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A kinetic theory is developed to describe nonequilibrium processes for particles with spin on the 
surface of a magnet in conditions of critical slowing down. A quasiclassical kinetic equation is 
obtained for the distribution function of the particles, and the effect of the magnetic interaction 
between the solid and the particle on the probability of escape of the particle from its potential 
well is determined. The experimentally observed anomalies in the temperature dependences of the 
rate of growth of the oxide film, the sublimation rate, and the desorption rate in the vicinity of the 
Curie point of the magnet are explained, and it is shown that they are principally due to singular 
behavior of the frequency of the particle relaxation associated with its coupling with the spin 
system of the solid. 

1. INTRODUCTION 

In the study of a number of phenomena occurring near 
the Curie (NCel) point TK of a magnet, such as the sublima- 
tion of Co (Refs. 1,2), the desorption of hydrogen from the 
surface of Ni (Ref. 3 ) ,  the initial growth of oxide films on Fe 
(Ref. 4 )  and Co (Ref. 5) ,  and the reduction of a nickel-oxide 
film on the surface of Ni (Ref. 6) ,  it has been discovered that 
their rates K cannot be described by the Arrhenius law 
[K = K, exp ( - E, /T), where KO is a pre-exponential fac- 
tor that depends weakly on the temperature T, and E, is the 
activation energy]. Such anomalies in the dependence of 
In K on 1/T have been exhibited by the presence of a cuspidal 
point at T = T K ,  by the existence of a minimum in the para- 
magnetic region, and by a difference in the activation ener- 
gies on opposite sides of the phase-transition point (for an 
illustration, see Fig. 2) .  

In the theory of processes (such as sublimation, desorp- 
tion, and oxidation) characterized by a transition of a parti- 
cle from one stable electronic state to another, the random- 
walk model is usually used (see, e.g., Refs. 7 and 8) .  Here we 
have in mind the emergence of a particle from a potential 
well under the influence of random forces due to fluctuations 
of the thermostat. The attempts undertaken earlier in Refs. 9 
and 10 to explain the anomalies under consideration within 
the framework of a random-walk theory have not led to the 
creation of a model giving an adequate description of the 
experimental data.'-6 All that was established was the possi- 
bility of a change of the activation energy upon passage 
through T, for a particle possessing a magnetic moment. 

The above anomalies of the temperature dependence of 
the rate were explained successfully for the first time in Ref. 
11 for the example of the initial growth of an oxide film on Fe 
(Ref. 4).  Features of nonequilibrium phenomena on the sur- 
face in the vicinity of the transition point of a bulk magnetic 
phase transition have been described successfully on the ba- 
sis of the fluctuation theory of phase transitions and with the 
use of the phenomenological Fokker-Planck equation in the 
Kramers weak-friction approximation.' 

In the present paper the theory is constructed and a 
physical mechanism of the observed phenomena is pro- 
posed. 

Because of the exchange interaction of the particles un- 

der consideration with the surrounding atoms of the magnet, 
they are drawn into the collective fluctuations of the spin 
subsystem of the magnet. On the other hand, the escape of 
particles from the potential well, which determines the rate 
of the nonequilibrium processes under consideration, is due 
to the action of random forces associated with fluctuations 
of the magnet. Thus, the problem under consideration re- 
duces to the simultaneous description of the dynamics of the 
fluctuations of the spin subsystem of the magnet and the 
nonequilibrium process of the escape of a particle from the 
well. 

Below, in Sec. 2, for the pertinent hierarchy of charac- 
teristic times of the problem (T, &rS, < T,, where T, is the 
period of the motion of the particle in the potential well, T,, 
is the relaxation time of the spin subsystem of the magnet, 
and T, is the energy-relaxation time of the particles), a kinet- 
ic equation is obtained for the quasiclassical distribution 
function of the particles in the case when they are not inter- 
acting with each other. In the derivation we start from the 
Liouville equation for the density matrix of the particle- 
magnet system and confine ourselves to the approximation 
quadratic in the interaction of the particle with the solid. As 
a result of coarsening performed over the time scale T,,, 
which includes, by virtue of the inequality T, &T,,, averag- 
ing over the rapid motion of the particle in the potential well, 
an equation is obtained for the energy distribution function 
of the particles in a three-dimensional potential well. The 
role of the potential field in which the particle moves is 
played by the free energy of the particle-solid system, which 
depends on the coordinate of the particle. The relaxation 
frequency w = T; ' appearing in the equation (the frequency 
of the relaxation of the energy distribution of the particles) is 
expressed in terms of the dynamical correlator of the ran- 
dom forces exerted by the solid on the particle. With this 
averaging the fast variables of the particle are eliminated 
from the analysis, and, in the case of slow relaxation of the 
energy distribution of the particles (when T, > T,, ), the spin 
subsystem can be described with allowance for the order- 
parameter fluctuations, which relax over a time T,, . The re- 
sulting system of kinetic equations makes it possible to con- 
sider the process of the escape of the particle from the 
potential well as a consequence of fluctuations in the magnet 
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near its TK, if characteristic time t of this process satisfies the 
inequality t > T ,  > T,, . 

The expression for the probability k of emergence of the 
particle from the potential well is obtained in Sec. 3. Of fun- 
damental importance for the explanation of the anomaly in 
the vicinity of TK is the linear dependence that the quantity k 
is found to have on the relaxation frequency w,  and also the 
mainly exponential dependence of the potential barrier on Q. 
In accordance with Ref. 12, for a time t > T ,  > T,, the relaxa- 
tion of the magnet near T, is described by the critical-dy- 
namics equation for the order parameter in the Gaussian 
approximation. The temperature dependence of the frequen- 
cy of relaxation of the particle in its coupling with the spin 
subsystem of the magnet is calculated (see Sec. 4)  for two 
critical-dynamics models with nonconserved energy that ad- 
equately model the experiment. It is found that in the model 
of the magnet with nonconserved spin the frequency 
w -  1 AT I (where AT= T - T,), while in the model 
with conserved spin the frequency o - I AT 1 - '/*. Thus, for 
both critical-dynamics models the relaxation frequency w 
increases as T- T,. The quantity Q (in the Gaussian ap- 
proximation) does not have near T, a singular part that is 
due to fluctuations of the spin subsystem (see Sec. 4 ) .  

In Sec.5 the theory developed is compared with experi- 
ment. As an example we consider the kinetics of the initial 
growth of an oxide film on metals. It is shown that the result- 
ing temperature dependences of the particle-escape proba- 
bility described within the experimental-error bars the ex- 
perimental data on the initial oxidation of Fe (Ref. 4)  and 
Co (Ref. 5). The region of applicability of the theory devel- 
oped is discussed, and the temperature interval near T, in 
which the theory ceases to apply is indicated. 

2. THE KINETIC EQUATION 

In the description of anomalies of nonequilibrium phe- 
nomena in the vicinity of T, the fundamental question of the 
applicability of the well known theory of random walks 
arises. The basic kinetic equation in this theory (the Fokker- 
Planck equation) has been obtained previously '"or parti- 
cles with a large mass M (M>m, where m is the mass of an 
atom of the solid), when the characteristic time of the mo- 
tion of the particle is much longer than the relaxation time 
( T ,  ) of the solid and, by virtue of this, the solid can be re- 
garded as a thermostat. We shall estimate the characteristic 
times of the problem. For a particle of mass 
M-10-22-10-23 g, moving in a potential well of depth 
U- l eV and characteristic size a - 5 A, we have a period of 
motion of the order of T ,  - T ~ ( ~ M / U ) " ~ -  10- '2-10- I' 

sec. As the temperature approaches to within 2-3 K of T, 
(as occurs in the experiments of Refs. 1-6) the relaxation 
time of the spin subsystem for Fe and Co does not exceed 
10 - 9-10 - " sec. Therefore, near T, the opposite inequality 
T,  grSp -7, obtains. Over the time scale T, the spin subsys- 
tem does not reach equilibrium, and the use of the familiar 
random-walk model to describe the motion of the particle in 
the well is not justified. It becomes necessary to derive a ki- 
netic equation for the case when the characteristic times 
have these relative magnitudes. 

In deriving the kinetic equation we shall assume that 
the particles with spin that are situated on the surface of the 

magnet do not interact with each other. We shall start from 
the Liouville equation for the density matrix of the particle- 
solid system, which is describable by the Hamiltonian 

Here $ describes the solid, e 2 / 2 ~  describes the transl%- 
tional motion of the particle, of mass M, and the operator 
is the energy of the interaction of the particle with the atoms 
of the solid, including their exchange interaction. Since in 
the derivation of the kinetic equation there is no need20 
single out the exchange interaction in explicit form in 7/, 
henceforth in Sec. 2, to simplify the expressions, we shall 
omit the spin operators oithe particle and the magnet when 
listing the arguments of Y. The motion of a particle of mass 
M- g at a temperature T- 10' K can be described in 
the quasiclassical approximation. In fact, with an interac- 
tion range R, - 5 A we have R,P- erg.sec, and, 
therefore, R, P>fi. 

We shall obtain the kinetic equation as follows. We per- 
form a Wigner transformation of the Liouville equation, and 
then take the trace of the resulting equation over the vari- 
ables of the solid. We next perform smoothing over the time 
scale r,, which amounts to averaging over the rapid motion 
of the particle and averaging over the distribution with re- 
spect to the internal degrees of freedom of the solid. The 
averaging over the rapid motion is necessary in the smooth- 
ing procedure in the case under consideration, since the 
characteristic time of the motion of the particle in the poten- 
tial well is shorter than the relaxation time of the solid. We 
note that the averaging over T ,  and over r ,  is performed over 
different variables; therefore, for convenience in the math- 
ematical calculations we shall average first over T ,  and then 
over 7,. After performing the Wigner transformation and 
closing the kinetic equation for the particle distribution 
function f(R,P,t) ,  we obtain 

By <... > here we mean Sp(p, ...) [Sp-Tr]. Since the re- 
laxation times of the electron subsystem are T ,  - 10 - l 5  sec, 
while those of the phonon subsystem are T,, - 1 0  'I sec, 
and these are much shorter than r,,, in the Gaussian approx- 
imation used below (noninteracting electron, phonon, and 
spin subsystems) we shall mean by the density matrix in the 
absence of the particle (p, ) the product of the equilibrium 
density matrices of the electron and phonon subsystems and 
the density matrix of the spin subsystem, which depends on 
the order parameter u(r , t ) .  In (2.2) the force acting on the 
particle is determined by the expression 

where 

In calculating the collision integral J,,,,, we have kept 
only the terms quadratic in the interaction of the particle 
with the solid: 
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where 

In (2.5) and below, A?= t- (t), and the operator %' of 
the random force denotes F - (F).  We shall consider the 
collision integral in more detail. Since the estimate 

is valid, the integral in (2 .4 ) ,  because of the operator 
exp [ - T ( P / M )  ( d  / a  R )  1 in the integrand, accumulates 
most of its value over the time interval [O,T, 1. The distribu- 
tion function of the particles changes appreciably only over a 
time interval of the order of 7,. Consequently, taking the 
hierarchy of times r ,  > T ,  > T ,  into account, we can neglect 
the dependence on T of the function f ( t  - T )  : 

The formula (2 .7)  implies neglect of nonlocality in time, or 
of memory effects, this being possible solely by virtue of the 
hierarchy of times in the problem. Neglecting in (2 .4)  terms 
of order fi/RPand T,/T,, we can write Eq. (2.2) in the form 

After the quasiclassical limit ti-0 is taken, the coefficients 
in (2.8) are determined by the formulas 

h 

As will be clear from Sec. 4 ,  the expression (F) - G can be 
represented as - a F / d  R ,  where F denotes the free energy of 
the particle-solid system. Here, in the expression for F the 
interaction of the particle with the solid should be taken into 
account as a perturbation to tlhe free energy of the solid in the 
approximation quadratic in V. Therefore, (2 .4)  is a Fokker- 
Planck equation in which the role of the potential is played 
by the free energy of the system. 

Since r, < r,, , it is necessary to average Eq. (2.8 ) over 
the rapid motion of the particle in the well. For this it is 
convenient to go over to the coordinate system whose axes 
coincide with the principal axes of the tensors Dih and w,, . In 
this system of coordinates, Di, = D,6, and wiX = w,S,,. 
Since r, <r,, it is reasonable to suppose that the oscillations 
of the particle in the well are weakly d a m ~ e d ,  so that it is 
sufficient to represent the average force (F) in the form of 
the first terms of its series in powers of R: 

where Bi and C ,  are constants and w,, is the eigenfrequenzy 
of the ith vibrational mode of the particle. Representing (F) 
in the form (2.12) makes it possible to calculate the proba- 
bility of emergence of the particle from the well. Following 
Ref. 14, in the phase space of the particle we go over, for each 
vibrational mode (wOi ) of the particle, to a coordinate frame 
rotating together with the particle, in the clockwise direc- 
tion, with frequency wOi. In this coordinate frame the parti- 
cle is almost stationary (since the damping is small, and 
T,  < T ? ) .  Next we average each term of Eq. (2 .8 )  (with 
allowance for (2.12) ) over a time t s r, . In the averaging of 
the kinetic equation (2.12) with allowance for the random- 
phase hypothesis the terms B,R f ( d f  /dPi ), 
Ci, R ,R ,  ( d f  /dP, 1, and G ( d f  /d  P )  vanish. Omitting the in- 
termediate algebraic transformations, we finally obtain the 
equation for the distribution function depending on the ener- 
gy of the particle 

in the form 

The quantity ui in (2.13) has the meaning of the relaxation 
frequency of the energy distribution of the particles, and D, 
is the coefficient of diffusion of the particles in the phase 
space. It is straightforward to convince oneself that the 
quantities u, and D, are related to each other: Di = M u ,  T. 
The expression for wi follows from the formula (2.10). 
Thus, as a result of the above averaging over the fast motion 
of the particle and over the distribution of the solid, over a 
time scale T ,  , for the energy distribution function of the par- 
ticles we obtain a kinetic equation in which the collision inte- 
gral coincides with the collision integral of the Fokker- 
Planck equation. 

3. PROBABILITY OF EMERGENCE OF THE PARTICLE FROM 
THE POTENTIAL WELL 

The probability k of emergence of the particle from the 
well is determined by a ratio of moments of the distribution 
function-the ratio of the flux w, of particles leaving the 
well to the number n ,  of particles in the well. 

To calculate k we shall assume that the depth Q, of the 
well for each of the three modes ( i  = 1,2,3) is sufficiently 
large so that Q, > T. In this case the flux w, is obviously 
small and can be assumed to be stationary; in this case the 
quantity n, can also be assumed to be constant. The flux w, 
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will be stationary only if df /at = 0. The kinetic equation 
( 2.13) reduces to an equation of the form 

In the case of one mode, Eq. (3.1) coincides in form 
with the stationary equation for the distribution function of 
particles executing one-dimensional motion in a deep poten- 
tial well in the Kramers weak-friction appr~ximation,~ i..e., 
when T, <T, <W I .  Using (3. I ) ,  we can obtain an expres- 
sion for the probability of emergence of the particle from the 
well: 

In (3.2) the quantity Q is defined in terms of the free energy 
of the particle-magnet system at the points A (FA ) and 
B(F,) (see Fig. 1): 

The expression (3.2) determines the probability of emer- 
gence of the particle from the well for one particular mode. 
Similar expressions for the escape probability are also ob- 
tained for the other two modes. It is obvious that the largest 
contribution to the total escape probability is given by the 
probability of escape across the lowest barrier. Neglecting, 
on this basis, the contribution from the escape across the 
other barriers, we find that the probability of emergence of 
the particle from the potential well in the case of three-di- 
mensional displacement is determined approximately by the 
formula (3.2). We note that the expression (3.2) for the 
particle-escape probability is the same both in the case under 
consideration near the Curie point, when T,  <T, < T,, and 
far from TK,  i.e., is the same independently of the relative 
magnitudes of T,  and 7,. 

It is clear from what has been said above that to deter- 
mine the temperature dependence of the probability of emer- 
gence of the particle from the potential well in conditions of 
critical slowing down of the magnet we must calculate the 
relaxation frequency w of the particle and the magnitude Q 
of the potential barrier with allowance for the exchange in- 
teraction between the particle and the solid. 

FIG. 1. 

4. THE PARTICLE-RELAXATION FREQUENCY AND 
POTENTIAL BARRIER 

h 

The %amiltonian H ,  of the solid and the interaction 
potential Zf can be represented in the form 

h 

where He.,, ^describes the electron and phonon subsygems 
of th%solid, H,, is the spin subsystem of the solid, and Ye.,, 
and Y, are the energies of interaction of the particle with 
the electron and phonon subsystems and with the spin sub- 
system of the magnet, respectively. Taking (4.1) and (4.2) 
into account, we can write the free energy F of the particle- 
magnet system in the form 

In (4.3) F,.,, denotes the free energy of the electron and 
phonon subsystems of the solid with allowance for their in- 
teraction with the particle, and F ,  is the free energy of the 
spin subsystem with allowance for the exchange interaction 
of the magnet with the particle. The neglect of the interac- 
tion between the spin subsystem and the electron and 
phonon subsystems implies that the analysis is limited to 
taking fluctuations into account in the Gaussian approxima- 
tion. Therefore, even when the exchange interaction of the 
particle with the magnet is taken into account as a perturba- 
tion to the free energy F, of the spin subsystem of the mag- 
net, it is sufficient to confine ourselves to the term quadratic 
in the interaction and to write F,  in the form 

h 

The operator Y,, is determined bxthe set of spin operators 
of the magnet and by the operator S of the particle spin, and 
depends on the particle coordinate R. 

Near TK the spin subsystem of the magnet can be de- 
scribed by a classical ordering field,15 or, equivalently, one 
can use a block model of the magnet.I2 In this case the 
expression for the free energy of the spin subsystem can be 
written in the Landau-Ginzburg form: 

F, /T  = j d r [ ~ ~ o ~ + a , o ' + c ( ~ o ) ~ ] ,  (4.6) 
0 

where u(r , t )  (the order parameter) is the vector field of the 
spin of the block with center at the point r. In (4.6) 
a, = a; ( T -  T, ), with a; >O,  and a, and c are smooth 
functions of the temperature (a, > 0); Cl denotes the volume 
of the solid. In the expression (4.5) we can go over from the 
set of spin yerators to u(r,t)  and represent the magnetic 
interaction V,,, between the solid and a particle with spin on 
its surface in a spin-polarized statei6*I7 in the form 

h 

V,. = j d r ~ ( ~ ~ - r ~ ) ~ o ( r ,  t ) .  (4.7) 
a 

where J (  IR - r I ) is the exchange integral, which is a rapidly 
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decreasing function of the distance between the particle and 
the block. The expression (4.7) makes it possible to take into 
account the main factor in the problem under considera- 
tion-the effect of fluctuations of the magnetic moment of 
the solid on the motion of a particle with spin interacting 
with it. From ( 4 2 )  it is clear that, by virtue of the symmetry 
of the problem, V,,, can depen5only %n the coordinate Z of 
the particle along the normal: V ,  = V,  ( Z ) .  

We turn to the calculation of the contribution of the 
magnetic interaction of the particle with the solid to the re- 
laxation frequency of the particle. In accordance with the 
formulas (2.3) and (4.2) it can be seen that the random 
force is equal to the sum of the random forces exerted on the 
particle by the electron and phonon subsystems and by the 
spin subsystem of the magnet. Then, using the independence 
of the averaging over the subsystems of the magnet, we find, 
in accordance with the formula (2.6), that the relaxation 
frequency can be separated into two terms: 

where (wi ),,, and (mi ) ,, are the relaxation frequencies of 
the particle in its coupling with the electron-phonon subsys- 
tem and the spin subsystem, respectively, of the solid. Since 
in the model under consideration the magnetic interaction 
d5pendk only on the coordinate Z of the particle 
( V, = V,, ( Z )  ) it follows from the formula (2.10) that only 
(a, ),, is nonzero. It is not difficult to convince oneself that 
only (w, ),.,, makes a contribution to the expression (3.2) 
for the probability of emergence of the particle from the well. 
Below, therefore, we shall calculate w,: 

0, = m  = + W,,, . (4.9) 

In a small neighborhood of T,  the quantity we.,, can be 
assumed to be independent of temperature. We shall deter- 
mine the dependence of w,, on the temperature. In accor- 
dance with (2.3), (2.10), and (4.7), w,, can be represented 
in the form 

In (4.10) the dynamic correlation function G ( ~ , T )  is de- 
fined by the formula 

G(k, r)=((~k(o)-(~k(o)))(~k*(~)-(~k*(~)))), (4.11) 

where a, ( t )  is the Fourier transform of a ( r , t ) :  

0, ( 2 )  =Q-'!. J dr e-lk'o (r, t ) .  
n 

We shall make use of a critical-dynamics model to determine 
the function a, ( t ) .  Since in the experiments of Refs. 1-6 the 
temperature of the magnet was held constant, two critical- 
dynamics models with nonconserved energy of the magnet 
are adequate. For these models a, ( t )  satisfies the equationI2 

-- -- 6 (FIT) 
at  

+ %k ( t )  7 

where the function {, ( t )  describes the random influences 
exerted on the kth mode of the order parameter by all the 
other degrees of freedom of the magnet. The model with 
nonconserved spin has yo = const, while the model with 
conserved spin has yo = &k2 ( E  is a constant). 

Equation (4.13) is substantially different for k = 0 and 
for kfO. However, to calculate w,, from the formulas 
(4.10) and (4.11 ) there is no need to solve Eq. (4.13) for 
k = 0, since the value of the definite integral (over k )  is not 
changed when the integrand is changed at a finite number of 
points. 

We shall consider the case k#O. Using (4.3), (4.4), 
and (4.6), and the uniformity of the average value ( a )  (Ref. 
18), we obtain 

In accordance with Ref. 15, the expression for Fo /T  (in the 
Gaussian approximation) has the form 

On the basis of (4.14) and (4.15), Eq. (4.13) can be written 
in the form 

where the static correlator G(k, 0 )  is determined by the ex- 
pressions 

G (k, 0 )  ,212~ ( l + k 2 p ) ,  (4.17) 

Using the solution of (4.16) and the equality 
(a, ( 0 ) c  :(t)) = 0, we obtain, in accordance with (4.11 ), 
an expression for G ( ~ , T ) :  

Substituting (4.19) into the expression (4.10) for w,, inte- 
grating over the time, and using the evenness of the function 
G2(k, O)/yo, we obtain 

We shall assume that J (  / R - r 1 ) can be represented in the 
form 
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Here J is a constant and B(r, - / R  - r l )  is the Heaviside 
function. The representation of the exchange integral in the 
form (4.21) means that the particle interacts with the block 
spin if the distance between them does not exceed r,. Inte- 
grating in (4.20) with allowance for (4.21 ) gives for the 
cases of nonconserved and conserved spin of the magnet, 
respectively, 

In (4.22) and (4.23) the quantity d is the distance of the 
particle from the surface of the magnet. In accordance with 
(4.22) and (4.23), the relaxation frequency of the particle in 
its coupling with the spin subsystem of the magnet increases 
as T, is approached. In accordance with (4.19) and (4.20), 
this is due to the increase of both the amplitude and the 
lifetime of the spin-density fluctuations. 

We now calculate the contribution of the magnetic in- 
teraction to the magnitude of the potential barrier (3.3). For 
t h k  we ?hall show first that the fluctuation term 
( ( V,, - ( V,, ) )2)/2T in the expression (4.4) for the free 
energy does not give rise to singularities in the temperature 
dependence of the latter near T,. Using (4.7), it is not diffi- 
cult to convince oneself that 

m 

Substituting (4.21) into (4.24) and integrating over k, we 
obtain the estimate 

It is clear from the expression (4.25) that fluctuations of the 
order parameter do not lead to divergence of F,,, as T+ T,. 
Since the fl2ctuation term has the same temperature depen- 
d y c e  as ( V,,, ), and, moreover, is small in comparison with 
( V,, ), and since our aim is to describe anomalies in the de- 
pendence of In k on 1/T near T,, we can neglect the fluctu- 
ation term in the calculation of Q. Substituting (4.21) into 
(4.7) and taking it into account that, in the Gaussian ap- 
proximation, I s  

we have 

Using the result, we write on the basis of (3.3), (4.3), and 
(4.4) the expression for Q in the form 

where 

x = T, /T ,  and d,, ,, is the value of d in the case when the 
particle is at the point R,,,, . The quantity Q,, is the potential 
barrier due to the interaction of the particle with the electron 
subsystem of the solid. 

The formula (4.27) was obtained with the use of the 
inessential assumption that d, and d, are smaller than r , .  In 
a small neighborhood of T ,  the quantity Q,  can be assumed 
to be constant. We stress that the second term in the right- 
hand side of (4.27) describes the effect of the magnetic inter- 
action of the particle with the solid and is nonzero only for 
T <  T,. The expressions (3.2), (4.9), (4.22), (4.23), and 
(4.27) make it possible to calculate the probabilities of es- 
cape of a particle from a potential well near T,. From the 
formulas obtained it follows that far from T ,  the depen- 
dence of In k on T, / T  is linear, and the change of the slope is 
due to the switching on of the magnetic interaction between 
the particle and the solid as the temperature is lowered 
through T,. The minimum in the paramagnetic region and 
the divergence at T = T,  (in the dependence of In k on 
T,/T) are due to the anomalous increase of the relaxation 
frequency (a,, ) of the particles near the Curie point of the 
magnet. In conclusion, we stress that replacement of the de- 
pendence (4.21 ) of the exchange integral on the distance by 
another (e.g., exponential) dependence does not affect the 
character of the temperature dependences of w ,, and Q /T .  

Thus, the picture that emerges of the influence of the 
dynamics of the fluctuations on the probability of escape of a 
particle from a potential well reduces to the following. The 
increase of the amplitude and lifetime of the fluctuations in 
the vicinity of T,  leads to an anomalous increase of the ran- 
dom force and to an increase of the time for which it acts on 
the particle spin. As a result, the relaxation frequency (de- 
termined by the correlator of the random forces) of the ener- 
gy distribution of the particles increases as T ,  is ap- 
proached. On the other hand, for a particle with spin, 
because of the change of the contribution of the exchange 
interaction as the temperature passes through T,, the mag- 
nitude of the potential barrier changes. The anomalies in the 
temperature dependence of the probability of escape of the 
particle from the potential well turn out to be related to both 
the change of the frequency of relaxation of the energy distri- 
bution of the particles and the change of the magnitude of 
the potential barrier. 

5. COMPARISON OFTHE THEORY WITH EXPERIMENT. 
DISCUSSION OF THE RESULTS 

In the experiments of Refs. 4 and 5 the authors investi- 
gated the temperature dependence of the mass K of oxygen 
absorbed by unit area of the surface of a sample (Fe, Co) per 
unit time in the stage of growth of the oxide film in which the 
film is up to a few hundred angstroms thick. The dependence 
of In K on 1/T far from T ,  was observed to be linear, with 
different slopes of the straight-line segments below and 
above T,, and it was also found that near T ,  the dependence 
of In K on 1/T has a minimum in the paramagnetic region 
and a cuspidal point at T = T, (see Fig. 2).  

The rate of growth of a thin oxide layer is determined by 
the passage of ions of the metal through the metal-oxide 
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interface,I9 and can depend, therefore, on the exchange in- 
teraction in the magnet. When comparing the theory with 
experiment (Figs. 2a and 2b) it is necessary to take into 
account that the quantity Kis connected with the probability 
of emergence of a particle (metal ion) from a potential well 
by the relation 

in which m is the mass of the oxygen atom and N is the 
number of oxygen atoms in the oxide per unit area of the 
surface of the sample. The relation (5.1) implies that an 
oxygen atom becomes bonded to one atom of the magnet, 
forming FeO or COO, as is characteristic for the conditions 
of the experiments of Refs. 4 and 5. 

Since the question of the applicability of the critical- 
dynamics models used to describe the magnetic phase transi- 
tions in Fe and Co is open, the experimental data have been 
compared with the dependences obtained for the models 
with conserved spin and with unconserved spin. It has been 
established that within the limits of the experimental error 
the data for Fe (Ref. 4 )  are described with the use of Eq. 
(4.22) (see Fig. 2a), while the data for Co (Ref. 5)  are de- 
scribed with the use of Eq. (4.23) (see Fig. 2b). The param- 
eter values found (see the captions to Figs. 2a and 2b) make 
it possible to estimate we.,, . For this we substitute the experi- 
mental value of K (with allowance for (5.1 ) ), taken far from 
TK, into the formulas (3.2), (4.9), (4.22) [or (4.23)], and 
(4.27). Far from TK thecontribution ofw,, to the relaxation 
frequency w can be neglected, so that by setting mN- 10 - *  
&cm2 we obtain the value 0,-,, - lo9 sec '. Thus, the in- 
equality w ' > 7 ,  of the relaxation times of the particle and 
solid, which was assumed to be valid in the solution of the 
problem, is fulfilled in the experiments under consideration. 
That the relaxation frequency of the particles is so small (in 
comparison with the characteristic frequency - 10" sec ' 
of the intramolecular vibrations) is due, as shown in Ref. 20, 
to the slow modulation of the equilibrium position of the 
particle by the low-frequency vibrations of the lattice. 

We shall estimate the region of applicability of the ap- 
proach being developed. Representing the free energy F, in 
the form (4.6) is admissible for temperatures satisfying the 
inequality IT - T,  I < TK (Ref. 18). From this interval we 

FIG. 2. Comparison of the theory with experiment: 
a)  the points are experimental data for Fe from Ref. 
4; the solid line is the theoretical dependence corre- 
sponding to formulas (3.2) ,  (4.9), (4.22), and 
(4.27); the following parameter values are 
used:Q,,/Tk = 25, a = - 9.2, A,,  = [.rrS(S + 1) /  
16y,, ~Mc'w,~, , , ,  T, ]J ' r i  ( c / a  T, )I1' = 1.5; [K]  
= ,ug/cm'.se_c;b) th_e points are experimental data 

from Ref. 5; K,, = Kfl, f l  = 14 sec; the solid line is 
the theoretical dependence corresponding to the 
formulas (3.2) ,  (4.9), (4.23), and (4.27); the fol- 
lowing parameter values are used: Q,,/T, = 24, 
a = - 8.0, B,,= [? rXS(S + 1) /  
16~Mc'o,,,,, T , J ' ~ ~ ( C / ~ ; T , ) ~ "  = 5 . 1 0 3 .  

must exclude a region from TI  to T, including TK, in which 
the theory is inapplicable for the following reasons. The ki- 
netic description of the behavior of the particle, starting 
from which we have obtained all the results, is valid only in 
the case when the inequalities T, < T ,  < 7 ,  are fulfilled. The 
inequality 7 ,  9 7 ,  for a particle in a deep well is always ful- 
filled, if only because of the phonon subsystem. The inequali- 
ty 7 ,  < rr is valid only in a certain range of temperatures, 
since in the vicinity of the Curie point T~ is determined by 
rsp , which increases as TK is approached, while the particle- 
relaxation time, equal to r, = (we.,, + w,  ) ', decreases as 
a consequence of the increase of w,, [see (4.22) or (4.23) 1. 
Qualitatively, this situation is characterized by Fig. 3. 

The temperature dependence of T, ,  can be easily esti- 
mated on the basis of simple arguments. The diffusion of the 
order parameter u ( r , t )  is described by the equation2' 

The scale-invariance hypothesis" makes it possible to esti- 
mate the diffusion coefficient Do (Ref. 22): 

FIG. 3. In the temperature range from TI  to T, the inequality T, < T, is 
not fulfilled, and therefore the theory is inapplicable. 
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In formula (5.3) the quantity a, is of the order of the intera- 
tomic spacing, and v and 7 are critical exponents. The relax- 
ation of a perturbation in the spin subsystem at a specified 
temperature occurs in a time r,, , during which the perturba- 
tion of the spin density does not leave the region of equally 
oriented spins, i.e., a region with characteristic linear dimen- 
sions of the order of the correlation length <. In accordance 
with random-walk theory, 

The temperature dependence of 5 is determined by the expo- 
nent v in the formula" 

Using (5.3)-(5.5) we have 

In the presently considered case of the Gaussian ap- 
proximation we have v = $ and 7 = 0 (Ref. IS), and, in ac- 
cordance with (5.6), r,, can be estimated as 

The formula (5.7) is in reasonable agreement with the ex- 
perimental data of Ref. 23 on neutron scattering by iron. At 
temperature T = TK + 14.1 K the half-width of the spec- 
trum of the scattered neutrons is I- = 2.74.10 - 5  eV. The 
relaxation time of the spin subsystem in this case is equal to 
r,, = f i / i / T  = 2 . 4  10 I '  sec. According to the formula (5.7), 
for T- TK = 1 4 K ~ e h a v e ~ , , ~ 3 ~ 1 0 ' ~ s e c .  

The temperature range from T ,  to T,  (see Fig. 3 )  with- 
in which the inequality r,, < (a,.,, + w,  ) ' is not fulfilled 
is determined using (5.7) and (4.22) or (4.23), and the val- 
ues found for we,, for Fe and Co. From the analysis per- 
formed it follows that the theory can be used in both cases for 
temperatures differing from T, by not less than 2 K. Thus, 
the inequality used between the characteristic times of the 
problem is fulfilled in the experiments for the entire tem- 
perature range investigated. 

In conclusion, we shall make a few remarks. Apparent- 
ly, the first attempt to explain the anomalies in the tempera- 
ture dependence of the rate of oxidation of Fe in the initial 
stage4 was made by SuhL9 The author assumed that it is 
sufficient to take into account only the fluctuational modu- 
lations of the potential barrier. From the result obtained 
above it is clear that with this approach it is possible to ex- 
plain only the change of the activation energy as the tem- 
perature passes through T,. And it was precisely such a 
result that was obtained by Suhl. 

The expression (3.2) for the probability k of escape of 
the particle from the potential well coincides in form with 
the expression for the probability in the case r ,  <r, <r, ,  ob- 
tained by Kramers7 on the basis of the Fokker-Planck equa- 
tion. Therefore, it can be said that in the present paper we 
have given, on the one hand, a justification of the Kramers 
expression used in Ref. 11 for the case of weak friction 
(7 ,  <T,  ), and, on the other hand, an answer to the question 
posed by the authors of Ref. 24 concerning the incorrectness 

(because of memory effects) of the use of a Kramers expres- 
sion for k near TK . 

The escape of the particle from the well can be regarded 
as a cooperative dynamical effect-on the one hand, the par- 
ticle executes motion in the well, and, on the other hand, it 
participates in the collective oscillations of the spin subsys- 
tem of the magnet. The oscillations of the particle in the well 
occur on a nonequilibrium solid, since r, <r,, . A transition 
of the particle from one energy level to another, which oc- 
curs (in accordance with the theory described above) on 
account of fluctuations of the solid over a characteristic time 
7, > T,, , can be assumed to occur on an equilibrium magnet. 
Such a description becomes possible by virtue of the coarsen- 
ing carried out over the time scale r , ,  by means of which the 
fast variables of the particle were eliminated. In this sense 
the above analysis confirms the idea, put forward in Ref. 11, 
that results obtained in the weak-friction approximation in 
random-walk theory are applicable to the description of the 
phenomena under consideration. 

We note that the fact that a satisfactory description of 
the experimental data has been achieved in the framework of 
the Gaussian approximation is evidently due to the fact that 
the observed features of the temperature dependence of K 
are determined principally by the singularity of the frequen- 
cy of relaxation of the particles near T K  . In accordance with 
formula (4.10) the term w, in the expression for the relaxa- 
tion frequency of the particles is determined as an integral of 
a correlation function of the magnet. The behavior of the 
latter near the Curie point is determined by the critical expo- 
nent y, whose value in the Gaussian approximation ( y = 1 ) 
differs from its experimental value y =: 1.40 (see Ref. 25). 
However, the integration leads to smoothing of the errors 
arising from the use of the Gaussian approximation. Thus, 
the theory developed in the Gaussian approximation is suit- 
able for the description of the kinetics of the sublimation, 
desorption, and growth of a thin oxide film on a magnet, and 
of the reduction kinetics, in a range of temperatures suffi- 
ciently close to T,. 

The authors are sincerely grateful to L. A. Maksimov 
for discussion of the paper and for valuable comments. 
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