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The dynamic properties of spherical micelles and vesicles whose surfaces have an anomalously 
low surface tension are analyzed. Because of this low surface tension, curvature-dependent terms 
should be retained in the expansion of the surface energy in a description of the surfaces of these 
entities. Boundary conditions, which also depend on the curvature, at the interface between two 
liquids are formulated for this case. These (linearized) boundary conditions are used to analyze 
the natural modes of a spherical micelle. Among these modes there are some characteristic 
surface modes whose dispersion relation is determined by parameters of the surface energy. One 
of these modes is associated with distortions of the spherical shape of the micelle, but it differs 
from a capillary wave in that it is overdamped. Another surface mode is associated with a 
redistribution of molecules of a surface-active substance over the surface of the micelle. The 
frequency of this mode has real and imaginary parts which are comparable in order of magnitude. 
Binary dynamic correlation functions of surface properties are derived. This derivation requires 
first eliminating volume variables from the effective action. The expressions for the correlation 
functions found as a result are determined by the corresponding dispersion relations and satisfy 
the fluctuation-dissipation theorem. 

1. INTRODUCTION 

Microemulsion physics has recently attracted much in- 
terest. Microemulsions form in mixtures of two mutually 
insoluble liquids (as a rule, water and an oil) when a surface- 
active substance is added to the mixture. From the macro- 
scopic standpoint, a microemulsion is a homogeneous phase. 
It may coexist with the liquids from which it is formed. The 
volume of a microemulsion phase is proportional to the 
amount of surface-active substance which has been added to 
the mixture. It thus becomes possible to dissolve in water 
liquids (oils) which are ordinarily insoluble in it and to con- 
trol the process by controlling the dose of surface-active sub- 
stance-an extremely important capability for applications. 

The literature on microemulsions is of formidable size. 
The reviews by Bellocq et al.' and Safran and Clark2 provide 
an introduction to the physical properties of microemul- 
sions. Those reviews contain the basic experimental facts 
and their interpretation. 

The following physical picture of the formation of mi- 
croemulsions is now generally accepted. The surface-active 
molecules settle primarily at the interface between the li- 
quids. At a certain critical concentration of the surface-ac- 
tive substance, the formation of an interface with a certain 
spontaneous curvature becomes preferable to a plane inter- 
face. The result is the formation of micelles-droplets of one 
liquid in the other, with boundaries saturated with surface- 
active molecules. A microemulsion is a solution of micelles 
containing one liquid in the other liquid. 

Microemulsions which are weak solutions of micelles 
can be described in the gas approximation, in which the mi- 
celles are treated as weakly interacting. In this case one can 
deal with the properties of some individual micelle. It is this 
problem that we will be discussing below. 

Another entity in this discussion is a vesicle. Vesicles 
are formed in solutions of molecules which have a tendency 
to form bilayer membranes. In such solutions a membrane 
often forms a closed structure, which is called a "vesicle." 

We are interested in spherical vesicles here. 
We will examine micelles and vesicles at a phenomeno- 

logical level. In other words, the interface between the li- 
quids is assumed to be infinitely thin, and the energy of the 
interface is assumed to be determined by such parameters as 
its area, its curvature, and the concentration of surface-ac- 
tive molecules at it. At the phenomenological level, micelles 
and vesicles can be treated in parallel. 

A necessary condition for taking the phenomenological 
approach is that the length scale of the problem be much 
larger than the molecular scale. This condition is clearly met 
by vesicles, whichare of micron size. The situation regarding 
micelles is slightly more complicated. As a rule, the size of 
micelles in a microemulsion is on the order of lo2 A. The 
phenomenological approach to the description of such mi- 
celles is right at its applicability boundary. It is possible, 
however, to add to a microemulsion various substances 
which will increase the size of the micelles to lo3 A without 
disrupting their spherical shape. The phenomenological ap- 
proach can be taken for such micelles without reservation, 
and it is in microemulsions with micelles of this sort that the 
theoretical conclusions should be tested. 

We are interested in the dynamic properties of micelles 
and vesicles, primarily the spectra of surface modes associat- 
ed with the interface. These modes can be seen experimental- 
ly in the inelastic scattering of light or neutrons by microe- 
mulsions. Observations of this sort might serve as a method 
for testing the characteristics of an interface. 

The literature reveals that attempts have already been 
made to calculate the dispersion relation for a mode associat- 
ed with the relaxation of the surface of a micelle or vesicle to 
a spherical ~ h a p e . ~ . ~  Those studies, however, have used the 
incorrect assumption that the area of the interface remains 
constant (this constancy should reflect the presence of the 
surface-active substance at the interface, in the opinion of 
the authors). A correct derivation requires ajoint considera- 
tion of the dynamic equations for the displacement vector of 
the interface and the concentration of surface-active mole- 
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cules at it. Along this path we find, in addition to the mode 
associated with the surface shape relaxation, yet another 
characteristic surface mode, which might be called a "con- 
centration mode." 

As was first pointed out by de Gennes and Tauph5  
thermal fluctuations of the interface play an important role 
in a micelle or vesicle, leading to a logarithmic renormaliza- 
tion of the constants of the theory. In real microemulsions, 
however, fluctuation effects can be ignored. 

This paper is organized in the following way. In the 
second section we present a phenomenological theory which 
describes the static properties of micelles and vesicles. The 
third section deals with the stability of a droplet with respect 
to slight shape distortions, and the conclusions concerning 
the role of thermal fluctuations are summarized. Nonlinear 
equations describing the dynamics of a micelle are derived in 
the fourth section. The spectrum of surface modes is ana- 
lyzed in the linear approximation in the fifth section. The 
dynamic correlation functions of surface properties are de- 
rived in the sixth section, and the component of the inelastic 
scattering associated with their fluctuations is calculated. 
The final section discusses the range of applicability of the 
results. 

2.THE HELFRICH THEORY 

When a surface-active substance is added to a mixture 
of mutually insoluble liquids, the surface tension a at the 
interface of the liquids decreases sharply, usually by two or- 
ders of magnitude. The microemulsion then begins to form. 
An anomalously low surface tension a is the fundamental 
fact underlying the phenomenological theory of the inter- 
face between liquids, which explains the formation of mi- 
celles. 

In the phenomenological approach the interface is 
treated as infinitely thin. A convenient way to describe its 
properties is in terms of the thermodynamic potential R, 
which is a function of the temperature, the velocity, and the 
chemical potentials, since these properties are continuous at 
the interface (while the mass density, for example, is discon- 
tinuous). The interface contribution to the potential R is 
written as the surface integral 

n. = j ds w.. (1)  

which is evaluated over the interface. 
Generally speaking, the quantity w, in ( 1 ) depends on 

the curvature of the surface. This dependence is usually in- 
consequential, and in such cases w, may be treated as a func- 
tion of the temperature and the chemical potentials. It is this 
quantity which is called the "surface tension" a. At small 
values of a, however, the dependence of w, on the surface 
curvature must be taken into account. Helfrich6 was the first 
to grasp this point. He showed that by taking this path one 
finds that a new scale, associated with the size of a micelle, 
arises in a natural way. 

When the first two terms of an expansion in the curva- 
ture are taken into account, the quantity w, in ( 1 ) is written 

Here R,  and R, are the local radii of curvature of the inter- 
face. Expression (2)  contains the so-called average curva- 

ture ( 1/2) ( l /Rl + 1/R,) and the Gaussian curvature I/ 
RIR,, which constitute all of the first- and second-order in- 
variants. 

The coefficient a in (2)  determines the tension of a 
plane interface, and it is this quantity which would naturally 
be called the "surface tension." We will be assuming P >  0 
below; this condition can always be met by measuring the 
radius of curvature from the appropriate side of the inter- 
face. If expansion (2)  is to be meaningful, the following con- 
ditions must hold: 

In the opposite case, surface energy ( 1 ) will not be positive- 
definite for micelles with small radii of curvature; i.e., an 
instability which cannot be described on the basis of expan- 
sion (2)  will arise. 

The term in (2)  which contains the coefficient 0 and 
which changes sign upon a change in the sign of the curva- 
ture radii reflects the fact that the liquids separated by the 
micelle boundary are different. For this reason, the direc- 
tions out of and into a micelle are not equivalent. Outside 
and inside a vesicle, in contrast, we are dealing with the same 
liquid, which is divided by a bilayer membrane, so these di- 
rections are equivalent. In studying a vesicle we should thus 
set P = 0. 

From the constants in (2)  we can construct a quantity 
with the dimensionality of a length: 

This quantity determines the typical size of a micelle (R , ' 
is usually called the "spontaneous curvature"). As we have 
already mentioned, a necessary condition for the validity of 
the phenomenological approach is that the size of the micelle 
be much greater than molecular sizes. According to (4),  this 
condition means that the constant fi in (2)  must be suffi- 
ciently small. Since we haveP=O for vesicles, this condition 
is no problem for them. 

We now consider a spherical micelle of radius R. Its 
surface energy is 

Conditions ( 3 )  guarantee that energy (5)  will be positive- 
definite at small values of R. With a decrease in a, surface 
energy (5 )  vanishes first at 

The radius at which this vanishing occurs is 

From inequlities ( 3 )  ando> 0 we find R, > 0; i.e., the radii 
of curvature in (2)  should be measured from inside the mi- 
celle. 

A phenomenological analysis thus draws the following 
picture of the formation of a microemulsion: When a sur- 
face-active substance is added to a mixture of two mutually 
insoluble liquids, the surface tension a decreases. When it 
reaches the value given by ( 6 ) ,  micelles with radii (7 )  begin 
to form in the mixture. We wish to point out that the relation 
a > 0 holds here; i.e., a plane interface remains stable with 
respect to small-perturbations. 
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This picture is valid if the distribution of micelles with 
respect to radii has a sharp maximum near R = R,  . Com- 
paring the energies of micelles with different radii, we find 
that this condition is met if 

where Tis the temperature. Experimental evidence that con- 
dition ( 8 )  is satisfied would be a change in slope on a plot of 
the surface tension a versus the concentration of the surface- 
active ~ubstance,~ which would imply the abrupt beginning 
of micelle formation when critical value ( 6 )  is reached. 

3. FLUCTUATIONS IN SURFACE SHAPE 

In general, for an arbitrary value of a, a microemulsion 
will contain micelles with various radii. Let us examine de- 
viations of the surface of a micelle of radius R from a spheri- 
cal shape. We will first calculate the energy associated with 
such deviations, and then we will discuss the role played by 
thermal fluctuations of the surface. 

We assume that the interface is described by the condi- 
tion @ ( r )  = 0 and that we have @ < 0 inside the micelle and 
Q, > 0 outside. In this case the quantity 

is a unit vector along the outward normal to the micelle sur- 
face. We rewrite the energy expressions ( 1 )  and ( 2 )  in the 
form 

n3 = J h r 8 ( @ )  I ~ @ ( w . ,  (10)  

In ( 10) the energy is written as a functional of @(r) .  On the 
other hand, this energy should depend on only the surface 
characteristics, not on the particular method by which it is 
parametrized. The energy should therefore be invariant un- 
der the transformation 

where f is some arbitrary function which satisfies only the 
conditions specified in ( 12). The invariance of energy ( 10) 
under transformation ( 12) can easily be tested directly. 

The surface integral of the Gaussian curvature, 

is a topological invariant which does not depend on the sur- 
face shape (for a surface having the topology of a sphere, this 
integral has the value 4 a ) .  Consequently, the variation of 
this integral upon changes in surface shape which do not 
affect the topology of the surface is zero. In studying the 
stability of a micelle with respect to small perturbations, we 
can thus omit the term with the coefficient Z from ( 1 1 ) . 

In a study of micelles whose shape differs only slightly 
from spherical, it is convenient to chose the function @(r) in 
the form 

Here r, 0,p are spherical coordinates, and R is the equilibri- 
um radius of the micelle. The shape of the micelle is specified 
by the condition Q, ( r )  = 0,  so u has the meaning of the radial 

displacement of the micelle surface. In an analysis of varia- 
tions in the shape of a micelle, the liquid within the micelle 
should be treated as incompressible; we accordingly have the 
auxillary condition 

We consider the second variation of energy ( 10) with 
respect to the displacement vector u, which should be calcu- 
lated under auxilliary condition ( 14). Substituting expres- 
sion ( 13) into (9)-( 1 1 ), expanding energy ( 10) to second 
order, and using ( 14) ,  we find 

Expression ( 15 ) is a sum of the displacement vector u in 
spherical harmonics, which are introduced in accordance 
with the definition 

where Y,, (f3,p) are the spherical harmonics. In (15)  we 
have introduced the definition 

In accordance with the point discussed above, there is no 
term with the coefficient Z in ( 17). 

The summation over I in ( 16) begins at I = 1, since the 
term with I = 0 corresponds to a uniform expansion of the 
droplet, which would contradict condition ( 14). Note that 
the term with I = 1 in ( 15 )  is zero. This is a natural result, 
since this term corresponds to a displacement of the droplet 
as a whole, in the course of which the energy of the droplet 
cannot change. The summation in ( 16 )  thus begins with 
I=2.  

The condition for the stability of a spherical micelle 
with respect to small perturbations is a,  > 0. Since x > 0, it is 
sufficient to test this condition for I = 2. Micelles which are 
unstable with respect to small perturbations arise first at 
a < p  2 / 6 ~ .  These micelles have radii in the interval 

The condition for the stability of a micelle of radius ( 7 )  with 
surface tension ( 6 )  gives us the inequality Z < 4x, which is a 
necessary condition if this analysis is to be meaningful. 

As de Gennes and Taupin showed,' thermal fluctu- 
ations of the surface shape play a major role at a small value 
ofb. These fluctuations give rise to logarithmic corrections 
to a, 8 ,  x, and ji. To study the behavior of the system in this 
situation we should use the renormalization-group method.' 
Energy ( 1 ) with density (2 )  is renormalizable; it is therefore 
possible to formulate a closed system of renormalization- 
group equations for a,& ji. 

Helfrich8 was the first to attempt to do this. Correct 
equations for x in the single-loop approximation were found 
in Refs. 9-1 1. Kleinert l2  found renormalization-group equa- 
tions for band  ji in the same approximation. We will repro- 
duce these renormalization-group equations here, supple- 
menting them with the single-loop equation for the surface 
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tension: 

Here T is the temperature, and L = ln(Ar), where A is a 
cutoff parameter and r a length scale. Equations ( 19) are to 
be integrated from L = 0 to L = ln(AR). 

It follows from Eqs. ( 19) that the role of an invariant 
charge is played by the quantity 

which must be small if a perturbation theory is to be valid 
and thus if Eqs. ( 19) are to be valid. By virtue of Eq. ( 19) for 
x and Eq. (20), we find 

In other words, g increases with increasing scale; i.e., we are 
dealing with a situation of asymptotic freedom. 

At scales at which g is on the order of unity, perturba- 
tion theory begins to break down. It is difficult to say much 
about the state of the boundary in this case. de Gennes and 
Taupin5 assumed that a "random" phase, characterized by a 
random state of the boundary, would arise in this case. We 
will assume here that the condition g( 1 holds; under this 
condition, fluctuation effects are weak. It is apparently only 
under this condition that one could meaningfully discuss an 
individual micelle. Note that the condition gg 1 is essential- 
ly the same as condition ( 8 ) ,  which guarantees a narrow 
maximum near the equilibrium value in the distribution of 
micelles with respect to radius. 

4. DYNAMIC EQUATIONS 

We turn now to the dynamics of a micelle, whose sur- 
face is an interface between liquids. We are interested in dy- 
namic characteristics associated with the presence of this 
interface. Our first problem is thus to study the boundary 
conditions for the hydrodynamic equations at the interface. 

A method for constructing such boundary conditions 
was discussed by Kats and one of us in Ref. 13. We will 
summarize that derivation here, taking account of the spe- 
cific features of the surface under consideration, whose ener- 
gy [ ( 1 ), (2) 1 contains curvature-related terms. Expression 
(2)  refers to a liquid surface. In this paper we will not discuss 
effects associated with a possible crystalline or liquid-crystal 
structure of the surface (such effects were discussed in detail 
in Ref. 13 for the case of a plane film). 

On the two sides of the interface (outside and inside the 
micelle) the dynamics of the liquid is described by the usual 
hydrodynamic equations 

Here p is the density of the liquid, v is the velocity, j = pv is 
the momentum density, P is  the pressure, and nik is a dissi- 
pative stress tensor, given by 

We will use a subscript 1 to specify quantities associated with 
the liquid inside the micelle, and 2 for the liquid outside. 

At the interface, in the leading approximation in the 
hydrodynamic parameter (AR)-I, the temperature, the 
chemical potentials of the two liquids and of the surface- 
active substance, and the velocity component tangent to the 
surface are all continuous. It is for this reason that we used 
the thermodynamic potential R above, which is a function of 
these extensive variables. We wish to stress that the surface 
tension a and other coefficients in expansion (2)  or ( 11 ) are 
functions of these variables. 

To construct dissipationless dynamic equations it is 
convenient to use a Poisson-brackets In this 
method, dynamic equations are found as Liouville equations 
with the thermodynamic energy E as the Hamiltonian. 
When there is an interface between liquids, the energy of the 
system is written in the form 

E =  J d ~ r ( e , ~ ( - ~ ) + e , ~ ( ~ ) + r . l ~ ~ ~ ~ ( ~ ) ) .  (25) 

where 0 is the unit step function. The quantities E, and E, in 
(25) are the energy densities of the liquids, and E, is the 
surface energy density. 

The intensive quantities pertaining to this system, such 
as the energy density in (25), are written as sums of volume 
and surface parts. The momentum density, for example, is 
written 

j=j,e ( - 0 )  f j 8  ( 0 )  +j, I VQ, 16 ( 0 1 ,  (26) 

where j, is the surface momentum density. Completely simi- 
lar expressions are used for the mass density p, the entropy 
density s, the number density of surface-active molecules, 
etc. The dynamic equations are written for specifically these 
densities. 

Dissipationless terms in the dynamic equations for 
these densities can be found by using the standard three- 
dimensional expressions for Poisson brackets.I4.l5 These ex- 
pressions need to be supplemented with only the brackets for 
the variable a, which describes the position of the interface. 
The structure of the only nonzero brackets which contain @ 
is established by analogy with smect ic~ '~"~ .  

{j(r,) ,  Q,(r2) I=-VQ,6(r,-r2). (27) 

The idea is that the interface can be treated as a single smec- 
tic layer. 

The Liouville equations for the volume current densi- 
ties j, and j, in (26), which are found with the help of these 
expressions for the Poisson brackets, are of course the same 
as the standard dissipationless hydrodynamic equations. 
For surface densities of the j, type in (26) the situation is 
slightly more complicated. To find equations for these quan- 
tities we need to introduce some parametrization of the in- 
terface and then find an expression for the Poisson brackets 
which contain the surface densities in this parametrization. 
We accomplish this through a reduction of the expressions 
for the three-dimensional Poisson brackets. We can then 
write Liouville equations for the surface quantities, which 
give us the dissipationless part of the dynamic equations. 

This program was carried out in Ref. 13 (see also Ref. 
17), where a surface parametrization of the z = z(x,y) type 
was used. Since the resulting equations are local, a parame- 
trization of this sort can also be regarded as local. As a result 
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of the use of this parametrization, we find equations which 
can easily be rewritten in a form invariant with respect to the 
choice of a parametrization of the surface. 

The only difference between our case and that discussed 
in Ref. 13 is that the dependence of the surface energy den- 
sity on the curvature of the surface is taken into account. 
According to (9)  and ( 1 1 ), we can write 

The expressions for the Poisson brackets for the surface 
quantities are the same as those found in Ref. 13. 

Here is the final form of the dynamic equations for the 
surface quantities: 

Here v, is the velocity of the interface, j, = p, v, is the sur- 
face momentum density, and n, is the surface density of sur- 
face-active molecules. The surface stress tensor in (3  1 ) is 

We first note that Eq. (29) is invariant under transfor- 
mation (12); i.e., the surface dynamics described by this 
equation is independent of the particular method used to 
parametrize the surface, as it should be. Derivatives in all 
directions are formally present on the left sides of Eqs. (30) 
and (31), although there are quantities there which are de- 
fined only at the surface. Using (29), however, we can verify 
that equations (30) and (3  1 ) actually contain derivatives of 
the surface quantities exclusively along the surface. The sur- 
face quantities in these equations can thus be continued in an 
arbitrary fashion in the third dimension. 

The stress tensor T,, given by (32) is not symmetric. 
However, its divergence, which appears in Eq. (3  1 ) , can be 
rewritten as a divergence of a symmetric tensor: 

The symmetry of the tensor on the right side of (33) follows 
from the identity 

which is a consequence of the rotational invariance of w,. 
The angular-momentum conservation law can thus be for- 
mulated in the standard way. 

The right side of Eq. (3  1 ) contains momentum fluxes to 
the surface from the adjacent liquids (both dissipationless 

and dissipative fluxes). Generally speaking, corresponding 
terms describing the flux of surface-active molecules to the 
surface should be added to the right side of Eq. (30). How- 
ever, these terms are associated with some extremely slow 
processes involving the diffusion of surface-active mole- 
cules, so we will ignore them. 

Surface kinetic terms have been omitted from Eqs. (30) 
and (3  1 ) [Eq. (29) is exact, and there are no corrections to 
itI3]. It is a straightforward matter to verify that these sur- 
face terms lead to effects which are small, by a factor on the 
order of the hydrodynamic parameter ( A R ) - ' ,  so we are 
justified in ignoring them. 

Finally, we write the explicit expression for the surface 
stress tensor which is found from ( 10) in accordance with 
(32): 

Here we have used the notation 

Expression (34) does not contain the coefficient Z, because 
the term with this coefficient in (10) is invariant with re- 
spect to small variations. 

5. SPECTRUM OF NATURAL MODES OF A MICELLE 

We turn now to the spectrum of micelle surface modes 
which are associated with the time variation of the quantities 
characterizing this surface. A variation of this sort is of 
course accompanied by a volume hydrodynamic motion of 
the liquid in the region adjacent to the surface of the micelle. 
It is this motion, as we mentioned above, that is the primary 
source of energy dissipation and thus of the damping of the 
surface modes. 

In this section of the paper we analyze thespectrum of 
micelle modes in the linear approximation. Corresponding- 
ly, we assume that the shape of the micelle deviates only 
slightly from spherical. In this case it is convenient to intro- 
duce a spherical coordinate system and to describe the mi- 
celle surface shape by means of the radial displacement vec- 
tor u, which we introduced in (12). All quantities which 
determine the state of the micelle surface are assumed to be 
functions of the angles 8 and p. In addition to the displace- 
ment vector u we will be using the surface velocity v, and the 
deviation (n j ) from the equilibrium value of the surface den- 
sity of surface-active molecules. 

We must now linearize Eqs. (29)-(3 1 ) in terms of the 
variables v,, u,  and n:. As a result we find 

d u," 1 d a d n , '  1 dur l  au,, --+--- 
Rsin0 an, d v  --"(Rsin 0 dcp dr  R Psat ----- 
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an,' n 1 d -+L[-- (sin~u.~)+--u:] I 3 =o. (39) 
dt R s i n 0 8 0  sin 0 drp 

We recall that the subscripts 1 and 2 refer to quantities inside 
and outside the micelle. The quantities Pi and P; in (36) 
are the variable parts of the pressures. In the same equation 
we find the combination 

whose meaning is the angular part of the Laplacian. 
On the right sides of (36)-(38) there are viscous terms 

which contain derivatives of the volume velocities. The val- 
ues of these derivatives should be taken at the interface. In 
writing these viscous terms we took account of the incom- 
pressibility condition div v = 0, which is valid in a discussion 
of surface modes. The left sides of (37) and (38) contain 
derivatives of a but not of f l  or x with respect to n , .  The 
reason is that, in contrast to a, the derivative &/an, has no 
special small factor, so the terms with @ / a n ,  and &/an, 
are small quantities, by a factor on the order of the hydrody- 
namic parameter (AR)-I, in comparison with the terms 
which have been retained. 

The velocities of the liquids adjacent to the interface, v ,  
and v,, which are equal to vs right at the interface, appear in 
Eqs. (36)-(38). The right sides of (36)-(38), however, 
contain not the velocities themselves but their derivatives 
av,/ar and av,/ar, whose calculation requires knowledge of 
the volume distribution of the velocity inside and outside the 
micelle. A complete solution of the problem thus requires, in 
addition to (35)-(40), the well-known linear hydrodynam- 
ic equations, which can be found by linearizing (23), (24). 

A velocity v can always be written in the form 

where $, <, and x are scalar functions, and n is a unit vector 
along the z axis. The radial component of the velocity is 

The potential $ determines the irrotational component of 
the velocity; in the leading approximation it is related to the 
pressure variation by 

The surface modes in which we are interested are fairly low- 
frequency modes, so in analyzing them we assume that the 
liquids are incompressible. In other words, we asume that we 
can set div v = 0, which is, by virtue of (41), equivalent to 
the equation 

For the quantity x we have the equation 

We assume that all quantities are expanded in spherical 
harmonics as in ( 16) (the coefficients of the expansion of $, 
f, and x in this series are of course functions of r ) .  Since the 
linear approximation assumes that u is small in comparison 
with R, the boundary conditions on the velocities v ,  and v, 
should be imposed at r = R. It follows that the equations for 

the individual spherical harmonics can be separated. We will 
discuss the equation for the harmonic with angular indices I, 
m. We will also examine the Fourier time components with 
frequency w;,i.e., we assume that all quantities have a time 
dependence a exp ( - iwt) . 

In this case a solution of Eq. (44) can be written in the 
form 

In analyzing the surface modes, we can ignore the term with 
the time derivative in (39). Now using representation (41 ) 
for the velocity, we find the following boundary condition 
from (39): 

After taking the derivative with respect to r we should set 
here r = R. We also rewrite boundary condition (36), omit- 
ting the term with &:/at from it and substituting in (43): 

al dv,, a v,, 
- (1-1) (l+ 2 )  u=io ( p l $ i - p z $ 2 )  -2q1 - + 2q2 -. 
R2  dr dr 

(48) 
The quantity a, which appears here is given by ( 17). 

We first consider the spectrum of capillary waves of a 
droplet, assuming that these waves are slightly damped. In 
this case the quantity X, which is associated with the rota- 
tional component of the velocity, vanishes except in a nar- 
row neighborhood of the interface, so we can write 

Consequently, we find from (45 ) 

x1=xlo exp[2-'" ( I - i )  (p lo lq l ) ' "  ( r -R)  I Y,,(0, r p ) ,  
x2=xz0 exp [2-'" ( I - i )  (pzolq2) '" (R-r )  ] Y,, ( 0 , ~ ) .  

Boundary condition (47) can now be used to relatex,, and 
,yzo to $,, and $,, which were introduced in (46). 

Substituting the resulting expressions for x,, and x,, 
into ( 3 5 )  and (42), we find 

Expressing $,, and $,, in terms of u on the basis of this 
equation, and then substituting the result into (48), where 
we can omit the viscous term, we find the final expression for 
the dispersion relation: 

This dispersion relation differs from that of an ordinary 
droplet by simply the replacement a -a,. 

If a capillary wave is to be damped only slightly, we 
must, in accordance with (49), require Q$1, where 
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The same condition guarantees the legitimacy of approxima- 
tion (48). For spherical vesicles it would appear to be com- 
pletely possible to satisfy the inequality Q% 1, but for mi- 
celles the opposite inequality would be more likely (see the 
Conclusion). We turn now to a calculation of the dispersion 
for the mode associated with distortions of the micelle shape, 
under the condition Q < 1. 

As will be shown below, the frequency of this mode can 
be estimated from 

The term on the right side of (45) can thus be treated as a 
small correction to the equation 17V2x = 0. Corresponding- 
ly, the solution of Eq. (45) can be sought by a perturbation 
theory in thesmall parameterpwR '/v The first two terms of 
the expansion are 

In deriving (51) we used boundary condition (47) and 
expression (46). From (42) and (5 1 ) we find the following 
results for the radial component of the velocity: 

We can now use the relation 

to express +hlo and $20 in terms of u. Substituting the result 
into (48), and replacing the derivatives with respect to r on 
the basis of (52), we finally find 

o=-ial(L-1)1(1+1) (1+2)/R[qi (1+1) (2L2+1+3) 

+q21(212+3L+4) 1. (53) 

This mode is of a purely relaxation nature. 
We turn now to the mode associated with a redistribu- 

tion of surface-active molecules over the surface of the mi- 
celle. This mode is more rigid than the mode with dispersion 
relation (53). Taking this circumstance into account, we 
find from Eqs. (35) and (36) that the potential component 
of the velocity near the surface can be ignored, while the 
solenoidal component depends on the radius in the same way 
as x in (48). It is not difficult to see that as a result we have 

so on the right sides of (37) and (38 ) we need retain only the 
terms with the derivative d /dr, and we can transform this 
derivative in accordance with functional dependence (48). 
Omitting also the terms with &/at, we find as a result 

1 aa an,' 1-i 
____-=- 

R an. d0 2"' 
ve" (piqio)'"+ (pzq20)'~1, 

1 act an.' 1-i ------- -- 
Rsin0 dn, dcp 

, .,'L (p,q,o) *+ ( p , q i ~ ) ' ~ ~ l .  

It is now a simple matter to find the dispersion relation 
for the mode of interest. We multiply the first of the equa- 
tions written above by ( l/sin 8)d  sin 8 /do, multiply the sec- 
ond by (l/sin 8 )d / Jp ,  and take the sum. Comparing the 
equation found as a result with (39), we find a closed equa- 
tion for n:, from which we find the dispersion relation 

where 

The mode with dispersion relation (54) is completely analo- 
gous to the concentration mode which was analyzed in Ref. 
13 for the case of a plane interface. 

6. DYNAMIC CORRELATION FUNCTIONS 

In this section of the paper we examine inelastic scatter- 
ing by a microemulsion. We consider scattering with a small 
frequency transfer since the cross section for this type of 
scattering is determined by collective degrees of freedom. In 
this cross section we can distinguish two components, one 
stemming from the usual volume hydrodynamic modes and 
a second stemming from the surface modes which we dis- 
cussed in the preceding section. This surface component of 
the cross section is a distinguishing feature of a microemul- 
sion, so we will focus our attention on this component. 

In practice, we would be talking about scattering of soft 
neutrons, x rays, or light by a microemulsion. The hope of 
observing a surface component of the scattering cross sec- 
tion is pinned on the large value of the total surface area of 
micelles in a microemulsion. We also note that the surface 
component of the cross section has an unusual frequency 
dependence, which might be of assistance in distinguishing 
it. 

The cross section for inelastic scattering is determined 
by corresponding dynamic correlation functions. In analyz- 
ing inelastic scattering by a micelle we should, in accordance 
with the results of the preceding section, examine correla- 
tion functions 

where u is the micelle surface displacement and n: is the 
change in the surface density of the surface-active substance. 
To calculate a correlation function of this type we should use 
Wyld's diagram technique," which is set forth in Ma's 
monograph.I9 For the problem at hand, it is convenient to 
use the generating functional which generates this diagram 
technique; the corresponding formalism and the necessary 
references can be found in the monograph by Kats and Lebe- 
dev. '" 

Our immediate goal is to calculate the nucleating values 
of correlation functions (56) which correspond to linearized 
dynamic equations ( 35)-(39) discussed in the preceding 
section. The fluctuational corrections to the nucleating val- 
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ues will be small to the extent that interaction constant ( 2 0 )  
is small. Calculating these corrections is a separate problem, 
whose solution goes beyond the scope of the present paper. 

The calculation of nucleating values of correlation 
functions, which reduces to taking corresponding Gaussian 
integrals, usually presents no difficulty. In the case at hand 
the problem is complicated by the circumstance that we are 
interested in the correlation functions of surface quantities, 
while layers of liquid near the surface are also entrained in 
the motion associated with the surface modes. For this rea- 
son the procedure of calculating the nucleating values of cor- 
realtion functions ( 5 6 )  must include a joint analysis of the 
surface and volume degrees of freedom, and the latter must 
be effectively eliminated from consideration through an in- 
tegration of this generating functional over them. 

This generating functional is determined by a path inte- 
gral which involves a factor of exp ( i I ) ,  where I  is an effective 
action which is determined by the dynamic equations of the 
system. The general recipe for constructing I  is given in Ref. 
15. For an individual micelle the effective action can be writ- 
ten as the sum 

where I ,  refers to the liquid within the micelle, I ,  to that 
outside the micelle, and I, to the interface. The structure of 
I ,  and I ,  is determined by the volume hydrodynamic equa- 
tions, while that of I, is determined by the surface terms in 
boundary conditions ( 2 9 ) - ( 3  1 ). 

The volume part of the effective action can be written in 
the form 

I , , ,  = j d t  d ' r { - ~ p v - ~ ~ p + q ~ ~ p ~  ( V ~ U , + V ~ ~ ~ )  a t 

Here p is an auxiliary Bose field, I ,  is determined by an inte- 
gral over the volume inside the micelle, and I ,  is determined 
by an integral over the volume outside the micelle. In writing 
( 5 8 )  we omitted a term which is quadratic in the velocity 
and also some dissipative terms proportional to div v .  We 
will not need these terms below. The surface part of the ac- 
tion is 

Here TXik is surface stress tensor ( 3 4 ) ,  and p" is the value of 
the field p on the surface. 

To calculate the nucleating values of the correlation 
functions in action I  it is sufficient to retain the term which is 
quadratic in the fields p and v .  The integration of exp ( i I )  
over the volume components of p and v is then determined by 
Gaussian integrals; it reduces to the replacement of action I  
in the argument of the exponential function by its extremum 
over the fields p and v .  The conditions for an extremum, 

are conveniently written for components (41 ) and for com- 
ponents of the field p introduced in a corresponding way: 

Conditions ( 6 0 )  lead to the equations 

where c2 = a P / a p .  For gp and 5 there are equations com- 
pletely analogous to equations ( 6 3 ) ,  ( 6 4 )  forxP ,x. In deriv- 
ing ( 6 2 )  we used the continuity equation 

dp/dt=- V ( pv) 8 ( 6 5 )  

and we omitted an inconsequential dissipative term. A corre- 
sponding dissipative term can be omitted in the equation for 
$; as a result, that equation reduces to relation (43),  from 
which, along with ( 6 5 ) ,  we find the standard equation 

Integrating by parts, we can put the volume terms in 
( 5 8 )  in the form 

The ellipsis (...) in ( 6 7 )  represents surface terms. The first 
two terms in ( 6 7 )  vanish when the extremum of the action is 
taken, by virtue of ( 6 0 ) ;  the third and fourth can be omitted 
since they are total time derivatives. When an extremum 
over the fields p and v is taken, the volume part of action 
( 5 8 )  reduces to a surface term, for which the explicit expres- 
sion is 

The last term in ( 6 8 )  has been transformed with the help of 
Eq. ( 6 2 ) .  

In an analysis of a shperical micelle, the integral in 
( 5 9 ) ,  ( 6 8 )  should be understood as an integral over the sur- 
face of a sphere of radius R. Equations ( 3 6 ) - ( 3 8 )  are of 
course extrema of the action in this case: 

Equations ( 3 5 )  and ( 3 9 )  should now be understood as addi- 
tional conditions which relate u and n f  with the dynamic 
variables v ,  . Expression ( 6 8 )  does not yet give us the purely 
surface action, since it contains derivatives av/ar  and ap/ar,  
which should be determined from the volume equations for v 
and p. 

Since we are interested in correlation functions ( 5 6 ) ,  it 
is convenient to eliminate the other variables which figure in 
( 6 9 )  by integrating exp( i1 ,  ) over them. Since the corre- 
sponding integrals are Gaussian, this integration reduces to 
the replacement of I ,  by its extremum over the fields which 
are being eliminated. This procedure cannot be carried out 
in general form; we will do  it separately for each type of 
surface mode. 

We first consider the mode with dispersion relation 
( 5 4 ) ,  which is associated with a redistribution of the sur- 
face-active substance over the surface of the micelle. In this 
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case it is meaningful to consider the correlation function 
(njn:). As in the analysis of dispersion relation (54), in 
evaluating this correlation function we can assume 

Corresponding inequalities hold for 5, x P ,  and P .  In this 
situation, taking an extremum of (69) over $and lj9 reduces 
in the leading order to simply the conditions $ = qY' = 0. 

Taking the extremum of action (69) with respect to c, 
we find the condition 

a~" (sin Op.) =O. 
d q  a 0  

Using (71) and $ = lj9 = 0 to transform action (69), we 
find, in the leading approximation, 

Here we have introduced a fieldp such that we have 

pe=dp/d0. (73) 

It is not difficult to verify that the following equation holds 
when we use (71): 

a 2 x l P  a2xzP 
-=-- - - R 2 V L 2 p .  
d q d r  d q d r  

Writing an expression for the combination of velocities 
which figures in (39), we find, in the leading approximation, 

an.' n, d 2 x ,  n, d 2 x 2  __=--=-- 
a t  R d r d q  R d r d q  

By virtue of Eqs. (63) and (64), ,y and xP are damped 
exponentially with distance from the surface. For the Four- 
ier component with frequency w inside the micelle, the fol- 
lowing proportionality holds in the leading order: 

The argument of the exponential function has been chosen 
here in a form convenient for analytic continuation into the 
upper half-plane. A corresponding proportionality law 
holds outside the micelle. Expressing the second derivatives 
with respect to r in (72) in terms of the first derivatives on 
this basis, and using (74) and (75 ), we find 

where 

We can now use the standard  rule^^'.^' to find an 
expression for the binary correlation function (njnj).  It is 
convenient to write the expression for the correlation func- 

tions of the coefficients of an expansion in spherical harmon- 
ics: 

The Fourier component of the correlation function 
(vim (t)vI-,,, ( 0 ) )  is given by 

The simultaneous correlation function (v,, ( t ) v lPm ( t ) )  is 
given by 

As expected, the right side of (80) is the same as the static 
correlation function, since we have 

The correlation function 

has the meaning of a generalized susceptability15 and is ac- 
cordingly analytic in the upper half-plane. The dispersion 
relation for the natural modes of the system should be deter- 
mined by singularities of the generalized susceptibility in the 
lower half-plane. At frequencies (54), this correlation func- 
tion does indeed have poles. 

We now consider the mode with dispersion relation 
(53), which is associated with distortions of the shape of the 
micelle surface. We will calculate the corresponding correla- 
tion function (uu). The condition for an extremum of action 
(69) with respect'to nj leads to the relation 

a a - (sin 0 p 6 )  + - p,=O. 
d 0 d~ 

Yet another relation betweenp, andp, comes from the con- 
dition for an extremum of the action with respect to 5. As a 
consequence of these two relations, we havep, = p, = 0 on 
the surface. 

Using this result, and omitting the term with pSdv/dt, 
we can write an effective action as follows: 

Here we are using relation (43) and also 

These relations follow from the conditions div v = div 
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p = 0  [which in turn follow from ( 6 2 )  and ( 6 5 )  in the low- 
frequency limit], Eq. ( 3 9 )  (in which we can omit an, / & ) ,  
and ( 8 1 ) .  

We now need to solve system (62 ) - (64 ) ,  ( 6 6 )  for $, X, 
q ,  and xP , taking account of the additional constraints im- 
posed on these functions by conditions ( 3 9 )  and (81  ) .  The 
procedure for solving these equations is similar to that used 
in calculating ( 5 2 ) .  As a result, we find the following rela- 
tions for functions with an angular dependence a Y,, ( 0 , ~ )  
in the leading approximation in w: 

These relations are valid at r = R. They make it possible to 
express the integrand in ( 8 2 )  in terms ofp, and ur . 

Replacing u, by &/at in accordance with (35  ) , we fin- 
ally find 

Expressing $, + iT$ and $, + iT$ $ in terms of u, + iTp, 
on the basis of these equations, and substituting the results 
into ( 8 2 ) ,  we find the action I,,, in which there are only 
surface quantities. The last term in the integrand in ( 8 2 )  can 
be omitted here. 

Replacing u, by &/at in accordance with ( 3 5 ) ,  and 
switching from an integration over angles to a summation 
over spherical harmonics, we finally find 

d 2 u , m  
I,, = 1 d t { a l  (1-1) (1+2)p,l-mu,m+H3pl~rl-m- 

lnr d t2 

Here 

I , , ,  = &{al  (1-1) (14-2)p. i -mulm 

We have switched here from an integration over angles to a 
summation over spherical harmonics; ai is determined by 
( 17); and 

From the form of ( 8 3 )  for the effective action we find, 
working by the standard  rule^,^^.^' the following expression 
for the Fourier component of the binary correlation function 
( u ( t ) u ( O ) ) :  

The equal-time correlation function ( u  ( t )  u  ( t )  ) is 

This correlation function is of course the same as the static 
correlation function calculated from ( 15).  Correlation func- 
tion ( 8 5 )  has a pole at frequency ( 5 3 ) .  

We now consider the correlation function ( u u )  in the 
range of applicability of dispersion relation ( 4 9 ) ,  which de- 
scribes ordinary capillary waves. In this case, a functional 
dependence of the type in ( 7 6 )  holds. Now using conditions 
( 3 9 )  (without an, / a t )  and (81  ), we find, on the surface, 

For the component proportional to Y,, ( 0 , ~ )  we then find 

In deriving ( 8 7 )  we discarded small terms on the order of 
the parameter Q - ' everywhere, where Q is given by ( 5 0 )  (a  
small value of Q guarantees that the damping of the capil- 
lary wave is slight). 

Using explicit expression ( 8 7 ) ,  and working by the 
standard we find Fourier component of the corre- 
lation function ( u  ( t )  u  ( 0 )  ) : 

It is not difficult to verify that relation ( 8 6 )  is valid for corre- 
lation function ( 8 9 )  in the leading approximation in Q - I .  

We can thus reproduce the static limit. Note that correlation 
function ( 8 9 )  has a pole at frequency ( 4 9 ) .  

The inelastic scattering is actually determined by corre- 
lation functions averaged over the distribution of micelles. 
For the scattering of neutrons, for example, we should speak 
in terms of a density correlation function, in the scattering of 
light we should speak in terms of a correlation function of 
the dielectric susceptibility, and so forth. For a single micelle 
all such quantities can be written as a sum of the type in ( 2 6 ) .  
For definiteness we will discuss the mass density: 

In the leading approximation, p ,  and p, can be treated as 
constants, and p, as depending on n,. A fluctuation of the 
density can then be written in the form 

where is the radius vector of the center of a micelle, of 
radius R. 

We can now express the correlation function (p'p ')  in 
terms of the correlation functions ( u u )  and ( n j n j ) .  Averag- 
ing the result over the position of the micelles, and trans- 
forming to the Fourier component with the wave vector k, 
we find 
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(p' (f) p' (0) ),=NR4 j do, do, exp [-ikR (cos 0, - cos 02) ] 

x [(p , -p2)2(~( te .~ i )  u~0e2cp2)) 

Here N is the number of micelles per unit volume, and the 
integration is over the surface of a micelle. 

Transforming to the Fourier time component, and inte- 
grating over the angles, we finally find 

Here the summation pertaining to the correlation function 
( u u )  begins with I = 2, while that pertaining to (vv )  begins 
with I = 1. If kR 4 1, we should retain only the first terms in 
sum (91 ); as a result we find 

We recall that expressions (9 1 ) and (92) are not specific to 
the density correlation function. Corresponding expressions 
could be written for any local quantity which can be repre- 
sented as in (90). To estimate the cross section for the scat- 
tering of light, for example, we should use the permittivity. 
The correlation functions which figure in (91 ) and (92) are 
given by expressions (79) and ( 85 ) or ( 89). The integrated 
scattering cross section can be estimated from (80) and 
(86). 

7. CONCLUSION 

We have examined the dynamic properties of a liquid 
droplet on whose surface there is a film which is a membrane 
in the case of a vesicle or a monolayer of surface-active mole- 
cules in the case of a micelle. It turns out that for a droplet of 
this type there are at least two characteristic surface modes. 
One is associated with a time variation in the shape of the 
droplet surface. In the case of a plane interface (a  droplet of 
large radius) this mode converts into an ordinary capillary 
wave. The other mode is associated with a change in the 
density of the surface film. 

The latter mode has an extremely unusual dispersion 
relation, which is given by (54). This expression involves the 
quantity B, given in (55), which is a positive-definite quanti- 
ty since the surface tension at a water-oil interface decreases 
with increasing concentration of the surface-active sub- 
stance at this interface. In contrast with the surface tension a 
itself, which is anomalously small for a micelle, the deriva- 
tive da/dn, has no special small factor. We would thus ex- 
pect B to have a value on the order of an ordinary surface 
tension, i.e., - 10 erg/cm2. This is thus a fairly high-frequen- 
cy mode, and the derivative which determines B should be 
regarded as adiabatic (and isobaric). 

The mode associated with a change in the shape of the 
micelle surface, on the other hand, is no different from ordi- 
nary capillary waves for vesicles of micron size. For micelles, 
however, this is not the case, because of the anomalously 
small surface tension a .  For a micelle, this mode is over- 
damped, and its dispersion relation is (53). In deriving this 
dispersion relation we used the condition SikVk Vs  = 0 
which follows from (39) and which presupposes a fairly 
high concentration of surface-active molecules at the inter- 
face. 

Using a-p2/7t, we can rewrite the condition for the 
applicability of dispersion relation (53) in the form 

where R ,  is the micelle radius from (7) ,  and R ,  = is 
on the order of a molecular size. The condition for the appli- 
cability of dispersion relation (53) is thus essentially the 
same as the condition which ensures the validity of a macro- 
scopic description of a micelle. 

The inequality written just above clearly holds as p-+ 0. 
In the formalism which we have been using here, this in- 
equality means that we are approaching a so-called lamellar 
phase.2 The latter consists of alternating layers of water and 
oil, which would correspond to an infinite radius of curva- 
ture of the interface, i.e., p = 0 (a  lamellar phase actually 
exists not only at p = 0 but also in some neighborhood of 
this point, because there is no interaction of the layers in our 
formalism). The growth of the micelle radius near the tran- 
sition to the lamellar phase leads to an increase in the intensi- 
ty of inelastic scattering by the micelle. According to (6) 
and ( 17), this mode softens. A lamellar phase can be con- 
trolled only if the external parameters (the pressure and the 
temperature) are chosen in a certain way, while for a vesicle 
the condition p = 0 would always hold. 

These surface modes of a droplet are analogous to the 
modes of a plane water-oil interface at which there is a sur- 
face-active substance. The dynamics of the latter case was 
analyzed by Kats and Lebedev in Ref. 13. There is a com- 
plete analogy for the case of a liquid interface. This is a natu- 
ral situation, since the interface discussed above was essen- 
tially treated as a liquid surface. As a result, terms 
(including some which depend on the curvature) which are 
invariant with respect to the choice of coordinate system 
appear in the expansion of the energy. 

As was pointed out in Ref. 13, when an order (crystal- 
line or liquid-crystal) is produced in the film some new low- 
frequency surface modes arise. They stem from a spontane- 
ous violation of the symmetry of the surface. The modes 
characteristic of the liquid film persist even in an ordered 
film; their dispersion relation turns out to be insensitive to 
the symmetry of the film. A corresponding assertion appar- 
ently holds for the surface of a micelle or vesicle. 

As we mentioned earlier, thermal fluctuations lead to a 
logarithmic renormalization of the constants of the theory. 
It would clearly be of methodological interest to examine the 
role played by thermal fluctuations in the micelle surface 
dynamics. Dynamic fluctuational contributions would be 
determined by the same interaction constant, g in (20), as in 
the static case. The role of dynamic fluctuations would ac- 
cordingly be significant at sufficiently large values of g and 
would be governing in a "random" de Gennes-Taupin phase, 
withg? 1. 
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