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The chaotic dynamics of a particle in two-dimensional periodic potentials or in potentials with 
quasicrystalline symmetry is investigated. It is shown that under conditions of deterministic 
chaos the infinite motion of a particle in a periodic hexagonal potential has the character of "Levy 
flights," i.e., diffusion motion alternating with periods of almost free motion. A connection is 
established between the random walk of the particle and diffusion in multifractals. In potentials 
with higher degree of symmetry (of the quasicrystalline type) the random walk is close to the 
ordinary diffusion process. 

1. INTRODUCTION 

The motion of a particle in a one-dimensional potential 
V(x) is an integrable problem, but starting already with a 
two-dimensional potential V(x, y) the motion is nonintegra- 
ble in general. Regions of stochastic dynamics are present in 
phase space. Their location and extent are determined by the 
form of the potential V(x, y )  and the values of the param- 
eters in the potential. We write the Hamiltonian for two- 
dimensional motion in the form 

It may define finite as well as infinite motion. If the stochas- 
tic dynamics arises in the region of the finite motion, the 
chaotic regions are localized in a finite region of the ( x ,  y )  
space. In the case of infinite dynamics, however, chaos 
means the appearance of random walk of the particle in 
space, and this phenomenon has numerous and important 
applications, which only recently have become an object of 
study. 

One of the clearest models of motion in a periodic po- 
tential is provided by the Lorentz gas: a point particle mov- 
ing among periodically distributed hard discs and reflected 
from their boundaries upon scattering according to the law 
of perfectly elastic collision. Such a system is a version of 
billiards, in which the dynamics of a particle has been shown 
to be stochastic.' The random-walk law of a particle in a 
periodic triangular Lorentz gas corresponds to ordinary dif- 
fusion, provided only that the density of the discs is suffi- 
ciently high.' 

A more complicated potential with threefold symmetry 
was considered in Ref. 3: 

V(x, y) =cos (sf yI3'") Scos (~ -y /3 '~ )  fcos (2~13'"). ( 1.2) 

In this potential there also exists a proper internal stochastic 
particle motion, not due to the action of random perturba- 
tions. It was also shown in Ref. 3 that for energies 

of passive particles when hydrodynamic or magnetohydro- 
dynamic structures are present.8-' ' To this list one may add 
the huge range of problems on the motion of adatoms above 
the surface of solids. A recent paper of the authors13 indi- 
cates one more area in which random walk due to chaos in 
periodic fields plays an important role: this is Lagrangian 
turbulence in flows with symmetry or quasisymmetry. 

In this way we face in effect a new type of problem with 
many applications. It consists in the need to investigate the 
basic properties of dynamic chaos due to motion in a 2 0  
potential. For the potential we will choose one that is en- 
dowed with q-~ymmetry '~. '~:  

v, (r) = vo 2 cos (rej), 
j - 4  

where r = (x, y) ,  and e, is a system of unit vectors forming a 
regular star. For q = 4 

V ( r )  =2V, (cos xfcos y) (1.4) 

and we arrive at a potential forming a square grid. For q = 3 
and q = 6 this potential is equivalent to (1.2). For other 
values of q (q# 1,2,3,4,6) the potential ( 1.3) has quasicrys- 
talline symmetry.14 It is almost periodic. 

The main results of our paper reduce to the following. 
For nontrivial q-values ( q# 1,2,4) the motion of a particle 
in the field V(r), Eq. ( 1.3), is stochastic and unbounded for 
energy values in a certain region AE. The random walk of the 
particle takes place inside a certain spatial region forming a 
regular web in space. 

In the article we find the dependence of the random 
walk velocity on the values of the particle energy for various 
symmetries of the potential V(r). It turns out that the ran- 
dom walk has a multifractal character, has manifest inter- 
mittency properties, and may be formalized with the help of 
a generalization of Levy's random walk. "-'' 

E<E,  -, - 0.4 the random walk is diffusive, while -for 
E > E, its character is more complicated. However, as will 2. CHAOS IN AN HEXAGONAL POTENTIAL 

be seen below, the result that a finite diffusion region exists is The dynamics in an hexagonal potential is determined 
not confirmed. This is due to the action of chaos mechanisms by the Hamiltonian ( 1.1 with the potential ( 1.3 for q = 3: 
in such models. Certain other periodic potentials were con- 3 

sidered in Refs. 4 and 5. 1 2n 2n 
The appearance of chaos in the dynamics of particles in H ,  = - ( p ; + p ~  + z c o s  (I cos-j+y sin-i ). 

2 
j= 1 

3 3 
periodic potentials has numerous applications in various 
physical problems. Interacting multiplets of waves in a plas- 

(2.1) 
- - - 
ma produce very similar conditions for the motion of parti- The potential V, has saddle points for values of the energy 
~les .~. '  Similar problems occur in the analysis of the motion E, = - 1. For E < 1 the motion of the particle is confined to 
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one of the potential wells. The motion near the bottom of the 
well is found by expanding V, about the minimum where 
V, = - 1.5. We have 

accurate to terms small to higher order. The potential (2.2) 
is analogous to the Henon-Heiles model." The stochastic 
dynamics of the particle is due to the nonlinear coupling of 
two degrees of freedom in (2.1 ) and (2.2). Therefore chaos 
is possible even for E < E, (Fig. 1 ) . In that case, however, 
the particle does not execute random walk along the poten- 
tial grid. 

For E3 = - 1 special trajectories of the system (separ- 
atrices) pass through the saddle points and cover the plane 
by a triangular net. If E >  E,, it becomes possible for the 
particles to "percolate," with their spread in the (x, y )  plane 
becoming unbounded. Such percolation may be random as 
well as regular in character. This depends on the particle 
energy. In Fig. 2 an example if shown of a random walk in 
the (x, y )  plane for E = - 0.95. In Fig. 2a equipotential 
lines for V3 (x, y )  are shown, i.e., points satisfying the condi- 
tion V,(x, y )  = - 0.95. The region bounded by them deter- 
mines the random-walk zone, which is given in Fig. 2b. Ev- 
ery point on it refers to one and the same trajectory at an 
instant time when the trajectory crosses the (x, y )  plane 
with p, = 0 and p,, > 0 (Poincark section). A magnified de- 
tail of the Poincart section is shown in Fig. 2c. Analogous 
results for E = 0.01 for equipotential lines for V,(x, y )  and 
Poincart sections of the trajectories in the (x, y )  plane are 
shown in Fig. 3a and 3b, respectively. 

The energy value E, =. 5.5 turns out to be critical and for 
E > E, chaotic random walk has not been observed. In gen- 
eral the energy region in which stochastic dynamics occurs is 
determined with the help of the Kolmogorov-Sinai entropy 
h.  Let d ( t )  be the distance between two trajectories in phase 
space 

FIG. 1. Structure of the surface section in the ( x , p , )  plane for finite 
motion in the hexagonal potential, E = - 1.1 < E, . 

where the coordinates xi,  y, and momenta p,,, p ,  are taken 
at the time instant t .  Then the quantity h is defined by the 
expression 

1 
h = lim lim - 

t -rm ~ ( o ) + o  t 

where the averaging is over different trajectories. In the cal- 
culations we have taken d ( 0 )  = lo-" and the time t not very 
large. The results of the calculations are shown in Fig. 4 
(solid curve). The region of existence of chaos is fairly broad 
and exceeds significantly the height of the potential barrier 
v, = 3. 

Let us stop to consider the particle's random walk in the 
plane in the case when its energy is in the region in which 
chaotic motion and percolation are allowed. Let 
r = (x2 + y2)  ' I2 .  Numerical calculations show the random- 
walk law to be 

where D and b are some constants depending on the value of 
the energy E. F o r b  = 0 we have ordinary random walk with 
Gaussian distribution up to the point r. However, as can be 
seen from the values of D and fl below, ordinary diffusion is 
absent: 

In the case of free motion the parameter 0 in Eq. (2.4) 
equals 1. Therefore the results (2.5) indicate that the ran- 
dom walk in the potential V, (x,  y )  is intermediate between 
free motion and diffusion. The best description of this mo- 
tion is provided by Fig. 5. It shows points (particle posi- 
tions) at instants of time corresponding to the Poincart sec- 
tion (i.e., positions at times when p, = 0, p, > 0). Long 
flights of the particle can be seen, whose length reaches - 3 0 0 ~ .  The existence of such flights allows the classifica- 
tion of the process as Levy random walk ("Levy flights"). 
The reason for the appearance of long flights is the presence 
in the plane of channels along which the potential V, (x, y )  
has very little influence on the dynamics of the particle. For 
example, for the Lorentz gas the existence of such channels 
is obvious. In turn such channels appear as a result of the 
symmetry of the problem. We shall discuss Levy flights in 
Sec. 4. 

3. CHAOS IN A POTENTIAL WITH QUASISYMMETRY 

The last remark of the preceding section indicates the 
important role played by symmetry in the character of sto- 
chastic dynamics. As a next step we consider the almost- 
periodic potential V, defined by Eq. ( 1.3). For q = 5,7,8 ,... 
it defines a field with quasicrystalline ~ y m m e t r y . ' ~ . ' ~ . ' ~  We 
give below numerical results for q = 5. The dashed curve in 
Fig. 4 shows the dependence of the entropy h on the energy 
E. Chaos exists in a very broad interval from E = - 1 to 
E-27, although max V,(x, y )  = 5. For E = 1 we have a 
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FIG. 2. Spatial diffusion in the hexagonal poten- 
tial for E = - 0.95 > E,: a )  level lines for the po- 
tential ( 1.2). Square size 2Oz-X 20n; b) structure 
of the surface section in the (x, y) plane. Square 
size 70z-x 7 0 ~ ;  c )  structure of the surface section 
of one cell in the ( x ,  y )  plane. 

FIG. 3. Infinite motion in the hexagonal potential 
for E = 0.01 > E,: a)  potential lines; b) structure 
of the surface section of one cell in the ( x ,  y) 
plane. 



FIG. 4. Kolmogorov-Sinai entropy as a function of the particle energy in 
the potential ( 1.3); q = 3-solid line, q = 5--dashed line. 

potential barrier encompassing the center (Fig. 6).  There- 
fore the random walk is bounded by the region of this bar- 
rier. For E > 1, however, percolation occurs, resulting in un- 
bounded random walk in the plane. 

For the random walk law (2.4) we obtainp = 0.02 for 
E = 1.13. This shows that it is very close to ordinary Brow- 
nian motion. The quasicrystalline symmetry is substantially 
higher than ~ r y s t a l l i n e , ' ~ ~ ' ~  and this is right away reflected in 
the disappearance of long flights of the particle. 

4. LEVY FLIGHTS ON MULTIFRACTALS 

A peculiarity of the Levy process consists of the signifi- 
cantly faster excursion of the particle ("flight") than in the 
case of Brownian motion. Therefore the quantity (?)/t  is 
proportional to t a (a > 0), and not to a constant ( d  = 0).  
This means that the quadratic variation of the coordinate in 
one step of the random walk tends to infinity with increasing 
t, i.e., as the particle moves farther and farther away. The 
formal expression of this fact arises as f o l l o ~ s . ~ ~ ~ ~ '  

Let { be a vector determining the state of the particle in 

FIG. 5. Chaotic random walk with intermittency in a hexagonal poten- 
tial. Structure of the surface section in the ( x ,  y )  plane for E = 2.0. 
Square size 1400.rrX 14007. 

FIG. 6.  Diffusion localization by the ring-like energy barrier of the po- 
tential V,. Particle energy E = 0.99. Square size 2 0 7 7 ~  2077. 

the random-walk space, and p, (6) the probability that the 
value { is realized at the time instant t. The random-walk 
equation is of the form 

where W ( 5  - 6 ' )  is the transition probability, depending 
only on the difference of the states. We make use of the Four- 
ier expansions 

where 

With the help of the relations (4.2) and (4.3) the ran- 
dom-walk equation (4.1 ) takes the form 

It is readily solved and gives with the initial condition 

the result 

pt(k)=[W(k) I '=exp{t In[ l+kWkl(0) +k2Wkk"(0)/2+ . . .I ). 
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It is not hard to see from (4.3) that 

Without loss of generality we may set W ;  ( 0 )  = 0 and then 
(4.5) becomes, with (4.6) taken into account, 

pt ( k )  =exp{-tk2(g2>/2+. . .). (4.7) 

Introduction of (4 .7 )  into (4 .2)  gives the answer. For t -+ co 

the contribution to the integral (4 .2 )  forp, (6) is determined 
by the limit k - 0  so that the expression (4 .7 )  is sufficient to 
obtain the well-known answer 

However, for processes when "flights" are possible the 
expansion for W ( k )  has an entirely different form: 

W ( k )  =exp ( _ C k a )  (k>O) , (4 .9)  

where a and Care some constants and the remaining terms 
in the expansion are omitted to simplify the notation. 

If the exponent a is contained between the limits 
1 < a  < 2 then formula (4.9) determines a random walk in 
the velocity interval between free motion ( a  = 1 ) and dif- 
fuse motion ( a  = 2 ) .  Now (4 .5)  takes the following form 

pl ( k )  -exp(- tCkz)  (4.10) 

where (4.9) and the first of Eqs. (4.6) were taken into ac- 
count, and a corresponds to the dimension of the fractal 
consisting of the points of the random walk.21 

Using the first formula (4 .2)  and (4.10) we obtain 

2 I  

p,  ( g )  = J dk exp ( - i k ) - t cka)  . (4.11) 
0 

From here follows the similarity law 

( 5  ") t .  (4.12) 
For a = 2 formula (4.12) defines diffusion, for a = 1 it de- 
fines free motion, and for 1 < a  < 2 it defines Levy random 
walk in a fractal. 

In reality the situation with respect to random walks in 
a two-dimensional potential V(x, y)  is more complicated. 
Real systems experiencing chaotic dynamics are not fractal 
but multifractal (see Refs. 22-24). This means that in for- 
mula (4.9) for the transition probability not one but at least 
several values for the exponent a appear. Let us carry out the 
corresponding generalization. 

Let the random walk of the particle proceed in some 
multifractal manifold S. In rough terms this means the fol- 
lowing. The full trajectory of the system may be broken up 
into certain segments, each of which belongs to a submani- 
fold (fractal) S, . The manifold S consists of all the fractals 
S,.  We shall suppose that these segments of the trajectory 
are sufficiently long and will ignore transitions from one 
fractal S, to another S,. . Then the random walk equation 
(4.1 ) may be replaced by the following equation: 

E' 

where a, is the characteristic of the fractal exponent in the 
transition probability W ( k , a ,  ) at the instant time t: 

W ( k ,  a t ) = e x p [ - C ( a l )  kat] (k>O). (4.14) 

The expression (4.14) is the generalization of formula (4 .9) .  
Performing in (4 .13) ,  as before, a Fourier transform in 

6 we obtain analogously to (4.5) 

The summation in the argument of the exponential in 
(4.15) can be carried out in the spirit of the general theory of 
averaging on mul t i f ra~ta l s .~"~~ To this end the terms in the 
sum should be regrouped so as to unite all those that have the 
same value of aj, i.e., that belong to the same fractal. 

Let us denote by nu the total number of steps in the 
random walk which proceed in the fractal S, in the sum in 
(4.15).  We may then introduce the numberp(a) of fractals 
whose exponent lies in the interval ( a , a  + d a ) .  We have, by 
definition of n ,  : 

t  = n.=t z n a / r = t  J d a  ( a ) .  

Formula (4.16) shows how to introduce integration 
over the normalized density p ( a ) ,  and (a,,a,) is the range 
of variation of the exponent a .  In analogy with (4.16) we 
obtain from (4.15) 

pi  ( k )  = e r p  [- z n a c  ( a )  k a ]  

If the functiop C ( a )  does not change sign in the region 
(al ,a2) then (4.17) can be represented in the form 

p , (k )  =exp(-const t k E )  , (4.18) 

where 'ZS is some average value of a. 
Expression (4.18) determines the asymptotic random 

walk law 

( lg l  )-tiJZ. (4.19) 

If, for example, there are altogether several different 
fractals S, forming the full manifold S, then 

Therefore (4.17) takes on the form 

where C, are some new constants. Expression (4.20) deter- 
mines several different intermediate asymptotics 

To smaller values of a, correspond asymptotics which 
occur at longer times. Therefore for t -+  co the asymptotic 
that survives is 
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Formulas (4.21) and (4.22) show why there exists a 
great variety of random walk exponents, depending on the 
nature of the problem. In particular, the observed strong 
dependence on the particle energy and the symmetry of the 
potential is naturally explained by differences in the chaotic 
dynamics. The determination of the relation between the ex- 
ponents a and the distributionsp(a) with the concrete prop- 
erties of the dynamic system presents a much more complex 
task. 

CONCLUSION 

In conclusion we note what are, in our opinion, the prin- 
cipal results of general character of this work. The numerical 
analysis of the particle dynamics in a periodic hexagonal 
potential has shown the existence of the anomalous nature of 
the random-walk process, accompanied by the intermit- 
tency property. The process under consideration is signifi- 
cantly different in this way from the ordinary model of 
Brownian motion. Investigation of such random walks is 
needed for an understanding of the properties of dynamic 
chaos and turbulence in liquids and plasma. 

The intermittency phenomenon in nonintegrable sys- 
tems is related to the multifractal nature of the dynamics of 
such systems. The phase space of the Hamiltonian system is 
constructed in an extraordinarily complicated manner. It 
contains an infinite hierarchy of different regions of regular 
and chaotic motion and cantori. Cantori are fractal objects, 
which appear in place of distorted invariant tori. They are 
localized in the chaotic region, mainly near the boundary 
with a region of regular motion, and play the role of a kind of 
trap or barrier that is hard to traverse by a particle. Upon 
penetration of such a barrier a particle may find itself for the 
duration of a rather long time in a regime of almost free 
motion. Averaged over a long interval of time the motion 
becomes as if intermediate between diffusion and free. It is 
important to emphasize that anomalous processes of this 
kind, connected with the multifractal nature of the dynamics 

of nonintegrable systems, are to a larger or lesser extent com- 
mon to a majority of dynamical systems with chaos. There- 
fore the investigation of the properties of the random walk 
permits a deeper understanding of certain fine points of de- 
terministic chaos. 
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