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Spinodal precipitation of a binary system during the coalescence stage is considered in the specific 
case ofsolid solutions. It is shown that a spatial structure formed during the exponential stage of 
growth of fluctuations may not satisfy immediately the condition of a weak interaction between 
neighboring nuclei. It is proposed to describe coalescence in such a structure on the basis of the 
nonlinear Cahn equation. Asymptotic methods are employed to derive an equation describing the 
change in the square of the wave number corresponding to the maximum of the structure factor. 
An analysis of this factor leads to scaling time dependences of the characteristic size of a 
structure. In the caseoflayer structures (when the problem is one-dimensional) the theory 
predicts a power exponent of 1/2, whereas in the case of two- and three- dimensional precipitation 
structures the exponent is 1/4. A description is given of the long-term evolution of the structure 
factor of a solid solution system. 

INTRODUCTION 

The coalescence occurring in solid solutions is often de- 
scribed using the classical theory of Lifshitz and Slezov' 
dealing with the time evolution of the size of a spherical 
nucleus and predicting a dependence /1 at"' after a long 
time. The Lifshitz-Slezov theory1 is based on the assump- 
tion that the interaction between nuclei is weak and that the 
ratio of their size to the average distance between them is 
small. The asymptotic behavior ofA(t) predicted in Ref. 1 
applies to a wide range of physical systems, as confirmed by 
numerous experiments. 

The initial distribution of the nuclei, when they are far 
from one another, is typical of formation of a new phase by 
the mechanism of nucleation and growth when the param- 
eters of the system in question lie in the range of stable states 
and the frequency of spontaneous nucleation is not too high 
at the stage of formation of a nucleus of critical size.2 If a 
system can evolve rapidly beyond the spinodal without 
phase separation in accordance with the nucleation and 
growth mechanism in the range of metastable states, the next 
stage is spinodal precipitation of a solid solution. In this pro- 
cess there is no need for overcoming any energy barrier, and 
nuclei of the new phase may appear in the immediate vicinity 
of one another. In other words, during spinodal growth we 
can have situations when the interaction between nuclei can- 
not initially be regarded as weak. 

Figure 1 shows the profile of the distribution of the frac- 
tion of one of the components of a binary mixture obtained 
by solving a one-dimensional equation describing spinodal 
precipitation and corresponding to the moment of termi- 
nation of the stage of exponential growth of fluctuations; the 
initial calculation data were taken from Ref. 3. We can see 
that large-amplitude fluctuations, which form a modulated 
structure and can be regarded as nuclei of a new phase, are 
separated by distances equal to their spatial size. The contin- 
uum theory of spinodal precipitation, used in these calcula- 
tions, was proposed in Ref. 4 and has been used widely since 
in describing the initial stage of precipitation of an unstable 
spatially homogeneous state and separation of a mode with a 
specific spatial scale.5 Although the initial equation4 is non- 
linear, it is usual to employ only its linearized form and to 

ignore the stage of advanced instability. Recent results3 sug- 
gest that a nonlinear Cahn equation can provide a unified 
description of the process of spinodal precipitation at the 
initial and later stages. The nonlinear terms make it possible 
to allow effectively for the interaction of nuclei, they limit 
the exponential growth of fluctuations in a thermodynamic- 
ally stable region, and give rise to "coalescence" of a modu- 
lated structure, i.e., can result in modifications accompanied 
by an increase in the spatial scale. I t  would therefore be of 
interest to consider how the average size in a structure varies 
in accordance with a nonlinear theory of spinodal precipita- 
tion. 

We shall try to provide such a description on the basis of 
the spinodal precipitation equation "truncated" in a certain 
manner and we shall estimate the validity of such truncation. 
We shall employ asymptotic methods to derive an equation 
describing the change in the wave number corresponding to 
the maximum of the structure factor. An analysis considered 
in the limit of long times yields simple dependences A ( t ) ,  
which are affected by the dimensionality of the precipitation 
region, and the power exponents are found to differ from 
1/3. 

1. DERIVATION OFTHE TRUNCATED EQUATION 

The spinodal precipitation equation can be written gen- 
erally in the formk6 

FIG. 1. Typical distribution of the concentrations (curve 2) at the end of 
the linear stage of the spinodal precipitation process. The amplitude mod- 
ulation is governed by the initial condition (curve 1 ). 
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The following notation is used in Eqs. ( 1 )-(3): p is the frac- 
tion of one of the components of a binary mixture; A is the 
Onsager coefficient; p is the number of molecules of the mix- 
ture per unit volume; Fis  the functional of the free energy of 
the system in units of k ,  T; y is the reduced chemical poten- 
tial expressed in terms of the variational variable F. We shall 
consider the problem with impermeable boundaries in a rec- 
tangular parallelepiped of linear dimensions L , ,..., L, . 

We shall transform Eq. ( 1 ) as follows. We shall consid- 
er fluctuations S p  relative to the average value p over the 
whole region, when the functions in Eq. ( 1 ) nonlinear in q, 
can be expanded as Taylor series. We shall then introduce 
Fourier components Sp,;  it follows from the condition of 
impermeability that Sp, = Sp- ,  . We shall multiply the re- 
sultant equation by exp ( - i q r ) ,  so that Eq. ( 1 ) reduces to a 
system of equations for Sp,  . On the right-hand side of this 
system there are sums of the type 

which are transformed into convolution-type integrals in ac- 
cordance with the rule 

The spatial derivatives in Eq. ( 1 ) transform in the usual 
way on adoption of the Fourier components. Expanding 
now the integrand S p ( q  - q, - ... - q, ) near q, we obtain a 
system of partial differential equations with respect to q (q is 
a continuous quantity). Our truncation of this system re- 
sults in retention of only the "bulk" terms and dropping all 
the terms with the derivatives with respect to q. The use of 
such a system is permissible if the processes resulting in the 
smearing out of the spectrum by nonlocal interaction 
between modes are weak compared with the separation 
mechanism. Essentially this is equivalent to neglect of the 
diffusion terms in the diffusion + reaction equation. The 
problem of validity of this approximation will be considered 
separately in the last section of this paper. 

We thus find that 

( 5  

which corresponds to the equation 

In Eqs. ( 5 )  and ( 6 )  we havez = uJSq,(q)dq = Sp(r)) ,=, .  
It should be noted that Eqs. (5)  and (6) do not include 
terms of Eq. ( 1 ) proportional to K, (Vq,)' and VAVp. This 
is due to the fact that in the adopted approximation they are 
expressed in terms of integrals Sq,Gq,(q)dq, where j = 1, ..., 
d, which vanish because Sq,(q)  is even. 

The structure of the truncated equation ( 5 )  obtained 
above represents generalization, to the case when A and K 
depend on p ,  of the expression derived by Langer7 starting 
from the functional equation of continuity of the density of 
the statistical distribution of configurations. Langer predict- 
ed the correct tendency of behavior of the solutions after a 
long time, namely that the maximum of the structure factor 
should shift toward longer wavelengths. It is shown above 
that the equations obtained in Ref. 7 can be derived directly 
from Eq. ( 1 ). 

Having solved Eq. ( 5 ) ,  we obtain 

0 cpo z)-po(cpo) 
6 p  ( q )  = ~ ( q )  exp {-9' J A (cpo+z) [ ( + 

Z 
0 

+ 2K(cpo+z) 9'1 d t )  . (7) 

whereas integration of Eq. (7)  with respect to q gives 

z=u J 6rp ( q )  dq. c ( q )  =6rp ( q )  I , ~ ~ ~ .  ( 8 )  

2. EQUATION (5) IN THE LIMITOF LONG TIMES 

We shall be interested in the solutions of Eq. ( 5 )  after a 
long time, i.e., after the linear stage of the process shall re- 
write Eq. (8) in the form 

z=u J ~ ( ~ ) e x ~ [ -  ( ~ q ' + ~ q ' ) t l d q ,  ( 9 )  

where 
t 

1 
A = - ~ A ( ~ I ~ + Z )  po(cpo+z) -Po (90) dt ,  

t 0 
z 

t (10) 
2 

B = - j .\(cpo+z) ~ ( c p ~ + z ) d t .  
t o  

Since all the integrands in Eq. ( 10) are bounded, it follows 
that A and B are bounded functions of time. We shall intro- 
duce polar coordinates q, X ,  ,..., xd - , , in Eq. ( 9  ); here, X ,  are 
the angular variables. Then, Eq. ( 9 )  becomes 

where C ,  (q )  is the average (over a sphere of radius q )  initial 
distribution; S ( q )  is the surface area of this sphere. In the 
one-dimensional case we have S ( q )  = 2, since we are going 
over from an integral over the whole space to an integral in 
the region q > 0, whereas for d = 2 we find that S = 2779 and 
S = 4 r q 7  if d = 3. 

The quantity B is always positive, since A > 0 and K >  0. 
The quantity A can generally be of any sign. We can easily 
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see that as long as p0 and po + z correspond to the region 
below the spinodal, the integrand in the expression for A is 
negative. It follows from formal considerations that there 
are two types of asymptotic behavior of Eq. ( 11 ). 

We shall now consider the case when A < 0, which at 
any rate will be first to appear. Then, the function 
I = - (Aq2 + Bq4) has a maximum at 

Applying the steepest-descent method to Eq. ( 1  I ) ,  we ob- 
tain 

z=uC. (4.) S (q.) exp (:-I( - - % ) ' I 2 .  

If A > 0, a maximum of I is located at the boundary of 
the integration domain and, moreover, we have S ( 0 )  = 0 
when d >  1. We then find that I f ( 0 )  = 0 and I " ( 0 )  <O. Let 
us assume that d  = 1 (one-dimensional case) and that 
C ,  (q )  is a smooth function of q2. We then obtain (p. 75 in 
Ref. 8 )  

If d  = 2, we can rewrite the integral in Eq. ( 11 ) in the form 

If d  = 3, we can transform the integral in Eq. ( 11 ) as follows 
(p. 75 in Ref. 8 ) :  

J C. ( q )  4nq2e" dq = 
j 4nq2C* ( q )  

I't 

Equations ( 14)-( 16) can now be combined: 

However, in the case of a formal change in A it is found 
that the type of a saddle point is modified ( a  singularity 
merges with a boundary). Therefore, in going over from 
A > 0 to A < 0 the asymptotes of Eqs. ( 13) and ( 17) should 
be refined in accordance with Ref. 8 (p. 499). 

Equations ( 13) and ( 17) include integrals of type ( lo) .  
The next transformation of Eq. (13) give rise to a pair of 
ordinary differential equations for A and B. We introduce 

We apply to ( 13) the operators A ,  and B,: 

Equations (10) and (18) yield the required pair of equa- 
tions: 

A= [A.(G-(A, B,  t ) ) - A ] / t ,  B=[B,(G-(A, B, t))-BI I t .  

(19) 
Similarly, introducing 

G+ ( A ,  t )  =zC. ( 0 )  (n/At)d12, 

we find from Eq. ( 10) one equation 

A= [A. (G, ( A ,  t )  )-A ]It. (20)  

We shall be interested in future in the solutions of Eqs. ( 13) 
and ( 19), because these equations correspond to the motion 
of a maximum of the spectrum of fluctuations toward longer 
wavelengths. 

The system can be closed by defining the function 
C* (g). It is known4 that in the initial stage of spinodal pre- 
cipitation the short-wavelength part of the spectrum, 
corresponding to the condition q > q,. , where 
qf = - ( a  '&,/aQ, ')/2K, is suppressed. The process is con- 
centrated at long wavelengths, which is simplest to allow for 
with the aid of C* , which is constant in the range q < q,. and is 
equal to zero for q > q,. A characteristic value of C, can be 
found from the normalization condition 

z 1 ,=.=z.=u J c dq. 

which yields 

Here R = 2, a, 4 ~ / 3  applies when d  = 1, 2, and 3, respec- 
tively. 

3. ASYMPTOTICS OF THE GROWTH OF PRECIPITATION 
STRUCTURES 

We shall consider the model of spinodal precipitation in 
the case when K = const and A = const and use the Gins- 
burg-Landau potential 

The form (22) is obtained by expanding Eq. ( 2 )  as a Taylor 
series in ( ~ 5 ~ ) ~  and by a shift by a suitable constant; the 
remaining term of the const, p + const, type does not affect 
the growth kinetics. Since a fourth-degree polynomial is 
usually sufficient to approximate satisfactorily the concen- 
tration dependence of the free energy when, at a given tem- 
perature, there is only one interval of compositions corre- 
sponding to thermodynamically unstable states, and usually 
only the order of magnitude of K and A, are known, it fol- 
lows that an analysis of such a model is a very important 
task. 

We shall investigate the asymptotic change in the wave 
number corresponding to a maximum of the fluctuation 
spectrum. It follows from Eqs. ( l o ) ,  (12),  and (22) that 

1 t 

Using Eq. ( 13), we obtain 

d(9.2t) -- - qM2 - -- 3 b w u ~ .  (q.) s (q.) exp (Bq.'t) 
dt K 

We shall now adopt dimensionless variables 
u = q: /q$, and T = t qhB (in other words, we shall use the 
dimensionless form o f t  during the initial stage of the pro- 
cess). It then follows from Eq. (2  1 ) that 
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where 

G ( v ,  r )  = I - A ,  exp(v2.c)  V ( " ~ ) / ~ / ~ " - A  exp (2u22) U ~ - ~ / T ,  

Equation (23) plays the same role in the present analy- 
sis as the main equation in the Lifshitz-Slezov theory relat- 
ing the supersaturation of the system to the radius of a nu- 
cleus. 

Solving Eq. (23), we find that the expression in square 
brackets becomes 

uC. ( q . )  S ( q . )  exp (Bq.'t) - - ( 2:t )'I' 

(26) 
If in Eq. (26) d(q: ) t  /dt the quantity is a rising function of 
time, then there is no solution for long times. If this quantity 
tends to a constant nonzero value, then q i t a  t, and q: 
-const in the limit t- CO, which again is physically mean- 
ingless. The solution (26) exists only if d(q: t)/dt decreases 
after a long time, which isequivalent to an asymptotic fall of 
q: . But then the asymptotic behavior of the solution is gov- 
erned by an equation which does not contain time deriva- 
tives: 

uC, (q . )  S ( q . )  exp (Bq. l t )  - - ( 2;t 

In the case of the adopted initial condition (21), Eq. 
(27) is equivalent to 

G (v, z )  =0, 

which yields the equation 

The form of Eq. (28) depends on the dimensionality d of the 
problem. 

If d = 1, we can represent Eq. (28) in the form 

Then, for a sufficiently large value of r the solution of Eq. 
(29) is a Biirmann-Lagrange series (p. 47 in Ref. 8):  

Using the Stirling formula, we can transform the n-term of 
the series (30) into 

which shows that Eq. (30) converges when 

For these values of r ,  we find that 

It  follows from Eq. (32) that at high values of d the spatial 
size A of a structure increases in accordance with the law 

If d = 2, the solution of Eq. (28) is exact: 

which exists for r > If r )yPZ,  the characteristic size of 
the structure is 

In logarithmic coordinates we have, instead of Eq. (35), 

If d = 3, we can represent Eq. (28) in the form 

where g is defined by Eq. (29). At high values of r the solu- 
tion (36) is (p. 51 in Ref. 8) 

The solution (37) is defined if r(4y4) ' I 7  > 1. However, if 
r) (4y4)-113, we have 

Using logarithmic coordinates, we find that Eq. (38) be- 
comes 

h 1 
ln-  = - l n ( 4 ~ )  

hi~ 4 

Therefore", when an analysis is made using logarithmic 
coordinates, after a long time the dependence of In A on In r 
approaches a straight line with a slope 1/2 if d = 1 and 1/4 if 
d = 2 or d = 3, and this slope is independent of the initial 
distribution of p. The difference between the power expo- 
nents in the case of different dimensionalities d apparently 
reflects the fact that the boundaries of growing precipitation 
structures are planar if d = 1, but are curved if d > 1. If 
d = 1, we obtain a larger power exponent than that in Ref. 1, 
whereas for d > 1 we obtain a smaller exponent. 

It is clear from Eq. (33) that the rate of growth of spino- 
dal structures is different for p = p,, and p = - p,,. This 
asymmetry of the solution is related to the fact that in both 
cases we use in Eq. (25) the same quantity z,, from Eq. (21 ), 
so that the corresponding initial distributions p ( r )  are 
asymmetric relative to p = 0. The asymmetry disappears if 
opposite signs are attributed to z,, in Eq. (25) for p = po and 
p = - Po. 

These expressions can now be used to consider the prob- 
lem of the influence of the rate of cooling of a solid-solution 
system on the kinetics of growth of precipitation structures. 
We must bear in mind that A ,  and A ,  are known functions of 
temperature and that the temperature depends on time.9 

Allowance for the asymmetry of F, (p) leads us to the 
problem of finding the roots of a polynomial of form (23) 
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and of degree higher than second. This simply alters the con- 
stant y in the resultant expressions. In general (if A # const, 
and K #const) we obtain equations of the ( 19)-(20) type. 

4. EXAMPLE: PRECIPITATION IN FELDSPAR 

We shall now use the expressions obtained above to esti- 
mate the parameters of the kinetics of spinodal precipitation 
of alkali feldspars belonging to a high albite-sanidine series 
( NaAlSi, 0, -KAlSi, 0, solid solutions). The dependence 
of the free energy on the fraction of sanidine at T = 500 "C at 
a pressure 1 kbar was given in Ref. 10 where it was reduced 
to the symmetric Ginzburg-Landau form, as shown in Fig. 
2. The energy converted to a value per one cell and normal- 
ized to k,T is characterized by a = - 0.58 and b = 3.68. 
The scale L, representing the size of a monomineral grain, is - lo4-10' A. The volume of a unit cell in feldspars is of the 
order of 700 A' at 500 "C (Ref. 10) and the distance between 
the neighboring lattice sites is 7-12 A. The size A, of the 
spinodal structures at the end of the linear stage of the pro- 
cess was determined experimentally earlier'' for the high 
albite-sanidine series and amounted to 75 + 10 A in a wide 
range of temperatures. The value of K, which in our deriva- 
tion is independent of p, can be estimated from 

which gives 40 A*. If we consider the case when p, = 0 
(transition to an unstable region via a critical point) we find 
that y = A  i''. The value of z, (representing the maximum 
deviation from the average composition at r = 0 )  is assumed 
to be 0.1; we also have q, = 2a/A,. We shall define the 
times at which the expressions in the preceding section are 
valid: 

We shall consider precipitation in a d-dimensional re- 
gion with linear dimensions L, along each direction. The 
case d = 1 corresponds to coherent precipitation structures 
(cryptoperthites in the case of feldspars) in the form of 
platelets; d = 2 corresponds to cylindrical structures and 

FIG. 2. a )  Initial dependence F,(y,); b )  replotted dependence F , , ( p )  
representing-along the ordinate-the discrepancy between 
4, (9) and the general tangent to the curve in Fig. la .  The transition to 
this symmetric form occurs as a result of shift of the axes in Fig. 2b. This 
givesafunction ay, ' + by, ' which hasminimaat the points ofminimaofF,, 
and passes through the origin of the coordinates. 

d = 3 represents three-dimensional nearly spherical struc- 
tures. These types of structure are encountered in crystalline 
solid solutions during precipitation at the postcrystalliza- 
tion stage. Precipitation of platelet, cylindrical, or spherical 
structures is due to the presence of certain specific most fa- 
vorable crystallographic directions in the host lattice and it 
is along these directions that the process of perturbation is 
developing.5 Substitution of the data for feldspars gives the 
following values ofy: 4.44 ford = 1; 3.15 fo rd  = 2; 2.97 for 
d = 3 .  

The expressions in the preceding section can be rewrit- 
ten subject to Eq. (39): 

Substituting the values of y, we find from Eq. (40) that 

We must bear in mind that if 7- 1, the integrand in Eq. ( 1 1 ) 
does not yet have a sufficiently sharp maximum, so that ex- 
pressions of the type given by Eq. (41 ) can be employed only 
for values of T substantially larger than 1. 

5. EVOLUTION OF THE STRUCTURE FACTOR OF THE 
SYSTEM 

Using the results of Sec. 3, we shall obtain the asympo- 
tote of the change in the square of the Fourier component 
Sp. Using Eq. ( 7 ) ,  we find that 

r (q"" 7) = ( G ~ p ~ ) ~ / C ~ = e x p  [ 2 ~ q " ~ ( 2 u - q " ~ )  I ,  q Z = q 2 / q M 2 .  (42) 

Substituting the expressions (33), (35), (38), and (39) in 
Eq. (42), we obtain 

The maximum value of 1nT is equal to 2u2r and it is attained 
at q' = u. We can see that it shifts with time toward longer 
wavelengths. It also follows from Eq. (43) that if d = 1, the 
value of In I? at the maximum decreases as T-I, whereas for 
d = 2 and d = 3 it rises as In T. If q' = 2u, the value of r falls 
from its maximum to 1. The effective width of the spectrum 
is thus ( 2u) I/'. If d = 1, it decreases as T whereas for 
d = 2 it decreases as ( r -  ' In T) 'I4, whereas for d = 3 it de- 
creases as [T-I ln(r/ln T)  ] 'I4. The qualitative behavior of 
r ( q 2 )  is shown in Fig. 3. 

We shall end this section by comparing the results ob- 
tained with one of the best known nonlinear theories of spin- 
odal precipitation, proposed by Langer,' as well as with the 
results of mathematical modeling of spinodal precipitation 
in three-dimensional space by the methods of molecular dy- 
namics. As pointed out in Sec. 1, Langer generalized Cahn's 
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Allowance for the thermal fluctuations in the Langer 
theory gives rise on the right-hand side of Eq. (44) to the 
term 

FIG. 3. Dependence of the structure factor on the square of the dimen- 
sionless wave number. 

theory and obtained an equation for the density of the statis- 
tical distribution over all possible configurations. '' Certain 
consequences follow from this equation for various moments 
of the distribution function. In particular the "mean-field 
approximation"" is obtained for the structure factor of the 
system G2(q,t) on the assumption that the density of the 
distribution is of Gaussian form with zero average. In this 
approximation the relevant equations are as follows: 

We can easily see that Eqs. (44)-(46) for G, represent 
a particular case of Eq. (5)  for Sp(q,t). The whole asympto- 
tic analysis of this investigation can be repeated verbatim for 
Eqs. (44)-(46): the same results are obtained, apart from 
the constant y. 

Allowance for the asymmetry of the fluctuations and 
for the influence of the thermal noise results in generaliza- 
tion of Eqs. (44)-(46) (Ref. 7 ) .  However, the asymptotics 
of the growth of structures is once again governed by an 
exponent close to 1/4. Figure 4a shows variation of the spa- 
tial size R = q- ' corresponding to a maximum of G, (q)  cal- 
culated in Ref. 7 (see also review in Ref. 12). An analysis of 
the results in Ref. 7 can be carried out using the coordinates 
In R and (1/4)ln t. We can see that the slope of the line 
governing the change in the size of the structures is close to a 
straight line with a slope of 45". This means that according to 
the Langer theory the structures grow with an exponent 
close to 1/4. Some deviation from the exact 1/4 law may 
occur because of a logarithmic correction in Eq. (38). 

b n h  

FIG. 4. Comparison of the resultant asymptote (dashed line) with the 
results ofcalculations of spinodal precipitation obtained using the Langer 
theory (a )  and with the results of modeling of the process by the methods 
of molecular dynamics (b) .  

A comparison of our results with a numerical analysis of the 
gain factor in Ref. 7 shows that deviation of (q2G,) -'dG,/dt 
from a linear dependence occurs mainly in the range of large 
values for q where the main contribution comes from the 
thermal fluctuations and the gain factor (q2G,)-'dG,/dt 
reaches a horizontal asymptote. In the long-wavelength 
range the dominant term is 2RG, of Eq. (44), describing the 
intrinsic nonlinear kinetics of the process. In the absence of 
the term (47) in the theory, the dependence of the gain fac- 
tor on q2 is linear, as expected on the basis of the above analy- 
sis. The logarithm of the maximum of the structure factor in 
the Langer theory increases as In t, which is in agreement 
with our analysis of the d = 3 case. 

The Monte Carlo method was used in Ref. 13 to model 
spinodal precipitation in a binary alloy and to study the be- 
havior of the structure factor. Figure 4b shows, using the 
coordinates In R and ( 1/4) ln t, the evolution of the spatial 
size corresponding to the maximum of the structure factor. 
The first three points represent the linear stage of the process 
when the characteristic spatial size remains constant. This 
size then increases: it is clear from Fig. 4b that the points 
representing calculations of Ref. 13 are grouped near a 
straight line with a slope of 45". This implies growth of struc- 
tures with an exponent close to 1/4. 

A comparison with the Langer theory and with the re- 
sults of mathematical modeling of the process demonstrates 
a good agreement between the calculated asymptotes and 
the numerical results published earlier. Calculations made 
using another familiar theory of spinodal precipitation, pro- 
posed by Binder,14 also predict growth of structures charac- 
terized by an exponent smaller than 1/3. It is important to 
note that in this case the situation can be treated analytically, 
whereas in Refs. 7, 13, and 14 it was ultimately necessary to 
carry out more or less cumbersome numerical calculations. 

CONCLUSIONS 

We shall now consider in greater detail the validity of 
our truncation of Eq. ( 1 ) , corresponding to the approxima- 
tion of point equations in the theory of spontaneous wave 
processes.I5 For simplicity, we shall consider the case when 
A = const, K = const. Then, in estimating the contribution 
of the diffusion of modes to the intermode interaction we 
have to compare quantities 

T!.Tx d n 2  J q2S ( q )  b q  ( q )  dq ,  

Substituting Eq. (42) into Eq. (48) and differentiating, we 
can see that at high values of r we obtain 

If d = 1 we have v27  a T-l. Thus, in the one-dimensional 
case we can say that the calculated asymptote describes ac- 
curately the process after a long time. If d >  1, we obtain 
v 2 7  a In 7. This means that in the multidimensional case the 
correction terms are not generally small compared with 
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those already allowed for. It is quite clear that since the pro- 
cess in question is related to the collapse of the spectrum at 
long wavelengths, the diffusion of modes should be manifest- 
ed most strongly in the multidimensional case. Inclusion of 
mode diffusion may limit the growth of the maximum of the 
structure factor after a long time. The study demonstrates a 
good agreement between the analytic results obtained here 
and those of numerical calculations carried out using the 
familiar theories of spinodal precipitation. This may mean 
that mutual compensation of the correction terms of higher 
orders is possible. In any case, we were able to carry out the 
first analytic calculations in the case of nonlinear kinetics of 
spinodal precipitation within the framework of the Cahn 
equation. The method developed here can be used to analyze 
nonlinear integrodifferential equations of the type encoun- 
tered in the Langer theory. 

The d < 3 cases discussed above describe extremely an- 
isotropic states of a solid solution, because all the character- 
istics depend only on the modulus of the wave vector. If 
d = 1, this means that precipitation along a certain straight 
line is Dreferred from the ~ o i n t  of view of minimization of the 
elastic energy rather than precipitation on a plane perpen- 
dicular to this straight line. If d = 2, then energy consider- 
ations make it likely that a solid solution becomes stratified 
along two spatial directions. In general, the anisotropy of 
precipitation should be manifested by an anisotropy of the 
scattering of particles passing through a solid solution. The 
corresponding generalization of the theory yields a free ener- 
gy functional of the form 

acP dcP ~ = j  ~ [ ~ ~ ( l p ) + z ~ j ~ - - - - ] d r ,  
j.1 drj dr ,  

where 

whereas the quantity 

S, (q) =p J dr exp (--iqr) ( 6q  (r) 69 (0) ) 

is proportional to the scattering cross section of particles 
transferring a momentum q in a medium.I6 An asymptotic 
analysis of Eq. (1)  with the potential (50), similar to that 

described above, can be carried out using a multidimen- 
sional version of the steepest-descent method. 

The approach to the description of the late stages of 
precipitation in a one-dimensional system, other than that 
described above, is based on the observation that transition 
to a full thermodynamic equilibrium causes the system to 
become stabilized consecutively near unstable but long-lived 
stationary (steady-state) solutions of Eq. ( 1 ) (Ref. 3) .  
Averaging of the law describing the fall of the energy (Eq. 
(44)] over such stationary states yields a second-order 
equation for slowly varying parameters of stationary solu- 
tions." The need for such a procedure, apart from the im- 
portance of obtaining the asymptotes of the process, is relat- 
ed largely to the fact that the exact solutions of Eq. (1)  
describing precipitation are not known. 

The author is grateful to I.Ya. Erukhimovich and L.I. 
Manevich for valuable discussions. 
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