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An analysis is made of the composition dependence of the relative density of the l/f noise p' in 
macroscopically inhomogeneous composites above, below, and at the percolation threshold. A 
relationship is established between the critical exponents k and k ', on the one hand, and the 
critical exponents of the conductivity and correlation length, on the other. Two new critical 
exponents are introduced and situations are identified in which the terms ofpe  described by these 
exponents may play the dominant role. A comparison is made with the experimental results. 

INTRODUCTION 

The density of the l/f noise' is one of the important 
characteristics of a medium. Much work has been done on 
this noise in homogeneous and inhomogeneous (macrosco- 
pically and microscopically) media. Considerable attention 
has been given recently to the density of the l/f noise in ma- 
croscopically inhomogeneous media near the percolation 
threshold and in particular to its dependence on the compo- 
sition. 

The relative noise density can be defined as follows (see, 
for example, Refs. 2 and 3) 

where (SRSR ) is the mean-square fluctuation of the resis- 
tance; SR is the real value of the intensity of the l/f noise 
measured for a constant external current; R is the resistance 
of the whole. We have" 

where U and I are the voltage and current in a sample. In 
macroscopically inhomogeneous two-phase systems the ba- 
sic problem is as follows: knowing the noise density for pure 
phases (highly conducting p, with a conductivity u ,  and 
poorly conducting p, with a conductivity a, ), we have to 
find the composition dependence of the noise density for the 
whole sample. Much work has been done on this problem. 
The noise density was found in Ref. 4 for the two-phase ma- 
terials discussed in Ref. 5. The behavior of the noise density 
in percolation systems, i.e., in the case of a large difference 
between the conductivities of the phases near the percolation 
threshold, is considered in Refs. 2,3, and 6-1 1. These inves- 
tigations demonstrated that the composition dependence of 
the effective noise density near the percolation threshold can 
be written as follows: 

wherep is the concentration of the highly conducting phase; 
p, is the percolation thre~hold '~;p+ and p are the values of 
the noise density to the right (p >p,) and left (p  <p,) of the 
percolation threshold; k and k ' are the corresponding criti- 
cal exponents. 

It therefore follows that the composition dependence of 
the noise density near the percolation threshold is governed, 
in accordance with Eq. (3),  by the critical exponents k and 

k ' and our main task will be to determine these exponents. 
We shall use the model of a "weak link"I3-l4 to find the 

relationship between the "noise" critical exponents k and k ', 
on the one hand, and the critical exponents of the effective 
conductivity, on the other, and we shall derive the following 
(compared with the parameter u,/a, 4 1 ) terms in Eq. ( 3 ) ;  
introduction of two new critical exponents w and w' will be 
used in a comparison with the results of numerical modeling 
and of experiments. 

The composition dependence of the noise density of a 
macroscopically inhomogeneous system can be found using, 
for example, the dependences proposed in Ref. 6 for the lat- 
tice models: 

where p, is the noise density in a system consisting of resis- 
tances R,; R is the total resistance; p,, is the noise density of 
the resistance R,; the first relationship is written down for 
the resistances connected in series and the second for those 
connected in parallel. 

In the case of a homogeneous sample with dimensions 
L ,  X L, X L, the expressions given by Eq. (4)  lead to 

where p, is the noise density in a sample of dimensions 
a, X a, X a,. 

It should be pointed out that in calculation of the noise 
density in an inhomogeneous medium it is insufficient to 
know the total resistance of the medium, since p' naturally 
represents that part of a sample where the current is flowing. 
This becomes particularly clear if we write down p",  in the 
same way as in Ref. 5 (we can easily demonstrate the identity 
of this definition with that introduced above): 

1 <C(r) [ ~ ( r )  (E(r))'Iz) 
'Pv: =- 

Vo (oe<E (r) > Z ) Z  
1 

where p k, is the noise density in a sample of volume V,,; Cis 
a quantity related to the noise density p,in a region of vol- 
ume V by the expression C = p, V; u( r )  is the electrical 
conductivity; E(r)  is the electric field intensity; V,, is the 
volume of the sample. 

We can therefore determine the noise density if we 
know not only the spatial distribution of the phases, but the 
distributions of the electric field and of the Joule heat. Clear- 
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ly, in the case of randomly inhomogegeous media such a 
problem is generally insoluble. 

However, there are randomly inhomogeneous media 
which behave in many respects in a universal manner, name- 
ly, strongly inhomogeneous media near the percolation 
threshold. Numerical methods were used in Refs. 15 and 16 
to show that in strongly inhomogeneous media the bulk of 
the Joule heat is evolved near the percolation threshold in 
regions in the form of thin long bridges (p  >p, ) connecting 
"thick" parts of a metallic cluster (base) and thin layers of a 
poorly conducting phase ( p  <p, ) between the final metallic 
clusters (see also Ref. 17). 

We can use Eq. (6)  if we know at least approximately 
the analytic expressions for the distributions of the electric 
fields and currents in strongly inhomogeneous media. This 
can be done employing a model of randomly inhomogeneous 
media. The first model capable of describing the flow of a 
current in a medium with p >p, was that proposed by Skal 
and Shklov~ki i '~  (see also Ref. 19). The main assumption of 
this model is that the current flows only along single-strand 
percolation channels forming a framework of an infinite 
cluster. In the two-dimensional case the distance between 
the nodes of a network forming an infinite cluster rises faster 
than the length of such single-strand channels" and we have 
to allow for more complex elements of the structure. The 
importance of layers or spacers in the description of the con- 
duction process in the case when p <p, was considered in 
Ref. 20. A specific geometry of weak points, in the form of a 
bridge and a spacer (Fig. 1 ), was proposed in Refs. 13 and 
14. According to this model, in the three-dimensional case 
we have".I4 

where T = p, - p; t and q are the critical exponents of the 
conductivity; s, is the characteristic area of a bridge; s,  is the 
characteristic area of a spacer. 

In the two-dimensional case, we have 

FIG. 1. Model of the structure of a medium near the percolation thresh- 
old: a )  p > p , ,  the shaded region represents a highly conducting phase 
showinga bridge ( 1 ) of thickness s Y 2  in three-dimensional space and b, in 
the two-dimensional case, and a spacer ( 2 )  of a poorly conducting phase 
of thickness I, and of areas,, as well as a base ( 3 )  with a characteristic size 
6; b )  p < p ,  here the number 2  represents a spacer of a poorly conducting 
phase of thickness I, and of areas,. In both figures the individual metallic 
clusters are not shown and neither are the islands of a poorly conducting 
phase within the bases, dead ends, etc.; L ' is the characteristic volume 
containing just one bridge and one spacer. In the "weak link" models it is 
assumed that this volume is sufficiently representative for the description 
of the transport properties of the medium as a whole and that the sample 
consists of such volumes. 

where 6, is the width of a bridge, and we haves, a a;, I, a a,, 
and a,, is the characteristic size of the "cubes" of which the 
randomly inhomogeneous medium is assumed to be com- 
posed. 

The relationships (7 )  and (8 )  describe the main as- 
sumptions of the "weak-link" models and are selected so 
that the effective conductivity a' depends on the composi- 
tion in accordance with the following expressions deduced 
from percolation theory2': 

where A,,, A , ,  B,, and B, are constants of the order of unity, 
If a,/a, 4 1, the second terms (and, consequently, all 

the other terms) are usually ignored, but there are physical 
situations where the main role is played by the second 
term.,' We shall show that a similar situation can occur also 
in the noise density problem. 

A description of the structure of a strongly inhomogen- 
eous medium near the percolation threshold by means of the 
model of Ref. 18 and by the "weak link" model is not rigor- 
ous and requires further but nevertheless we 
can describe a whole range of phenomena (see, for example, 
Refs. 20 and 2 4 2 6 ) .  

CALCULATION OFTHE COMPOSITION DEPENDENCE OF 
THE NOISE DENSITY 

We shall use the models described in Refs. 13 and 14 to 
calculate the noise density. If p >p, the main voltage drop 
(a, $a,) is across a bridge and a spacer (Fig. l a ) .  Using Eq. 
(7 )  wecandeducefromEq. (6 )  (C ,  = p,a:,C, = p,a;) the 
expression 

p' cc (p , j i2ElZvh/Vf  (p j2ZE22V, /V  - a03 (10) 
(5,2E4 V O  ' 

where j, and El are the current and the field in the bridge; j, 
and E, are the current and the field in the spacer; V ,  = ail, 
is the volume of the bridge; V,  = a,,s, is the volume of the 
spacer; Vcc 6 '; 6 cc lp - p, 1 " is the correlation length; v is 
the critical exponent governing the behavior of the correla- 
tion length; E is the average field in a sample; p, and p, are 
the values of the noise density for highly conducting and 
poorly conducting phases. 

We shall use Ap for the difference between the poten- 
tials across the relevant dimensions (Figs. la and lb); then, 
assuming that the voltage drop across the base can be ig- 
nored, we find that 

where R , =: 1, / a , a i  is the resistance of a bridge and R 2  =a0/ 
O,S, is the resistance of a spacer. 

Substituting Eq. (1  1 ) into Eq. ( l o ) ,  and using Eq. ( 7 )  
we obtain (in the expressions that follow we omit V,, since it 
is independent of T):  

p 5 rr cp, ~ - 4 v + r p , ( % ) 2  I r l - ~ - ~ ~ + ~ ) ,  p>pc. ( 12) 
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We can calculate similarly the quantity q,' for the two- 
dimensional case. The form of q, 'remains the same, but the 
power exponent of T changes. Writing down q, 'in its general 
form [see Eq. ( 3  ) 1 

we find that the critical exponents to the right (p  >p, ) of the 
percolation threshold obey the following relationships: 

We shall now consider the case whenp <p, . To the left 
of the percolation threshold the general expression for q, " 
can be written as follows: 

Calculations similar to those described above give 

DISCUSSION 

The expressions for q," to the right (p  >p, ) and left 
(p  <p, ) of the percolation threshold were obtained above 
for values of the concentration p that are on one hand quite 
close to the percolation threshold p, / T 1 < 1 and on the other 
outside the smearing region A  (Ref. 21 ), where in the case of 
the problem of conduction in the absence of a magnetic field 
we have 

Since the noise density is governed entirely by the distribu- 
tions of the currents and fields in an inhomogeneous medi- 
um, the smearing interval Aq, of the noise density coincides 
with the smearing interval A of the conductivity. 

Substituting A  instead of T into Eq. ( 14) or ( 15), we 
obtain 

It should be noted that the second terms in q, ', ,o (7) 
make a considerable contribution to the noise density, at 
least in the region of the percolation threshold (in the smear- 
ing interval). For example, if these second terms are ig- 
nored, then the following physically obvious inequality can- 
not be satisfied: 

In the two-dimensional case (v, = t, = q2 = +) we 
have 

and we obtain an expression for the noise density in what are 
known as the Dykhne media (i.e., two-dimensional media 
with geometrically equivalent distributions of the phases 
present in equal concentrati~ns). '~ It is shown in Ref. 28 
that the distributions of the Joule heat are the same in both 
phases and this is clearly related to the fact [Eq. ( 18) ] that 
p, and p2 occur symmetrically in q, 8: for such media: 

qoe(qr, ~ z )  = q o e ( q z ,  qi). 

It follows from Eq. (17) [ t - 2 v ( d - l ) < O ,  
q - 2v < 0]  that the stronger the inhomogeneity (a,/a,) of 
the system the higher the noise density. 
We shall now consider the behavior of the noise density out- 
side the smearing interval in the simplest case when the sec- 
ond terms in Eqs. ( 13) and ( 14) can be ignored. In this case 
the expressions p '+ ( T  > 0 )  and q, ep (T < 0 )  assume the 
form known from the l i t e r a t ~ r e . ~ . ~ . ~ - ' '  The critical expo- 
nents k and k ' were calculated earlier by the method of re- 
normalization group in real space,' which gave k, = 1.339; 
in Ref. 10 it was found that k 4 = 1.339 and k ;  = 0.660, 
whereas calculation by the transfer matrix method reported 
in Ref. 8 gave k, = 1.2. For comparison, we shall substitute 
the known values of the critical exponents of the conductiv- 
ity t and q and of the correlation length v, which are 
t 2 = q 2 = v 2 = + ,  t3=  1.8, q3 =0.98, and v, =0.9, so that 
after such substitution in Eqs. ( 14) and ( 16), we obtain 
k 2 = k ; = 1 . 3 3 , k ;  = 1.8, a n d k ;  =0.82. 

The limits on both sides are obtained for k and k ' in Ref. 
7: 

where 6, and 5, are the critical exponents representing the 
average values of the resistance and conductance over a dis- 
tance equal to the correlation length 6: c, = t - ( d  - 2)v, 
c, = q + ( d  - 2)v. Substituting f, and 6, in Eq. ( 19) we 
find that the upper limits in Eq. ( 19) coincide with k and k ' 
ofEqs. ( 14) and ( 16). The values ofk and k ' from Eqs. ( 14) 
and ( 16), coinciding with the upper limit, are nearly exact 
(or perhaps even identical with the exact values), as demon- 
strated by the results of a comparison of Eqs. ( 16), ( 14), and 
( 19) with the values of k and k ' obtained by the 6 - E expan- 
sion method," which gives the exact values of the critical 
dimensionality in Percolation theory d, = 6 and the correc- 
tions in terms of a small parameter E = 6 - d. According to 
Ref. 11, we have k, = 2 and k ( d )  z 2  - 0.181~.  Substituting 
v = 0 . 5 + 0 . 0 6 ~ , t = 3 - 0 . 2 3 8 ~ ( R e f .  1 l ) in toEq .  (14),we 
obtain k z 2 - 0.178~,  which ensures a good agreement, and 
if d = d, = 6 the exact agreement with k of Ref. 11. The 
lower limit of k in Eq. ( 19) gives even in the zeroth order in E 

k, = 12, which is an order of magnitude different from the 
exact value. Therefore, k of Eq. ( 14) and k ' of Eq. ( 16) 
obtained -above are in satisfactory agreement with the avail- 
able data. 

It is worth noting also Ref. 29, reporting a determina- 
tion of the noise density in mixtures of a carbon powder and 
wax near the percolation threshold ( p  >p, ) of this system, 
which gave 

The results reported in Refs. 2, 3, and 6-9 are insuffi- 
cient to account for the critical exponent a = 5 f 1: for ex- 
ample, it follows from Eq. ( 19) in Ref. 2 that 1.01 (k,( 1.57. 
The value of a can be apparently understood only on the 
basis of a fuller description which is based on the "weak 
link" model. As a rule the noise density is inversely propor- 
tional to the conductivity p,/p,-a,/a,. In this case if 
A < r < A m ,  where m = ( t  + q) / (q  + 3t - 2v) (which is al- 
ways possible in the case of a sufficiently strong inhomoge- 
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neity since 0 < m < 1 ), the second term in p '+ is greater than 
the first and, therefore, the noise density is governed by the 
critical exponent w and not by k. Estimates of w give 
w, = 2t3 + q, + 2v3 =: 6.4 in the three-dimensional case and 
w, z 6.7 in the two-dimensional case; this is in satisfactory 
agreement with the experimental results that yield 
a, = 5 + 1 (Ref. 2 9 )  and a, = 6.27 + 0.08 (Ref. 30). 

In the description of the distribution of the current in a 
randomly inhomogeneous medium it is assumed that we can 
ignore the imaginary part of the conductivity. It is obvious 
that this is possible only in the low-frequency limit [see, for 
example, Eq. ( 2 2 )  in Ref. 3 1 1. 

The authors are grateful to A.M. Dykhne, A.N. Makh- 
lin, and A.Ya. Shik for discussing the results. 

'J. D. Landau and E. M. Lifshitz, Statistical Physics, Vol. 1, 3rd ed., 
Pergamon Press, Oxford ( 1980). 

'R. Rammal, J. Phys. Lett. 46, L29 (1985). 
'R. Rammal, C. Tannous, and A.-M. S. Tremblay, Phys. Rev. A 31,2662 
(1985). 

4M. Wolf and K.-H. Miiller, Phys. Status Solidi A 92, K151 (1985). 
'Z. Hashin and S. Shtrikman, J. Appl. Phys. 33, 3125 ( 1962). 
hR. Rammal, C. Tannous, P. Breton, and A,-M. S. Tremblay, Phys. Rev. 
Lett. 54, 1718 (1985). 

'D. C. Wright, D. J. Bergman, and Y. Kantor, Phys. Rev. B 33, 396 
(1986). 

8A. Csordas, J. Phys. A 19, L613 (1986). 
9A.-M. S. Tremblay, S. Feng, and P. Breton, Phys. Rev. B 33, 2077 
(1986). 

"'P. M. Hui and D. Stroud, Phys. Rev. B 34, 8101 (1986). 
"Y. Park, A. Brooks Harris, and T. C. Lubensky, Phys. Rev. B 35,5048 

(1987). 
I2B. I. Shklovskii and A. L. Efros, Electronic PropertiesofDopedSemicon- 

ductors, Springer Verlag, Berlin ( 1984). 
I%. A. Snarskii, Zh. Eksp. Teor. Fiz. 91, 1405 (1986) [Sov. Phys. JETP 

64, 828 (1986)l. 
I4A. E. Morozovskii and A. A. Snarskii, Preprint No. 20 [in Russian], 

Institute of Metal Physics, Academy of Sciences of the Ukrainian SSR, 
Kiev (1987). 

'%. S. Skal, Zh. Tekh. Fiz. 51,2443 (1981) [Sov. Phys. Tech. Phys. 26, 
1445 (1981)l. 

I6A. S. Skal, Philos. Mag. B 45, 335 (1982). 
I7A. S. Skal, Zh. Eksp. Teor. Fiz. 88,516 ( 1985) [Sov. Phys. JETP61,302 

(1985)l. 
"A. S. Skal and B. I. Shklovskii, Fiz. Tekh. Poluprovodn. 8, 1586 (1974) 

[Sov. Phys. Semicond. 8, 1029 (1975)l. 
I9P. G. De Gennes, J. Phys. Lett. 37, L1 (1976). 
'"B. I. Shklovskii, Zh. Eksp. Teor. Fiz. 72, 288 (1977) [Sov. Phys. JETP 

45, 152 (1977)l. 
2'A. L, Efros and B. I. Shklovskii, Phys. Status Solidi B 76,475 (1976). 
12B. Ya. Balagurov, Fiz. Tekh. Poluprovodn. 20,1276 ( 1986) [Sov. Phys. 

Semicond. 20, 805 ( 1986) 1. 
*'A. P. Vinogradov and A. K. Sarychev, Zh. Eksp. Teor. Fiz. 85, 1144 

( 1983) [Sov. Phys. JETP 56,665 (1983)l. 
24S. P. Luk'yanets and A. A. Snarskii, Zh. Eksp. Teor. Fiz. 94(7), 301 

(1988) [Sov. Phys. JETP 67, 1467 (1988)l. 
25A. A. Snarskii, Fiz. Tekh. Poluprovodn. 21, 1877 (1987) [Sov. Phys. 

Semicond. 21, 1136 (1987)l. 
26A. A. Snarskii, Ukr Fiz. Zh. 33, 1063 (1988). 
27A. A. Snarskii, Fiz. Tekh. Poluprovodn. 22, 2073 (1988) [Sov. Phys. 

Semicond. 22, 1314 ( 1988)l. 
*'A. M. Dykhne, Zh. Eksp. Teor. Fiz. 59, 110 (1970) [Sov. Phys. JETP 

32,63 ( i 9 7 i ) l .  
29C. C. Chen and Y. C. Chou, Phys. Rev. Lett. 54,2529 (1985). 
"'J. V. Mantese and W. W. Webb, Phys. Rev. Lett. 55, 2212 (1985). 
"B. Ya. Balagurov, Zh. Eksp. Teor. Fiz. 88, 1664 (1985) [Sov. Phys. 

JETP. 61,919 (1985)l. 

Translated by A. Tybulewicz 

1069 Sov. Phys. JETP 68 (5), May 1989 A. E. Morozovskil and A. A. Snarskil 1069 


