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A very simple model of the propagation of a streamer in a homogeneous electric field is 
qualitatively investigated. It is shown that there exists a critical field at which stationary (with 
constant velocity and head radius) streamer motion is possible. In a field stronger (weaker) than 
critical the head radius and the propagation velocity should increase (decrease) with time. The 
theoretical estimates obtained for the streamer parameters agree well with recently published 
numerical calculations. 

1. INTRODUCTION 

A streamer is a plasma filament produced in a discharge 
gap and growing at a fast rate via ionization in the strong 
electric field near its head. The streamer mechanism of gas 
breakdown was suggested by Raether, Loeb, and Meek and 
was extensively investigated (see Ref. 1 for a survey of the 
literature). Streamers were observed also in solids. The 
streamer propagation velocity is frequently much higher 
than the carrier drift velocity not only in an external applied 
field, but also in the stronger field near the streamer head. 
The main physical processes causing the streamer propaga- 
tion are well known. These are: 1 ) impact ionization near the 
head, which lengthens the plasma filament, and 2) displace- 
ment of the charge on the boundary of the produced plasma 
via Maxwell relaxation. There is nonetheless at present for 
this phenomenon not even a qualitative theory that describes 
the dependence of the parameters of the streamer on the 
applied voltage and on the physical properties of the medium 
in which it propagates. This is due to the great mathematical 
difficulties of solving the nonlinear partial differential equa- 
tions that describe the streamer evolution. Many studies are 
devoted to a numerical simulation of a streamer discharge. 
They frequently take into account various minor processes 
and use at the same time unfounded assumptions that sim- 
plify the calculation. An exception is a recent paper by Dhali 
and Wil l iam~,~ containing for the first time correct numeri- 
cal calculations of streamer evolution in a plane-parallel gap, 
based on a relatively simple system of equations that take 
into account only the most important physical properties. 
Numerical calculations, of course are not sufficient for a 
complete understanding of the physical picture of the phe- 
nomenon. 

For a streamer to develop, free electrons capable of be- 
ing multiplied by impact ionization should be present in the 
strong field ahead of its front. A rather widespread situation 
is one in which the streamer discharge is produced when the 
medium is weakly pre-ionized. If, however there are no free 
(or weakly bound) electrons, some mechanism must gener- 
ate preliminary electrons ahead of the streamer front. Such a 
mechanism can be photoionization by the streamer radi- 
ation, tunnel ionization, and extraction of electrons from the 
streamer head by drift in the electric field or by diffusion. In 
the model of Lozanskii and Firsov3 it is suggested that the 
main process is drift extraction of the electrons from the 
head. In their theory the streamer is treated as an ideally 
conducting ellipsoid of revolution, each point of whose sur- 
face moves with a drift velocity determined by the local value 

of the field. This theory is not valid for a cathode (positively 
charged) streamer, whose properties actually do not differ 
greatly from those of an anode streamer. Nor is it valid for a 
streamer discharge from a needle tip. In addition, it cannot 
explain the high streamer-propagation velocities, which are 
many times larger than the electron drift velocity. 

In an earlier paper4 we have proposed a qualitative the- 
ory of a streamer in a semiconductor. Evolution of a dis- 
charge from a metal tip was considered and it was assumed 
that the free-carrier density in the crystal is high enough. 
From qualitative physical considerations we obtained, in or- 
der of magnitude, all the main parameters of the streamer. 
These results are applicable in fact also to gases if slight mod- 
ifications are made to account for the field dependences of 
the electron mobility. 

We use in the present paper a similar qualitative ap- 
proach to analyze a streamer discharge in a uniform field 
(plane-parallel gap). This problem differs substantially 
from that in Ref. 4, where a streamer propagates from the tip 
(assumed to be infinitely far from the second electrode) in a 
region where there is practically no external field. Streamer 
propagation is therefore possible only so long as the charge 
distribution over the plasma pinch is close to electrostatic, 
and the propagation length turns out to be finite. In a uni- 
form field, on the contrary, the streamer can propagate with- 
out limit, and the charge distribution differs very greatly 
from electrostatic. 

We assume, as in Refs. 2 and 4, that enough free elec- 
trons are present ahead of the streamer front. They can be 
produced, in particular, by preliminary ionization or by the 
streamer's own radiation (if the absorption length of this 
radiation is larger than the head radius). Just as in Ref. 2, we 
take into account only the above-mentioned principal pro- 
cesses that lead to streamer propagation, and neglect all col- 
lateral phenomena, which can be significant under real con- 
ditions. We regard this formulation of the problem as 
justified, for at present our understanding of the laws gov- 
erning the streamer discharge is inadequate for the simplest 
model. Our qualitative results will be compared with nu- 
merical  calculation^.^ 

2. FORMULATION OF PROBLEM AND DESCRIPTION OF 
MODEL 

Let us consider the propagation of a streamer in a gas 
situated in a uniform electric field. The simplest equations 
describing this phenomenon are 
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an 
- + div (vdn) =avdn, 
d t 

where n and N are the densities of the electrons and positive 
ions, v, the electron drift velocity, a the impact-ionization 
coefficient, g, the electrostatic potential, and e the absolute 
value of the electron charge. 

Equations ( 1 ) - (3  ) describe in simplest form the main 
physical processes that lead to streamer propagation. Elec- 
tron diffusion and ion mobility are disregarded, since simple 
estimates shows them to be insignificant. We assume for sim- 
plicity that the electron drift velocity is a linear function of 
the field E, viz., vd = pE. The impact-ionization coefficient 
a increases sharply (exponentially) with the field and satu- 
rates at a level a, at some characteristic field value E,. A 
frequently used expression is 

a ( E )  ==ao exp (-E,lE) 

We rewrite now Eqs. ( 1)-(3) in a different form, introduc- 
ing the charge density p = e ( N  - n )  and the conductivity 
a = epn: 

aoIat=p ( E )  O-p div (oE) , (5) 

We have introduced here the impact-ionization frequency 
P (E)  = pEa(E) .  

Assume a constant and uniform external field Z? to be 
applied along the z axis. At the initial instant we have a low 
homogeneous conductivity a, against the background of 
which there exists a seed of high conductivity (for example, 
on one of the planar electrodes producing the external field). 
The task of the theory is to describe the evolution of the seed 
in accordance with Eqs. (5)-(7). Another interesting ques- 
tion is that of the existence of self-similar solutions describ- 
ing the stationary propagation of the streamer. 

Let us discuss the general properties of the system (5)- 
(7).  We note first that the second term in the right-hand side 
of (5),  which describes the conductivity change due to elec- 
tron drift, can be discarded if a (E)S% 1, where S is the char- 
acteristic distance over which the conductivity changes (the 
width of the streamer front). This condition follows from a 
comparison of the two terms in the right-hand side of (5)  
with an estimate of div(aE) -aE/S. The field near the 
streamer head is of the order of 4E,, SO that the condition 
indicated takes in this region the form 

We shall derive below an expression for the front width S and 
show that the condition (8)  is equivalent to the requirement 
that the streamer propagation velocity V be much higher 
than the drift velocity in the field E,. 

We assume hereafter that the condition (8)  is met and 
use in place of ( 5 ) the equation 

Neglect of the drift term in (5)  eliminates the difference 
between the anode and cathode streamers. In fact, Eqs. (5a), 
(61, and (7) are unchanged by the substitutionsp - - p and 
E- - E. An important property of these equations is also 
that they do not contain a parameter with the dimension of 
length. This means that the characteristic streamer dimen- 
sions (and also its velocity) are determined by the size of the 
initial seed, and streamers evolving from similar seeds are 
similar at all instants of time. Note, however, that the drift 
term in (5)  is essential for the determination of the radial 
distribution of the charge in the channel, and of the thresh- 
old conditions of streamer initiation (see the discussion of 
these questions in Ref. 4) .  

Equation (5a) describes the exponential growth of the 
conductivity with time at a rate determined by the local val- 
ue of the field E. According to this equation such a growth 
should, in particular, take place also far from the streamer, 
where there is only the external field k9. Therefore Eqs. (5a), 
(6) ,  and (7)  have, strictly speaking, no self-similar solu- 
tions. In view of the strongp(E) dependence at E< E,, how- 
ever, the rate of this growth is very low. In a weak field, in 
fact, the impact ionization is offset by recombination pro- 
cesses not accounted for in Eqs. ( 5 )  and (5a).  This circum- 
stance can be taken into account formally by setting the ioni- 
zation frequency 6 equal to zero for very weak fields 
(including the external field 2Z ). This makes a self-similar 
solution possible. 

3. PRINCIPAL PARAMETERS OF STREAMER 

We present in this section several qualitative relations 
previously4 obtained for the streamer parameters and valid 
regardless of the applied-field geometry. 

1. The maximum field E,, on the streamer front should 
be of the order of the field E, at which the impact-ionization 
coefficient saturates. The reason is that for E,, <E, or 
Em > E, the sizebf the region in which substantial ionization 
takes place is much smaller or much larger than the head 
radius r,. If Em -E, the dimension of this region is of the 
order of r,. Inside this region we have 

a ( E )  -ao, @ ( E )  -Pn=pEo~o. 

2. The conductivity in the channel is 0-p,, since its 
exponential growth in the ionization region ahead of the 
front proceeds with a time constant p ; ' until the field in 
this region is crowded out by a Maxwell relaxation charac- 
terized by a time" (4aa)- ' .  

3. The connection between the streamer propagation 
velocity and its radius is 

This equation follows from the fact that within the time T 

during which the front travels a distance r, the conductivity 
should increase from an initial value a, to Do [obviously, 
V- r,/r and 0, - u,exp(p0r) 1. We assume that the loga- 
rithm in (9) is a large quantity. 

4. The front width is S- V/& - r , /A, .  This quantity 
determines the size of the region in which the space charge is 
concentrated and in which the conductivity decreases no- 
ticeably. Note that S<r, and that the condition (8)  is equiv- 
alent to the inequality VSpE,. 
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The fact that the front width is much smaller than the 
head radius allows us to assume a small section of the front to 
be plane and obtain the charge distribution and the conduc- 
tivity along the normal to the front at distances small com- 
pared with r,. This yields a more rigorous derivation of the 
statements 2 and 4. 

We choose for simplicity a front section on the streamer 
axis. Equations (5a), (6) ,  and ( 7 )  can be replaced in the 
considered small region by one-dimensional ones. In addi- 
tion, we assume that a, p, and E depend only on z - Vt, 
where Vis the propagation velocity. We obtain then the sys- 
tem of equations 

The boundary conditions are E = p  = 0 for z = - cc (be- 
hind the front) and E = Em andp = 0 for z = cc (ahead of 
the front). The velocity Venters in these equations as a pa- 
rameter and cannot be determined from the one-dimension- 
a1 problem. 

From Eq. (1 1) and the boundary conditions we get 
p = UE /V. Substituting this expression in ( 12) and using 
(10) we get 

do!dE=-$ ( E )  /4nE. (13) 

The conductivity behind the front is given by 

Using the expression 

which follows from (4), we get 

from which we see indeed that a-fl, for E, - E,. 
It follows also from Eqs. ( lo)-( 12) that the front width 

is S - V/&. 

4. CHARGE DISTRIBUTION AND CURRENT IN THE 
STREAMER CHANNEL 

We consider the following problem. Given a conduct- 
ing region in the form of a long filament of radius r, and 
growing symmetrically in length on both sides, so that the 
ends of the filament move with constant velocity V (see Fig. 
l a )  .'' The filament is placed in an external field Z? parallel to 
its axis. It is required to determine the charge distribution 
along the filament and the current in it. 

This formulation of the problem describes describes a 
streamer evolving from a seed located in the center of the gap 
between plane electrodes (the streamer length is as yet small 
compared with the distance between the electrodes). If, 
however, the streamer grows from one of the electrodes 
(Fig. lb),  the charge distribution in it should be the same as 
when we consider only one-half of the filament in the formu- 
lated problem. (This is obvious, since a plane perpendicular 
to the filament and passing through its midpoint is equipo- 
tential, as is also a metallic electrode). 

If the length I of the filament were constant, the prob- 
lem would be purely electrostatic. In that case we know5 that 
for I%r, the linear charge density p, is given by 

where the coordinate z is measured from the center of the 
filament. The field at the end of the filament is then propor- 
tional to its length: 

When the ends of the conducting filaments move, the 
electrostatic equations ( 16) and ( 17) remain valid so long as 
the length is not too large and the charge has time to spread 
over the filament and screen the electric field in its interior. 

In the general case, the spread of the charge through the 
filament is described by the equation 

which is obtained from the continuity equation ( 6 )  using the 
"local-capacitance" approximation p, = p, A,, where p, is 
the charge produced by the charges of the filament, r is the 
radius of the filament (it can be a smooth function of the 
coordinate z and differ from the head radius r,), A, = In (a/ 
r ) ,  and a is a characteristic length that determines the charge 

FIG. 1. 
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distribution (and coincides with the filament length I in the 
static case). It is assumed that a % r. Equation ( 18) is not 
valid in a region of order r, at the end of the filament. This 
circumstance, however, is immaterial for further qualitative 
estimates. 

The requirement that there be no current at the end of 
the filament at z = I( t )  leads to the boundary condition 

which is valid, strictly speaking, at distances much larger 
than r, and much smaller than a from the end of the filament. 

At constant r = r, Eq. ( 18) has the form of a diffusion 
equation with a "diffusion coefficient" .rrr;uA,. 

Let us estimate the characteristic time t, during which 
electrostatics can be used, and the corresponding filament 
length I,. The time of spreading of the charge along the fila- 
ment is of the order of 1 2/(&j A2). Equating it to the propa- 
gation time I / V we get 

uro2 1, uro2 or0 
1, --- A*, to  - - - - A2, A2=ln-. (20) v v v* v 

Equations ( 16) and ( 17) are thus valid if t 5 to and 1 5  I,. 
These are just the times of importance for a streamer propa- 
gating from a sharp tip.4 Now, however, we are interested in 
a regime in which there is no time for an electrostatic distri- 
bution to set in. No screening takes place in this case and the 
field inside the conducting filament is equal to the external 
field g. The current produced by this field is I- or; 8 .  Be- 
cause of this current, the newly produced filament sections 
are charged at a linear charge densityp, determined from the 
conditionp, V = I,  whence 

The field Em -p,/ro at the end of the filament is now given 
by 

The ratio of the maximum field at the end of the filament to 
the external field is thus determined by the dimensionless 
parameter" vrO/ V. 

We point out that Eqs. (21 ) and (22) are joined to Eqs. 
(16) and (17) atz-I-I,,. 

It can be shown by solving Eq. ( 18) with the boundary 
condition ( 19) that the liner charge-density distribution 
along the filament has at [)I, the form shown schematically 
in Fig. lc. The linear density has over the greater part of the 
filament the constant value given by Eq. (2 1 ) . A deviation 
from this equation takes place near the midpoint of the fila- 
ment in a small region whose size is determined by the "dif- 
fusion length" (or;A,t) ' I2-  (11,) ' I 2 .  

5. STREAMER PROPAGATION 

We consider stationary streamer propagation (with the 
velocity and head radius constant), setting aside the ques- 
tion of its formation from the initial seed. According to Eq. 
(9)  the velocity V is proportional to the head radius ro, 
which remains arbitrary in accord with the discussion in Sec. 
2. It is actually determined by the size of the seed. 

We shall show that stationary propagation is possible 
only if the external field has a certain critical value 8 , .  

We assume initially that the streamer-channel radius is 
constant and is of the same order as the rounding radius r, of 
the head. Using Eq. (9)  and the relation cr-& we obtain for 
the parameter ar,/Vin (22) the estimate ur/V- A, ) 1. The 
necessary condition Em WE,, (see Sec. 3 )  is consequently 
met only for Z? = Z?,, where4' 

For an external field different from Z?, the head radius 
and the velocity should vary with time. In fact, if the head 
radius were constant then, as seen from (22), the field Em at 
the head would be larger than E, (for Z? > 8, ) or smaller 
than E, (for 8 < g, ). To ensure that Em - E, it is necessary 
that the head radius increase or decrease ( Z? > Z?, or 
Z? < 2?, , respectively). The character of the time variation 
of the head radius can be determined in the following man- 
ner. 

The condition Em -E,, requires that the field in the 
channel behind the front be equal to t?, . The charge must 
consequently be so distributed that the field it produces off- 
sets the difference between the external field 8 and t?,. It is 
therefore necessary to satisfy near the head the condition 

Equation (24) follows from ( 19) if use is made of the rela- 
tionsp, - E,r,,u-Po, and (9) .  We express the rate of change 
of the head radius in the form 

where the right-hand side should be calculated for z = I (at 
the head). We determine the derivative ap,/dz from (24) 
and the derivative ap,/Jt from Eq. (18) in which we can 
neglect the small quantity A&, /dz compared with the field 
g z g c :  

Using Eqs. (9) ,  (23), and (24)-(26) we obtain ultimately 

The streamer propagation velocity has a similar time vari- 
ation. Note that at I $ - 8, I - g, the time constant y turns 
out to be of order t, ', where to is the characteristic time 
determined by Eq. ( 18 ) . 

Substituting dt = dz/V in (27) and using Eq. (9)  we 

get 

Equation (28) shows how the head radius varies when 
the streamer length is increased. It can be seen that even for 
I 8 - 8, I - g, the change of the radius is relatively slow, 
since A ,A, > 1. The length a introduced above is of the order 
of r,(dz/dr,), so that with logarithmic accuracy 
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Thus, for F? > %, the streamer expands and propagates 
without limit, and while $ < g ,  the streamer contracts and 
the propagation length is finite. This length increases in pro- 
portion to ( g ,  - g ) - '  as $-$,. 

The case g < g,, however, requires further analysis, 
since it can be shown that the contraction is accompanied by 
an increase, with time, of the linear charge density of the 
streamer filament. As a result, the radial field increases and 
the streamer channel begins to expand on account of impact 
ionization. I t  can be shown that this process becomes sub- 
stantial after a time t ,  -,y-' 8,  ($, - g)-'. If the differ- 
ence between $ and %, is small, the streamer will undergo 
during this time the very strong contraction described by 
Eqs. ( 2 7 )  and ( 2 8 ) .  The question of streamer development 
at t > t ,  remains unanswered. If $ > g,,  however, no such 
question arises, since the charge density in the streamer fila- 
ment decreases with time. 

Note that if ro is large enough Eq. ( 9 )  leads to a propa- 
gation velocity exceeding the speed of light c. A velocity- 
limiting mechanism must consequently exist. This restric- 
tion is due to the onset of a vortical electric field at the 
streamer head. The question of the influence of a vortical 
field on streamer propagation is quite complicated and has, 
to our knowledge, not been considered so far. We estimate 
the strength of the vortical field, assuming it to be weak. The 
magnetic field produced by the current flowing in the 
streamer channel is of the order of H-ur ,g /c .  The deriva- 
tive d H / d t  in the region of the head differs from zero, and it 
is this which leads to the onset of a vortical field 

The parameter that determines the role of the vortical field is 
thus 

The qualitative equations obtained in this present paper are 
valid so long as the parameter 7 is small. If it is assume that 
the velocity is limited by the condition 7- 1, we obtain, sub- 
stituting u-/lo in ( 3 0 )  and using Eq. ( 9 ) ,  

It can be assumed that Eq. ( 3  1 ) determines the maximum 
values of the head radius and the streamer velocity. 

6. COMPARISON WITH RESULTSOF NUMERICAL 
CALCULATIONS 

In Ref. 2 they solved numerically the system ( 1 ) - ( 3 )  
with additional terms that accounted for the electron and ion 
diffusion and for the ion mobility. They investigated, in a 
plane-parallel gap, the evolution of a streamer from a hemi- 
spherical highly-conducting "seed" placed on one of the 
electrodes. The paper contains distribution profiles of the 
electric field and of the electron density at various instants of 
time, for several external-field values in the interval (0.18- 
0.30) E,. The ratio of the propagation velocity V to the elec- 
tron drift velocity v, = pEm on the front ranged from 1 to 6,  
(Recall that all the relations given above are valid under the 
assumption that V / v ,  $ 1 .  ) 

Let us compare the results of these calculations with 
our theoretical estimates. 

I.  Field at the head. The ratio Em /E ,  was equal in dif- 
ferent cases to 0.4-0.8, in agreement with our condition 
Em - E,. 

2. Conductivity behind the front. The ratio a/&,, which 
is theoretically of the order of unity, ranged in the numerical 
experiments from 0.02 to 0.1. Using for the theoretical value 
of the conductivity the more accurate expression ( 15) in- 
stead of /lo, the corresponding ratio is found to be in the 
interval 3-6. This result is satisfactory, especially if it is re- 
cognized that the conductivities behind and ahead of the 
front differ by several orders. 

3. Front width We have shown that S - ro /A , .  From the 
results of Ref. 2 it follows that SA, /rO = 1 to 5.  (Note that 
the value of S obtained from the plots of Ref. 2 is subject to 
large errors. ) 

4. Relation between the velocity and the head radius. 
The dependence of V on ro was not specially investigated in 
Ref. 2. For the specific values contained in this reference we 
obtain /loro/( V A  I ) = 2-6, which is in good agreement with 
Eq. (9 ) .  Note also that in the numerical experiment the ve- 
locity Vincreases slowly when the electron density ahead of 
the front is increased [but somewhat faster than would fol- 
low from ( 9 ) ] .  

5. Field in channel. It was shown in Sec. 5 that this field 
is given by g ,  -Eo/A, .  From the data of Ref. 2 it follows 
that the field in the channel actually decreases with increase 
of the logarithm A , .  The ratio of the field behind the front 
and E,/A, ranges from 1 to 2. 

6. Field dependence of the character of the propagation. 
This dependence was not investigated in detail in Ref. 2. It 
appears that the condition $ > g ,  was met in all the investi- 
gated cases. This, as we have shown, should be accompanied 
by a slow increase of the head radius with time. This increase 
was indeed observed in Ref. 2. One cannot conclude from the 
data there whether the increase would agree with Eqs. (27)  
and ( 2 8 ) .  We note also that in the numerical experiments 
the streamer-channel radius was found to be proportional to 
the radius of the initial seed. This agrees with the statement 
made in Sec. 2. 

The qualitative equations of the present paper are thus 
in agreement with the results of numerical calculations. 

We are grateful to M. E. Levinshtein for calling our 
attention to Ref. 2. 

"If the mobility depends on the field, the actual relation is o-fi,,u,/p,, 
where p, is the mobility in the strong field at the head and p, is the 
mobility in the streamer-channeL4 

''We emphasize that what is meant here is not motion of the filament 
material, but increase of the dimensions of the conducting region. 

3'In this estimate we take into account only the field produced by the 
filament charge, and neglect the external field. This is justified if oro/ 
V ,  1. This is precisely the case in which we shall be interested hereafter. 

4'If the mobilities ahead of the front (p,) and behind the front ( p , )  are 
different (see footnote 1 ) an additional factorp,/p, appears in the right- 
hand side of (23). 
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