The calcu- 
lated line profile is nearly Gaussian; non-Gaussian correc- 
tions are different for different spin absorption mechanisms. 
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2. GENERAL EXPRESSION FOR THE ABSORPTION 
COEFFICIENT 

The Hamiltonian of an electron in a semimagnetic semi- 
conductor is of the form 

The first two terms in the first of the above expressions 
represent the Hamiltoni5n of an electron with a spin in a 
constant magnetic field Xllz;  the third term is the Zeeman 
Hamiltonian of the magnetic impurity; g, is the g factor of 
the magnetic impurity and g, is the g factor of an electron, 
which is not yet renormalized by the exchange interaction; 
p,, is the Bohr magneton. The operator representing the ex- 
change interaction of an electron with the impurities 

where s and S, are the spin operators of an electron and of a 
paramagnetic impurity located at a point R,; J is the ex- 
change constant. In the standard case when the magnetic 
impurity is in the form of Mn2 + ions, which in the ground 
state have a half-filled d shell with the orbital momentum 
L,  = 0, the spin moment is S = 5/2.  The operator H,, rep- 
resents the spin-orbit interaction and its form depends, in 
contrast to He, on the symmetry of a crystal. 

The absorption coefficient of an electromagnetic wave 
with a wave vector q and of frequency w obtained in the 
dipole approximation is 

m 

where 
F=er+hm, 

x is the static permittivity; n, is the density of the donor 
electrons; e  is the polarization vector of the electromagnetic 
wave;p is the equilibrium density matrix. The first term in F 
represents the interaction of a carrier with an electric field 
and the second-the interaction of a carrier and of paramag- 
netic impurities with the magnetic field of the electromag- 
netic wave. The term corresponding to the electric dipole 
interaction of light with the magnetic impurity ions is omit- 
ted because the excited states of the manganese ion with L, 
= 1 are separated from the ground state by much larger 

energies than the photon energies under discussion. The an- 
gular brackets in Eq. (3) denote averaging over the random 
positions of the magnetic impurity: 

In the case of transitions inside the local center in a 
semimagnetic semiconductor the most important case is that 
when the ionization energy of a center and h ,  are large 
compared with the absolute temperature T. Then, only the 
lowest spin level of the center is filled and averaging with the 
density matrix can be carried out only over this specific elec- 

tron state. This corresponds to the case when the commuta- 
tor [p, F + ]  in Eq. (3)  reduces simply to p F  +, while the 
averaging over the magnetic impurity states is retained be- 
cause generally h, is comparable with T. 

The transitions accompanied by a change in the spin 
state of an electron may be initiated not only by the second 
term in F (representing ESR), but also by the first term, 
owing to the off-diagonal (in respect of the spin states of the 
carrier) terms in Eq. ( 1 ), namely H,, and the off-diagonal 
part ofHe, which occur in the Dirac brackets [Fin Eq. ( 3 )  1. 
We shall follow the usual procedure, '2,'4,'s and allow for H,, 
using perturbation theory. The diagonal part of He, 

(He Iv) = E, )v)  ) is known to result in a giant spin splitting 
and is not small. The off-diagonal part of He,, which is usual- 
ly ignored, contains an operator 

where 

(and this applies also to Sj ), which mixes the states with 
different spin projections. This operator may give rise to spin 
transitions and in most cases, if nu3& 1, it can be simply in- 
cluded in the lowest order of perturbation theory (see the 
Appendix A ) .  This can be done conveniently by performing, 
in the trace of Eq. (3) ,  a unitary transformation 
exp( W)Hexp(  - W) (Ref. 18), which annihilates H,, and 
H,, in the Hamiltonian of Eq. ( 1 ) : 

The operator W, which satisfies this equation in the first 
order in respect of the perturbation, is 

so that in place of H and F Eq. (3 )  contains now H, and 

3. ELECTRIC-DIPOLE SPIN TRANSITIONS 

Such transitions are initiated by the terms [ W, e-r]  of 
the operator F' in Eq. ( 10). The operators F,, = [ We,, e-r] 
differ from F,, = [ W,,, e.r] because simultaneously with 
reversal of the electron spin they also change the spin of the 
magnetic impurity, so that the term with the correlation 
function of F,, and F,, in Eq. (3)  is off-diagonal in respect of 
the impurity spins and is annihilated in the trace, and the 
transitions do not interfere. As a result, we have 
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a. Exchange mechanism of electric dipole spin resonance 

The expression for a,, (a) includes the operator 

the matrix elements of which for the electron functions 

yield 

where 

The quantity fin,, represents the energy of the spin 
splitting of the vth level of a carrier obtained for fixed posi- 
tions and spin states of the paramagnetic impurity. The ab- 
solute value of the average spin splitting is 

and it is independent of v and equal to the spin splitting 
energy 

which is obtained for semimagnetic semiconductors in Ref. 
4; here, B, is the Brillouin function and A = h , / T .  The 
magnetic polaron contribution 

'/2JI$v(Rj) IzGJla3, 

which is small for weak magnetic fields far from the limit, 
when fiw, 3 J/aS,  is ignored in Eq. ( 17). This does not im- 
pose any additional restrictions (this point is discussed at 
the end of the present section and also in the Appendix B) .  

The absorption coefficient a,, ( w )  is described by 

Here, u = sign [ (fin,,),, ] depends on the direction of the 
electron spin in the initial state and is the same as the sign of 
the effective g factor. The multiplier that has to be averaged 
in Eq. ( 19) has the following structure: 

(a  single sum overj appears becau~e_S,,~S,~, is off-diagonal if 
jl#j2). Here, A(R) [and A ( R ) ]  is given by 
A(R) = ~t + E,T, + E~T,,  where in all cases we have 

E a J I $,. (R)  1' a J/U" two auxiliary times T originate from 
the presence of two F's in Eq. ( 19) 1. The average value of 9 
can be found in the Appendix B [Eq. ( B  10) 1. However, in 
our case when nu3$ 1 the multiplier e x p [ i 2 ( ~ ,  )Siz ] can be 
ignored against the background of nahc tua l  similar multi- 
pliers. We then have 

8 - n i ~ ,  j ! (R)~R exp{nj [ Z (A-iA (R') ) 

Z ( N  
- I ]  d ~ f } ,  

(21) 
where 

are identical for all the impurities and the index j is omitted, 
and 

Z (h) = Tre - "'' = 
sh [ (S+'l,) h] 

sh ( A / % )  

In the calculation of the integrals with respect to 7, and 
7 2  from Eq. ( 13) in the expression ( 19) averaged in this way, 
we expand Z[A - iA(R1) ] as a series in A. After integration 
in the argument of the exponential function containing R', 
we obtain a coefficient of the order of h, a IJ In in the first 
order in front oft ,  T, and r2; the quadratic terms determine 
the characteristic times l/y involved in the procedure of inte- 
gration [ y  a Jn ( n a y  - -'I2]; the higher terms of the expan- 
sion decrease in accordance with the parameter (na3)-'I2 
[in particular, the third term is of the order of the argument 
of the exponential function ignored in the derivation of Eq. 
(21 ) 1, so that they can be ignored. Since the complete [ob- 
tained allowing for the exponential functions in Eq. (13) 
which do not need averaging] coefficient in front of r,., tak- 
en in the first degree is large compared with y (see below), 
the integrals are calculated asympt~t ical ly '~  and they have 
large energy denominators. As a result, we obtain 

- 5  s S-n J I M,,' (R) 1 d ~ ,  

This averaging algorithm corresponds to neglect of 
fluctuations in the energy denominators Me, against the 
background of the average values, which is justified if 

IEo-E,~-fio,'(>yY~O, IEY-EY.+fiog'l >yyV..  

However, this is not a new restriction and it is in agreement 
with the condition of validity of perturbation theory (Ap- 
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pendix A) .  Allowance for fluctuations of the denominators, 
the values of which are of the order of the perturbation- theo- 
ry corrections to the energies, represents redundant preci- 
sion, because Eq. (10) is simplified by dropping higher 
terms of the same order of magnitude. 

I t  is clear from Eq. (25) that the exchange EDSR mech- 
anism allows absorption accompanied by spin flip as a result 
of transitions both between the spin sublevels of the lowest 
donor level and at  combination frequencies with any change 
in the electron state. However, in view of the finite width of 
the absorption lines and the denser distribution of the donor 
levels, these transitions are masked strongly by the usual 
optical absorption. Therefore, the transition at  a pure spin 
frequency between the spin sublevels of the ground state of a 
carrier is manifested most strongly. I t  corresponds to the 
term with Y = 0 in Eq. (25),  and to 

We can see that in a semimagnetic semiconductor in the 
case of the exchange EDSR mechanism the transition energy 
is 6: of Eq. (27),  which differs slightly from fiw, . I t  should 
be pointed out that it is comparable with the separation 
between the levels of a Coulomb center in such magnetic 
fields that the cyclotron energy fiw, (much smaller than 
Em, ) is low compared with the characteristic energy 
R ' = m*e4/fi'7c' (double the Rydberg energy). Therefore, 
in view of (fiw, /R * )' < 1, we can ignore the term H ,  which 
is quadratic in rc"; as a result, we find that 

where L, is the projection of the orbital momentum. This 
approximation is standard for semimagnetic semiconduc- 
tors,I2 although the results can be obtained without this ap- 
proximation (Appendix D ) .  When the Hamiltonian of Eq. 
( 3  1 ) is used, the absorption line width becomes 

wherea = fi'x/m*e2 is the effective Bohr radius and the task 
of calculation of M,, reduces to a calculation of the sums for 
the hydrogen states, whereas the matrix elements of the tran- 
sitions are expressed in terms of integrals with the Coulomb 
Green function. An alternative approach, more convenient 
in this task, is given in the Appendix C. 

The scalar product e . r  in Eq. (26) can be written conve- 
niently in the form 

Here, the polarization e = {ex, e, , e, > (and also r )  are writ- 
ten in the circular basis e = (ei, e,,, e ,  ) , so that in the case of 
the Voigt polarization we have 

and in the case of the cyclotron-passive polarization, we find 
that 

The matrix element of Eq. (26) thus splits into three terms. 
In each of them the denominators differ, because of L, in Eq. 
( 3  1 ), by an amount p&, /2 which is small compared with 
fiwf. We can see from Eqs. (29) and (26) that the EDSR 
intensity rises strongly when fiw: approaches En, - E , ,  
[naturally, subject to the condition of Eq. (A3)  1,  so that in 
the most interesting case when Emf <E2, - E l ,  and the 
EDSR peak is clearly separate, it is convenient to represent 
the results of a calculation by writing down explicitly the 
resonance denominator, i.e., 

(34) 

where E,', (&: + $fiw, ) /R * and the smooth function 
@,, ( E )  of Eq. (C15) is shown in Fig. 1. At low frequencies 
all the quantities E are small and @,, ( 0 )  = 783/2I5rr, where- 
as in the parametric-resonance region we have E-3/8 and 
@,, (3/8) = (2/3)I4/3rr. I t  is interesting to note that 
a,, ( w )  for an arbitrary polarization of light represents a 
sum of the partial absorption coefficients for each of the cir- 
cular components e,, . This absence of interference is due to 
the fact that the cross terms with e,, e,,, * (p +p') are annihi- 
lated as a result of averaging over the positions of the impuri- 
ties-as discussed immediately after Eq. (C14). 

At high temperatures T>&, these expressions sim- 
plify to 

where the effective g factor is4 

and the width 

whereas for the cyclotron-active Faraday polarization, we 
obtain F I G .  1. Functions a,, ( E )  (curve 1 ) and a,,, ( E )  (curve 2 )  
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is identical for S = 5/2 with the width calculated by a differ- 
ent method in Ref. 17. 

b. Spin-orbit mechanism of electric dipole spin resonance 

The influence of the spin-orbit interaction is strongest 
in hexagonal crystals, because in this case H,, is a linear 
function of the quasimomentum k, whereas in cubic crystals, 
for which H,, a k ' or k ', the contribution of this interaction 
is less.8,9.~8,20 We shall therefore consider only the case where 

which is typical of hexagonal crystals (a, is the spin-orbit 
interaction constant and c is a unit vector along the hexagon- 
al axis). The absorption coefficient is described by relation- 
ships similar to Eqs. ( 19) and ( 12) provided we replace the 
subscript ex with so. Calculations similar to those in the pre- 
ceding case yield 

The matrix element M:, (pure spin transition) for or- 
dinary nonmagnetic semiconductors had been found ear- 
lier. l 4  The specific nature of a similar magnetic semiconduc- 
tor is manifested by the need to average over fluctuations of 
the spin frequency. Averaging is applied here to a quantity of 
the exp{iZ,A(R,)Sjz} type and the procedure is now 
simpler than in the case of Eq. (20). Using Appendix B and 
carrying out an asymptotic calculation of the integrals with 
respect to r, similar to that in the preceding case, we obtain 
Eq. (40). If, as before, we limit the expansion of the argu- 
ment of the exponential function D, ( t )  to the term quadrat- 
ic and t ,  then G,, ( t )  exhibits the same time dependence as in 
Eq. (25) provided we replace hf with h, . The absorption 
lines for the exchange and spin-orbit EDSR mechanisms are 
in this approximation Gaussian with the same value of y, 
[Eq. (28) 1. It should be pointed out that small [in terms of 
the parameter (nu3)  - '''1 non-Gaussian corrections to the 
line profiles are different for the two mechanisms: in the case 
of the spin-orbit mechanism they are governed only by the 
next terms of the expansion of the argument of the exponen- 
tial function in Eq. (41 ), whereas in the case of the exchange 
mechanism they are determined by the factor omitted in the 
derivation of Eq. (21 ) . 

In contrast to the exchange mechanism, the transitions 
from the ground state of a carrier in the spin-orbit EDSR 
mechanism are allowed not to any excited states of a local 
center, but only to states with the same parity (originating 
from the hydrogen-like s- and d-levels in the absence of a 
magnetic field). As in the preceding case, the pure spin tran- 
sition is most interesting and, moreover, we can retain Eq. 

( 3  1 ) for He. Using the Appendix C, we can represent the 
matrix element Myo in the form 

where 

F i s  the hypergeometric function, and c i ,  c,,, and c,  are com- 
ponents of a vector c in the circular basis, and c,, = 0. 

In the case of an arbitrary direction of e the interference 
effects complicate greatly the form of a, ,  (Ref. 18), in con- 
trast to Eq. (34).  Therefore, we shall give the expression a , ,  
in the case when e coincides with one of the circular polariza- 
tions e, . Separating, as in Eq. (34),  the resonance denomi- 
nator, we obtain 

The function @,, is shown in Fig. ( 1 ); here, @,, (0)  = 36/27, 
@,, (3/8) = 231/320. 

A comparison of the absorption coefficients for the two 
EDSR mechanisms shows that the energy of these spin tran- 
sitions differs by h, and both rise on approach of fro, (or 
h: ) to E,,, - E l , .  The difference in the transition energy is 
due to the fact that in the exchange EDSR process there is an 
additional change in the spin of the paramagnetic impurity. 
In other respects these two mechanisms are very different: 
the EDSR spectra consist of different numbers of lines; the 
absorption due to the exchange EDSR mechanism occurs 
for any polarization of light and the value of a,, is indepen- 
dent of the magnetic field orientation relative to the crystal 
axes Qhe spin-orbit EDSR depends on the angle 9 between c 
and Z and is allowed only in two polarizations e, and e,, 
with the angular dependences cos2i? and sin2i?, respectively, 
see Ref. 14). Finally, at low frequencies h 4 R  * we have 
a,, (w:) a ~f (Me,  --+const) and also a,,, (w, ) cc w: 
(M,, a w, ). Since, in contrast to an ordinary semiconduc- 
tor, the EDSR transitions in a semimagnetic semiconductor 
do not occur between the Kramers levels of the system com- 
prising a carrier and magnetic impurities (the Kramers lev- 
els correspond to spin flip not only of the carrier but also of 
all the magnetic impurities), these results are not surprising: 
M,, (and if we allow for the magnetic Polaron effect, this 
applies also to M,, ) do not vanish for 2? = 0. 

We are ignoring the magnetic polaron corrections to the 
density matrix of Eq. ( 17), as discussed immediately after 
Eq. ( 18). The inclusion of these corrections makes a contri- 
bution to h, which is of the order of yo. They are undoubt- 
edly important in weak magnetic fields where h, -yo and, 
in particular, they are responsible for the nonzero spin split- 
ting of the carrier levels when X = 0 (Ref. 4) ,  but in our 
case they can be ignored because h, 9 y,, [see Eq. (A4) 1. 
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Neglect ofthe diamagnetic term in H ,  may be too rough 
in the case of, for example, narrow-gap semiconductors 
when because of the small effective mass the value of h, is 
large and may be comparable with R *. In this case we can 
carry out calculations using the exact He on the basis of a 
variational methodk4 which makes it possible to calculate 
approximately (see the Appendix D )  the matrix elements. It 
is shown in Ref. 14 that the variational method in extremely 
high magnetic fields gives the correct results for I,, [see Eq. 
(C19). In our case, when h, < R *, the variational calcula- 
tions give results which are in excellent agreement with the 
exact values (see the Appendix C ) .  We can consequently 
expect the variational method to be effective also in the inter- 
mediate case and moreover, when complex (many-band, an- 
isotropic, etc.) models of a center are employed. 

4. MAGNETIC DIPOLE SPIN TRANSITIONS 

These transitions are initiated by the term h.m in Eq. 
(4),  which may occur in Eq. (3)  for the absorption coeffi- 
cient in the form of a correlation function between h.m and 
h.m(ESR), exactly as in the case of the correlation function 
of h.m with e .r  (interference of magnetic and electric dipole 
transitions). In particular, the absorption coefficient a,,, is 
governed by an expression similar to Eq. ( 19), where instead 
of F,, we now have 

The second term in Eq. (47) not only renormalizes the 
absorption because of the first term in the polarization h,, 
but also has the effect that a magnetic field of an electrody- 
namic wave initiates spin transitions of a carrier also in other 
polarizations (at frequencies w, - am,, w, - 2awM ), and 
also between different levels of a donor. In our case, we have 
h, 3 yo, and the strongest is the absorption in the polariza- 
tion h, at a frequency w,. The corresponding absorption co- 
efficient is calculated as before, and it is equal to 

An interesting feature is the proportionality of a,,, not 
to the square of the effective g factor of Eq. (36) ,  but to the 
square of the much smaller difference between g, and g,. In 
view of this and in spite of the giant enhancement of the 
energy of a spin transition in semimagnetic semiconductors, 
we cannot expect an increase in the ESR intensity compared 
with ordinary semiconductors and, as in the case of ordinary 
semiconductors,kX the ESR intensity is low compared with 
the EDSR intensity. The contribution of the interference 
terms is intermediate, although it is much less important 
(because of the large difference between the EDSR and ESR 
intensities) than for example in the case of n-type InSb (Ref. 
21 ) for which this interference had been observed experi- 
mentally.20.22 

5. DISCUSSION OF RESULTS 

Our conclusion about the ESR intensity is in contrast 
with the concept put forward in Ref. 12, where phenomeno- 
logical considerations showed that the interaction of an elec- 
tron spin in a semimagnetic semiconductor with a magnetic 
field of an optical wave is expressed in terms of the effective 
giant g factor g. This gives rise to large values of a.,,, pro- 
portional to g' and comparable with a,,, in a wide range of 

h , ,  with the exception of the paramagnetic resonance re- 
gion. Our more consistent theory yields a much smaller {ra- 
tio [ (g, - g, )/i] 2 ,  value of a,,, of Eq. (48),  which is 
negligibly small like a,, . 

The experimental results on EDSR in a semimagnetic 
compound Cd, , Mn, , Se are given in Ref. 5. The experimen- 
tal points and the continuous theoretical curve from Ref. 12 
are plotted in Fig. 2 for an absorption peak associated with 
the spin-orbit mechanism. Allowance for a large value of 
a,,, in the theoretical curve of Ref. 12 creates a discrepancy 
between this curve and the experimental points on our re- 
sults (dashed curve) at low frequencies. 

An analysis of the experimental results in Refs. 5 and 12 
was made on the assumption of a Lorentzian profile of an 
absorption peak and gave values of the spin-orbit interac- 
tion constant a,, = 2.1 X 10-b2  (Ref. 5 )  and 
a,, = 2.2. 10-3e2 (Ref. 12). As shown in the present paper, 
the peak profile is Gaussian and an analysis gives 
a, = 1.7.10-3e' (2a0 = 4 . 9 ~  lo-"' e V . ~ m ) . ' ~  We must 
bear in mind that the experimental points correspond to a,, 
( a ,  ) r, where y is the width of an absorption peak at midam- 
plitude5 related to yo of Eq. (32) by the expression 
r = y,,(21n2) "2/mfi. 

We shall now compare the intensities of the spin-orbit 
and the exchange EDSR lines. This can be done convenient- 
ly near a parametric resonance (h, -+ E,, - E l ,  ) .  In this 
case it follows from Eqs. (29),  (34) and (45), (46) that for 
the maximum value of a,,, , we obtain 

for the Faraday polarization and 211~; however, in the case 
of a plane-polarized wave this ratio is twice as large,I5 since 
the spin-orbit EDSR mechanism results in the absorption of 
just one ofthe circular Faraday components. We found the 

FIG. 2. Dependence of the absorption coefficient in the Faraday polariza- 
tion for the spin-orbit EUSR in Cd,,,Mn,, ,Se on the energy fio,: the 
points are the experimental results obtained for two close temperatures,5 
the continuous curve is calculated," and the dashed curve is also calculat- 
ed on the basis of our Eqs. (45) and (46).  
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numerical values employing the parameters of a Cd, - Mn, 
Se crystal: a = 38 A, JN, = 260 meV, N,, = 1.83 X 
cmP3 is the concentration of the cation sites, and the mag- 
netic impurity concentration is written in the form n = N,? 
( X  is the effective relative atomic fraction of the noninteract- 
ing magnetic ions),'' and our value of a,. Moreover, at these 
frequencies the exchange EDSR mechanism is approximate- 
ly an order of magnitude weaker than the spin-orbit contri- 
bution. However, the farther away from a parametric reso- 
nance in the direction of lower frequencies the more rapid 
reduction in a,, [see Eqs. (34) and (46) and Fig. 1 ] the role 
of the exchange mechanism rises. In the case of cubic semi- 
conductors, when the spin-orbit interaction is considerably 
less than in the case of hexagonal crystals and J has approxi- 
mately the same value,4 the exchange mechanism becomes 
dominant. 

A mechanism similar to the proposed exchange EDSR, 
but based on allowance for fluctuations of the classical spin 
vector of the magnetic impurities, was considered in Ref. 24 
where only an estimate was obtained of the probabilities of a 
spin-flip transition for just one virtual 2p state of a carrier. 
This in fact corresponds to our expression (49), but an esti- 
mate obtained in Ref. 24 is considerably smaller than ours. 

Under certain experimental conditions, in addition to 
the spin-orbit absorption there can be a second absorption 
peakQhifted by an amount of the order of +iaM in the direc- 
tion of higher energies. The profiles of both lines and their 
magnetic field dependences are identical, so that the second 
peak can be attributed again to a spin transition of a localized 
carrier. The present theory predicts a shift of the frequency 
of the transition (27) in the case of the exchange EDSR in 
the direction of red wavelengths (since g > 0-see Ref. 5) .  
Such a shift is associated with the fact that in the adopted 
model of the exchange interaction of a carrier with isolated 
magnetic impurities when g, and g > 0, the absorption of an 
energy +ia, by an electron in a spin-flip transition is accom- 
panied by a reduction in the energy of one of the magnetic 
impurities by an amount k,. This model is satisfactory at 
low concentrations of magnetic impurities; the concentra- 
tion x = 0.1 is no longer so small as to satisfy this approxi- 
mation properly, and one should bear in mind the interac- 
tion of a carrier with groups of magnetic impurities. 
Unfortunately, detailed experiments on samples with lower 
impurity concentrations, when this model would be known 
to be valid, have not yet been carried out (to our knowledge) 
and the absence of a description of the characteristics of the 
additional peak in Ref. 5 prevents us from a reliable attribu- 
tion of this peak to the exchange EDSR mechanism. The 
authors are deeply grateful to E.I. Rashba for his constant 
interest in this investigation. 

APPENDIX A. CONDITION OF VALIDITY OF PERTURBATION 
THEORY 

The matrix element H,,, for the electron wave functions 
with the opposite spins is 

An estimate of its quantity from the norm gives 

Here, p, is the density matrix of the magnetic impurities 
[see Eqs. ( 16) and ( 17) 1,  y,,,. [Eq. (28) ] is the characteris- 
tic fluctuation of the separation between the donor levels, 
whereas y, of Eqs. (28) and (32) represents broadening of 
the energy of the ground state. Therefore, the condition of 
validity of perturbation theory simply demands narrow lev- 
els compared with the separations between them, whereas 
the expressions for the absorption coefficients given by Eqs. 
(29), ( 45 ) ,  and (48) are valid if 

In fact, these conditions are satisfied in a wide range of +ia, 
because of the inequality nu3 % 1. 

APPENDIX B. AVERAGING OVER MAGNETIC IMPURITIES 

We are interested in the averages ( 16) and (5)  of the 
characteristic operator [see Eqs. (20) and (40) 1 

dRj Tr, exp ( - [ A  (R,) -iA (R j )  ] S,.) 

j= 1 
V z (A (Rj) ) 

Here the averaging is expressed in terms of a more general 
density matrix than that used in Eq. ( 17): 

which allows for the magnetic polaron contribution (when 
J >  0) .  In Eq. (B2) the quantity Z ( A )  is described by an 
expression similar to Eq. (24). 

Equation (B2) is easily transformed to 

dRj Z  ( A  (R,) -iA (R,) ) 

v z ( A ( R j )  ) 
J 

dR Z  (11 ( R )  -iA ( R )  ) 
={I + j -[- v 

Z  ( A ( R )  ) 
Z (11 ( R )  -iA ( R )  ) 

= ex,{. j d~ [ 
Z ( A ~ ( R )  - 11). (B5) 

Here, N is the number of impurities in the volume V of a 
crystal: N +  rn , V+ w , and N / V = n. If we ignore the po- 
laron shift in Eq. (B4), we obtain directly 

Z (h-iA ( R )  ) 
y a V = e x p { n  J d~ [ 

Z(l.1 

and Z ( A )  is described by Eq. (24). 
Equations (B5) and (B6) are valid for any value of S. 
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In particular, if S$ 1 we can use Eq. (24) to obtain 

This expression is taken from Ref. 25 and it describes the 
averaging, over the coordinates of zero-spin impurities, of 
the functional depending on the potential of the impurities 
W(R,) = -iSA(Rj). 

In the calculation of Z ( A  - iA) in Eqs. (B5) and (B6) 
we can employ both Eq. (24) and the expression for the sine 
of the difference, but at low values of A such as those in our 
experiments it is sufficient to take a finite number of the 
terms of the expansion Z (  A - iA ) in powers of A. Then, 
using Eq. (23), we find that 

m 

It is also easy to average a more complex operator 

5 = & , i p f ( ~ , )  exp [id (R,)  s,.] exp 
J j ' + ~  

(B9) 
which appears in the theory of the exchange EDSR [Eqs. 
(20) and (22) ] without approximations used in the deriva- 
tion of Eq. (2  1 ) . By analogy with the preceding procedure, 
we obtain 

( - I )  PZ(*) (A ( R )  -iX ( R )  ) Fa.=. J 
Z ( A ( R )  

f ( R )  dR 

Z ( A ( R f  ) -iA (R ' )  ) 
x exp{n j &I [ I ] } .  (BIO) 

Z i A ( R f ) )  

APPENDIX C. CALCULATION OF SUMS AND MATRIX 
ELEMENTS 

The matrix elements of the EDSR of Eqs. (26) and 
(42) can be expressed in terms of a sum of the form 

Here, rp is defined in accordance with Eq. (33) and 
S(r - R )  applies to the exchange EDSR mechanism and r ,  
applies to the spin-orbit mechanism; E, and \V, are the ener- 
gies and eigenfunctions of the Hamiltonian of Eq. ( 3  1 ) . In 
the calculation of the sums over the whole spectrum (dis- 
crete and continuous) of the Hamiltonian He one can use the 
method of Ref. 26. 

In units of a and R *, dropping the dimensional factor, 
we can write I in the form 

where 

H=-1/2A-l /r ,  

According to Eq. (C2),  fp satisfies the equation 

If we seek this solution in the form 

with u = ( 1 - 2 ~ ,  ) - ' I 2  which allows for the behavior ofhi 
at singular points, then u is described by 

ru"+ (4-2r/u)u1+ (2-4/v)u=-2n-'"r exp[ , - r (1-I /u)  1, 
(C7) 

the solution of which can be represented as a series of the 
generalized Laguerre polynomials L A'' (Ref. 27). As a re- 
sult, we then have - 

where 

In particular, if u = 1 (E, = 0) ,  we expect 

In the case of the exchange EDSR mechanism it follows 
from Eq. (C2) that 

The summation over n in& of Eq. (C8) is carried out using 
the relationship 

I 

and the generating function for the Laguerre polynomials. 
As a result, we obtain 

32 uz 
I,," ( E , ,  R )  =Rii - e - R i l + l / D )  

n (ul-1)  (u-1)  
(C13) 

((214) 
The quantity 

which occurs in the absorption coefficient, does not contain 
the interference terms for different polarizations e ,  , because 
I &  a R,. Finally, we find that @,, (E) ,  occurring in Eq. 
(34) is given by 

and is independent of ,u. Integration with respect of R is 
elementary and the remaining integrals with respect to t are 
readily found numerically. 

In the case of I,, (E) we find from Eq. (C7) that 
1-2uZ 

I , .  (e) = t o r . k ( r )  dr=2d - 
( vZ -  1)  = 

256 U" + -- ( n f l )  (n+2) (n+3)  ' n+2-u 
x2", 

3 ( c - 1 ) 2 ( ~ + 1 ) 1 0  n=O 
(C16) 

which can be expressed in terms of the hypergeometric func- 
tion [see Eq. (44) 1 .  fG( r )  =ri exp ( - r /u)  u ( r )  (C6) 
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Another method for calculation of a quantity analogous 
to I,, by an integral representation of the Green Coulomb 
function was proposed in Refs. 28 and 29 in connection with 
the scattering of light by the hydrogen atoms. In particular, 
the result obtained in Ref. 28 is expressed in terms of a sum of 
two hypergeometric functions. A similar calculation at- 
tempt was made in Ref. 12, but a closed expression was not 
obtained. 

APPENDIX D. VARIATIONAL METHOD FOR THE 
CALCULATION OF SUMS 

Equation (C5)  can be derived by variation with respect 
to f * of the functional 

Let us assume that f = Cqb and then after variation with re- 
spect to C (or C * )  we find that 

This functional was obtained in Ref. 14 where it is shown 
t-hat = - I-, for ordinary semiconductors, when the es- 
sentially diamagnetic term in H,  and the approximation de- 
scribed by Eq. (31) are invalid. Minimization of 9 for a 
deformed functional of a p state (anisotropic Gaussian, mul- 
tiplied by the coordinate) gives the exact result for high 
magnetic fields 3i" and is satisfactory when ,T = 0. In the 
present case, when the Zeeman term is more important than 
the diamagnetic one, a more suitable variational function is 

1 

which is characterized by 

In the case of minimization with respect to a ,  and C, it 
is found that already for I = 2 the agreement with the calcu- 
lations based on Eq. (C16) is accurate to within four signifi- 
cant figures (six significant figures for I = 4), whereas I,, 
for the function (D3) is identical with that calculated from 
Eq. (C13) to three and four significant figures, respectively. 
This discrepancy is to be expected, because in contrast to 
-I , , ,  which is in the form of a correction in the second 

order of perturbation theory in the Stark effect, I,, is not an 
extremum of F.  
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