
Lyapunov instability of MHD equilibrium of a plasma with nonvanishing pressure 
V. A. Gordin 

Hydro-meteorological Research Institute of the USSR 

V .  I. Petviashvili 

I. V .  Kurchatov Atomic Energy Institute 
(Submitted 16 December 1988) 
Zh. Eksp. Teor. Fiz. 95,171 1-1722 (May 1989) 

We use a new functional series of first helicity integrals to obtain sufficient conditions for 
containing an ideal plasma in a magnetic trap. I t  is pointed out that in configurations satisfying 
these conditions almost the whole of the magnetic field is produced by currents in the plasma and 
that the toroidal field is of the order of the poloidal one. The pressure and the safety factor are 
increasing functions of the helicity density. The longitudinal current at  the edge of the plasma is 
nonvanishing: the pressure and the helicity density, and also their gradients do vanish. We give a 
comparison with experiments. 

1. INTRODUCTION extremals, i.e., as solutions of the Euler equations for the 

Stability in the ideal magnetohydrodynamics ( M H D )  
approximation occupies an important place in the problem 
of the confinement of a plasma by a constant magnetic field. 
A definition of the stability of the stationary point of a sys- 
tem of ordinary differential equations with a clear physical 
meaning was proposed by Lyapunov.' He proposed a suffi- 
cient condition for such a stability based upon verification of 
the properties of the extremal points of a function, the so- 
called Lyapunov function, defined in the phase space of the 
system. 

The ideas of Lyapunov's theory for partial differential 
evolution equations, i.e., in the case of an infinite-dimension- 
a1 phase space, began to evolve in the Fifties, but they were 
extended to applications to the hydrodynamic equations 
only in the Seventies (see Refs. 2-4 and the citations there- 
in).  At that time linear MHD theory, which studies the nec- 
essary conditions for stability, had already been well devel- 
oped (see, e.g., Refs. 5 , 6 ) .  In the case ideal M H D  the linear 
theory indicates a set of equilibrium states for which all fre- 
quencies of the linear oscillations are real. It is well known' 
that this is only a necessary, but not a sufficient condition for 
the stability of the original nonlinear system. For instance, it 
does not take into account the possibility of a thresholdless 
instability caused by the interaction of three or  more linear 
waves in an inhomogeneous medium. Such a nonlinear insta- 
bility is possibly observed in linearly stable flows of water. It 
is well known that according to the linear theory the instabil- 
ity of laminar flow must start with Reynolds numbers Re 
larger than 5800. Experimentally, the stability starts with Re 
- 2000. This is apparently connected with a nonlinear insta- 
bility which is not found in the linear theory. 

Interest attaches therefore to the task, undertaken in 
the present paper, of distinguishing, in the set of linearly 
stable plasma states, a narrower class satisfying the suffi- 
cient conditions for stability. The focal point of Lyapunov's 
theory is finding the appropriate Lyapunov function (func- 
tional). We find here that for this purpose a functional series 
of first integrals, connected with helicity,'-lo turns out to be 
useful. The stationary solutions of the M H D  equations 
which are checked for Lyapunov stability are obtained as 

appropriate Lyapunov functionals. The class of equilibrium 
solutions is thereby restricted-we cannot select the neces- 
sary functional for any arbitrary solutuion of the Grad-Sha- 
franov equation.' 

The next step consists in checking the strict positive- 
definiteness of the second variation of the Lyapunov func- 
tional in the vicinity of the extremal. There appear here diffi- 
culties connected with the infinite-dimensionality of the 
phase space. These are the possibility of a continuous spec- 
trum for the Jacobi equations with coefficients which have 
poles on resonance surfaces, and the diverse definitions of 
positive definiteness and of strict positive definiteness. 

Earlier, Taylor" proposed to find stable states, basing 
himself on intuitive considerations, by minimizing the func- 
tional 

1 (B2+kAB)d3r ,  B = rot A,  k = conrt (1) 

where AB is the helicity density and A the vector potential of 
the magnetic field. Minimization leads in this case to stable 
force-free (pressure p = const) configurations. Here varia- 
tions in the pressure are neglected, which is valid provided 
there exists in the plasma a mechanism for a fast equilization 
of the pressure. 

At the extremals of ( 1 ), in a cylindrical or toroidal ge- 
ometry, the longitudinal magnetic field can change sign 
("turn"). 

Using the more general helicity integral7-" makes it 
possible to construct a Lyapunov functional which has an 
extremal with non-vanishing pressure gradients. 

2. ENLARGINGTHE SET OF MHD EQUATIONSAND HELlClTY 
INTEGRALS 

The ideal M H D  equations: 

a,B=rot [v, B], div B=O, 
dtp+yp div v=O, a,p+div pv=O, (2 )  

pd,v=- V p +  [rot B, B]/4n 

( y  is the adiabatic exponent, the remaining notation is the 
normal one) possess the following first integrals (respective- 
ly, the components of the momentum, the energy, the cross 
helicity, and the "entropy series"): 
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B2 P p u 2 )  J pv d3x, w = j (- + - + - a3x, 
8n y - l  2 

where f is an arbitrary function, Dan arbitrary fluid volume; 
we assume that if the integration domain is not specified, 
integration is carried out over the whole volume Vinside the 
conducting sheath. 

On the boundary aVwe assume here that the conditions 
of impenetrability and infinte conductivity are satisfied: 

where n is the normal vector to the boundary. 
From the first equation of the set (2)  it follows that 

where q, is an arbitrary function. 
It is shown in Ref. 12 that for any gauge or, which is 

approximately the same, any choice of the function q, the 
functional .f A.B d 3x is a first integral of the set (2) .  

To generalize this integral we supplement the set (2)  by 
an equation for a new unknown function X: 

dtx+vVx=cp-Av. (6) 

We define the helicity density by h  = ( A  + v .Vx ,B) .  One 
shows easily that it satisfies a continuity equation 

Hence it follows that the quantity ,LL = pl'Y / h  is conserved in 
particles: 

For the enlarged set of Eqs. (2 )  and (6)  there exists a func- 
tional series of first integrals 

where F is an arbitrary function of two variables. We note 
that this conclusion differs from the conclusion of Refs. 7-10 
where the gauge x = 0, q, = A-v was assumed in order to 
satisfy the continuity of h. Simultaneously with this, they 
assumed in Ref. 13 a "Lagrangian" gauge which also guar- 
antees that the continuity equation is satisfied for the heli- 
city. It follows from Ref. 13 that for the gauge q, = A-v Eq. 
(5)  with a given v can be integrated in Lagrangian coordi- 
nates. 

3. LYAPUNOV FUNCTIONAL 

As the Lyapunov functional we use a first integral in the 
form of the sum of the energy and the helicity 

We can put here h = A.B and minimize both with re- 
spect to the potential and with respect to the rotational part 
of A. We choose the function F in  the form 

where c,, c,  = const, andg will be defined later. For the sake 
of simplicity we assume that there is no vacuum region, 
D = V. The boundary condition (4)  is assumed also to be 

satisfied by the variations. Minimizing (9)  with respect to v 
we find that equilibrium is realized, if there is no motion: 
v = 0. To obtain a minimum with v # O  we can add to (9)  the 
first integrals ( 3 )  in which the velocity enters linearly. 

Further minimizing the functional with respect to the 
variablesp for v = 0, we get 

The condition that (9)  is positive definite with respect to the 
variablesp and v for c,h > 0 is satisfied; the helicity density h 
has a constant sign for the extremal of (9) .  

Minimizing the functional with respect to the pressurep 
we get the Euler equation: 

y;+(y-l)g'(p) =o, p=pilT/h, 

where the prime indicates differentiation with respect to the 
argument. Hence it is clear that in equilibrium the pressure 
also is a function solely of the helicity: p = p  ( h ) .  

Finally, varying with respect to A we get the Euler 
equation: 

j+2GB+ [ V G, A] =0, j.=rot B/4n, 
~=~-pg ' -c ; /4~, .  (11) 

Acting on Eq. ( 10) with the gradient operator and on 
Eq. ( 1 1 ) with the divergence operator we get: 

Taking the vector product of ( 1 1 ) with A and using 
( 12) we get the equilibrium condition 

which we might have obtained directly from (2) .  However, 
the set of Euler equations ( lo) ,  ( 1 1 ), together with the con- 
dition ( 13), imposes on the current: 

an additional constraint that is obtained by taking the scalar 
product of ( 11 ) with A. Hence, not any arbitrary equilibri- 
um plasma configuration is an extremal of any functional L.  

Turning to a study of the second variation of L we see 
that one can easily eliminate algebraically by minimization 
the density and velocity variations Sp and Sv from 

where h ,  = A.SB + B.SA, h,  = 6A.SB. One can after that 
eliminate the variation 6p only under some restrictions. 
Moreover, we note that one can have such SA that SB = 0, 
h,  = 0, h ,  $0. From the condition that S2L be positive there 
also follows restrictions in this case. Combining these re- 
strictions' we get 
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Here the surfaces on which equality is reached in ( 15) 
need further study. They are connected with the possibility 
of a continuous spectrum of the problem and the necessity to 
introduce norms accurately such that strict positive definite- 
ness can be proved: 

If equality is reached in ( 15 ) in an open region, the second 
variation is only non-negative definite, and Lyapunov's 
theorem is inapplicable. In  the examples considered by us all 
inequalities in ( 15) are rigorous except at the boundaries dV 
of the region. In view of (10) ,u = p ( h )  and we can intro- 
duce a new funtion U = U(h) such that 

U'(h)  =4nG (p ( h )  ) . 

It then follows from ( 10) and ( 12) that 

4np = jhu l /  dh. (16) 

After we have eliminated Sp by minimization we get a 
quadratic functional which depends solely on SA. We intro- 
duce a contracted functional 

such that when ( 15) is satisfied the conditions of strict posi- 
tive definiteness for S2L and S2 Y are equivalent. 

Further, we shall choose the function U such that the 
contracted functional be strictly positive definite and that at 
the extremals inequality ( 15) is satisfied. 

Varying the functional Y with the boundary condition 
in A that nB I ,, = 0, we get an Euler equation which is equiv- 
alent to (11): 

rot B+2U'B+[VU1, A] = O .  (18) 

Through variations in the vicinity of the boundary one 
might obtain additional conditions of transversality for A. 
However, in view of (4) ,  this does not occur, as n.SB/ , ,  = 0 
and the integral over the surface dV which appears in SY 
vanishes identically. 

We have already indicated that the p component of the 
extremal is proportional to the helicity h corresponding to 
the extremal, while the pressure component is given by Eq. 
(16). The extremal, i.e., the plasma configuration corre- 
sponding to it, is thus given by the choice of U and the form 
of the casing. The equilibrium state must satisfy the thermal 
insulation condition-the condition that the plasma tem- 
perature be zero at  the boundary with the casing, whence 

Using ( 15) and ( 16) it thus also follows that 

hlav=o, n Vpl,,=O, nVhJav=O, 
h 

4np = J ~ u *  dh. (20) 
e 

To check the strict positive definiteness, 

explicitly dependent on the extremal, in the vicinity ofwhich 
we study the strict positive definiteness, 

In  that case 

a = a (h ) is chosen from convenience considerations and we 
factorize the space of L ' ( S A )  with respect to the kernel of 
this functional. 

The Jacobi equation has the form 

rot 6B+ZU'6B+[ VU' ,  6A] +U"h,S 
+ curl(U"h,A) =O.  

The study of the strict positive definiteness of S2Y can 
easily be completed if the casing and the extremal of A have a 
symmetry. We shall consider below cylindrical and axial 
symmetries. 

4. STABILITY OF A CYLINDRICAL CONFIGURATION 

We give here briefly the results of Ref. 10. As the extre- 
ma1 depends only on r, it is convenient to specify the function 
6 ( r )  = U ' ( h )  rather than U', where {r,p,z) are cylindrical 
coordinates; we assume that the helicity h of the extremal is a 
monotonic function of the radius. 

We can consider a more complicated case on non- 
monotonic functions 6 ( r )  and h ( r ) ,  i.e., non-single-valued 
function 6 (  h ) .  In that case the variation of L must be carried 
out also on the boundaries of the regions in which different 
branches of g (,u ) are used. 

The radial component of the extremal is A, = 0. For 
r = O w e p u t A ,  =Oandd,A, = O .  

The Euler equations ( 18) have the form 

In view of the cylindrical symmetry of the extremal we 
can expand the variation (all the components) in a twofold 
Fourier series with coefficients depending on the radius: 

6Aa = X a , , . ( r )  exp[i(mcp+kz) I ,  a=r,  c p ,  2. 

k.m 

We can then obtain for b = b(k,m) = SB, from (22) 
with k * + m2 > 0 one second-order differential equation that 
depends on the parameter k and m. 

1 
d:b + - r, d,b= (r,. + r s l ~ , + r , l ~ 1 2 )  b, 

r 
(24) 

where 

we must make the choice of the norm in the space of the 
perturbations SA more precise. We choose the norm to be 

m 
oi= (m-nq) B,lr, a, = - B,-kB, 

r 
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( I  is the length of the cylinder, n = kl/2rr, and q = 2rrrB,/ 
IB, is the safety factor). When k = m = 0 the equation has a 
different form. From the factorization condition (see Sec. 3) 
it follows that we can restrict ourselves here to the case 
SA, = 0. 

After we have solved Eq. (24) the components a,,,,,, 
can be expressed uniquely in terms of the b (k,m ) . 

The condition for local stability (the absence of a con- 
tinous spectrum for the Jacobi equation (24))  at the reso- 
nance point i (i.e., when a, ( i )  = 0 )  are obtained for large 
k + m2 in a similar way as the Suydam stability criterion6 
and consists in requiring the absence of oscillations of the 
solution b in the vicinity of the point r = i. One can show 
that this condition is the same as the Suydam criterion ob- 
tained from the energy principle,(' which in our notation has 
the form 

We recall that we consider a narrower class of equilibri- 
um configurations than usual. We note that 1 does not occur 
in either the Euler equations (23) or in the resonance-stabil- 
ity criterion (25).  The right-hand side of (25) is, in view of 
( 16), proportional to d,p. Hence and from ( 15) and ( 16) it 
follows that if the plasma pressure decreases monotonically 
from the center to the edge, we also have 1 d, q 1 # 0. In order 
to estimate the sign of this derivative we consider the asymp- 
totic behavior of the extremal in the vicinity of r = 0: 

where B,, $, , and c,  are arbitrary constants. Using (25) we 
find that Iq(r) I is a strictly decreasing function. 

Because of the boundary condition we have b(r, ) = 0, 
where r, is the radius of the cylinder. If in some point r < r, 
the solution of Eq. (24) vanishes, the points r and r, will be 
conjugate and, hence, the second variation S2 Y is not posi- 
tive definite. l 4  

If we specify the function $(r),  we can use (23) to de- 
termine the equilibrium state corresponding to it. It must 
satisfy (this must be monitored during the calculation) the 
necessary conditions ( 15) and (25). After this we use (24) 
to determine whether the extremal studied satisfies the suffi- 
cient stability conditions. 

From the condition that the solution of (23) and the 
inequality (25) be smooth it follows d, $ = O(r3) that in the 
vicinity of the axis of the cylinder. The smoothness condi- 
tions are not trivial: solutions of (23) are possible, which, 
moreover, are stable, but have as r- + w a power-law 
asymptotic form, different from (26),  with a non-integer 
exponent. 

From the conditionp = 0 at the boundary of the plasma 
and the first inequality of ( 15 ) it follows that as r- r, 

When solving the Cauchy problem for the system (23) from 
the center, we get as usual, a = 2. The quanitity d, 6 on the 
boundary can then be finite. 

Numerically solving (23) under those conditions from 
the center to the edge, we could not get the function B, ( r )  to 
vanish before h ( r )  . This possibly means that for a monotonic 
pressure gradient there is no turning of the magnetic field. It 
is in this connection of interest to analyze the Taylor case" 

where U'  = const. This case is exceptional and does not al- 
low us to take the limit as U "  -0. Indeed, in the Taylor case 
the extremals do not need to satisfy the boundary condition 
d, h = 0, since Vp = 0. 

We show in Fig. 1 a typical computer solution of Eqs. 
(23) for 8 ( r )  = 1 - 0.004r4 - 0.0013r6, satifying the Lya- 
punov stability conditions, as checked, apart from ( 15) and 
(25), by the solution of Eq. (24) with lrn 1 = 1 and 2. The 
parameter k was chosen such that in the points r~[O,r,  ] 
there was resonance, k = mq(r).  The resonance points were 
chosen particularly close together near the edges r = 0 and 
r = r b '  

In numerical experiments for stable configurations it 
was possible to obtain a maximum ratio of the plasma pres- 
sure to the magnetic pressure on the axis of the column up to 
7.5% (see Fig. 1 ) . It is clear that the azimuthal field is of the 
order of the longitudinal one and that the current at the 
boundary of the plasma, though small, does not vanish. 

5. AXISYMMETRIC TOROIDAL CONFIGURATIONS 

We study now more general extremals which depend 
not only on r but also on z. Since the magnitudes of the longi- 
tudinal and azimuthal field components are of the same or- 
der in the cylindrical configuration, it is possible that here 
too the toriodal and poloidal fields will be of the same order. 
In that case it is impossible to expect a qualitative difference 
from the cylindrical case, as occurs in tokamak type systems. 
In the latter the poloidal field is always much smaller than 
the toriodal field which is almost completely sustained by 
the external current. 

A numerical experiment showed that the magnetic field 
in configurations constructed by the method described 
above is produced mainly by the currents in the plasma. 

We express the magnetic field and the current in the 
cylindrical system of coordinates {r,p,z) in terms of Stokes 
potential. We write $ = - rA-e. Hence 

rB= [e, V$] +el ,  BC$=O, (27 

where e is the unit vector in the azimuthal direction, and $ 
and I are arbitrary functions. 

FIG. 1. Components of the extremal fora cylindrical plasma in a system of 
units where Q(0) = 1 and B, (0) = - 1; 1)  A ,  ; 2)  A ,  - 7 ;  3 )  B v ; 4) B 2 ,  . 
5 )  curl, B; 6 )  curl,B/2; 7 )  q; 8) p.10'. 
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It follows from ( 2 7 )  that 

rcurlB=-[e, VI] +eA$, 

A=ra,r-Vr+a,2. ( 2 8 )  

Substituting ( 2 7 )  and ( 2 8 )  into ( 1 4 )  and ( 1 3 )  we find 
that I, h, andp are locally single-valued functions of $. This 
means that if in the points ( r , , z , )  and (r2 ,z2)  the function $ 
takes on the same values, but these points are separated by 
closed iso-$ lines, the functions I,  h, andp can take on differ- 
ent values. In the numerical examples considered below the 
function $ has no saddle points and the concepts of local 
single-valuedness and single-valuedness are the same. 

Moreover, it follows from ( 18) that the function $ sat- 
isfies the Grad-Shafranov equation which in our case has the 
form 

and the easily integrable equation 

also follows. Here and henceforth a dot indicates differenti- 
ation with respect to $, u = 0 (  $). There is thus in Eq. ( 2 9 )  
one arbitrary function, O ( $ ) ,  rather than two as usual.'j 

In view of the axial symmetry of the problem, the 
boundary condition ( 4 )  is equivalent to the condition 

We determine the vector potential A. This is a single-valued 
vector field, continuous in the region V, such that the current 
j is finite everywhere in V. 

We change to an orthogonal set of coordinates ($,9,<), 
where 9 and < are, respectively, the poloidal and toroidal 
angles. The components of the metric tensor are 

and 

It follows from ( 12) and (27 that h  = h  ($1 and, by defini- 
tion, we have 

where V i  = 1 i- lai is the ith component of the gradient in the 
($,a,<) coordinate system. The third component of the 
magnetic field is 

As A is single-valued we have 

and, in view of ( 33 ) , we find 

where 

We note that 2 ~ $ M , d $  = V is the volume inside the 
$ = const surface, @ = $IM,d$ the toriodal magnetic field 

flux, x = 2 4  the poloidal flux, and $, the value of the func- 
tion $ on the magnetic axis; q = IM2/2a  = d ,  @. Equation 
( 3 2 )  now gives a relation between h and q: 

From ( 3 2 ) ,  ( 3 3 ) ,  and ( 3 5 )  we get a unique expression for 
the components of the vector potential 

4 

As we assume the current on the magnetic axis to be finite, it 
follows that the component A, must be a differentiable func- 
tion. As I ,  = l/lV$I has a pole on the magnetic axis, while 
M ,  is finite, we must put on the axis, where $ = $, 

We can rewritei5 the Grad-Shafranov equation in the vari- 
ables ($,a),  assuming r  andz to be unknown functions, if we 
introduce yet another function p = p ($,a) : 

where 

In the vicinity of the magnetic axis the following asymp- 
totic expressions hold: 

h=-$J($,) +0 (57, q=-I/ (0 (qC)R)+O ( E 2 ) ,  
r=R+kE cos 1Yf0 ( t2) ,  z=ke sin .6+0 (z2), 

y=E21R+0 (E3), me g=[2 ($--%) I"', 
k2=-l/[ 0 (Qc) I (I$,) I >0. (38) 

We chose the function 0  in the form 
8 ( $ )  = c, - c,($ - $, ), with the normalizing condition 
c, = 1. In view of ( 15 we have at the boundary 

The system ( 3 0 ) ,  ( 3 4 ) ,  ( 3 7 )  is of the elliptic type. The 
set ( 3 7 ) ,  which is equivalent to the Grad-Shafranov equa- 
tion, was solved in Ref. 15 for a given shape of the casing. In 
our case are imposed "additional" conditions ( 3 9 ) ,  and this 
raises difficulties in the solution of problem ( 3 0 ) ,  (341, 
( 3 7 ) - ( 3 9 ) .  We solved the Cauchy problem for ( 3 0 ) ,  (341, 
( 3 7 )  under the initial conditions ( 3 8 ) ,  with smoothing with 
respect to the variable 9. The shape of the casing is then 
obtained in the course of the solution. 

The parameter c,  was chosen for R = 3.5 in the range 
1 ($, (256 for I ($ ,  ) = - 1 by a hit-and-miss method: inte- 
gration of the set ( 3 0 ) ,  ( 3 4 ) ,  ( 3 7 )  was stopped either when 
h ( $ )  = 0  or when h ( $ )  = 0. 

We show in Fig. 2  the functions I, h, andp correspond- 
ing to $, = 16. It is clear that, just as in the case of the 
cylinder, we obtain solutions of the type of a diffusion pinch 
with a longitudinal field, and not of the tokamak type. 

We show in Fig. 3  the distributions of the toroidal and 
poloidal components of the field and the current. Moreover, 
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FIG. 2. Profiles of surface functions for a torus with +, = 16, R = 3.5 in a 
systemofunitswhereB($,) = l , I ($ , )  = - 1: 1 ) p 1 0 2 ; 2 )  - 1 ; 3 )  h ; 4 )  
- q. 10. 

FIG. 3. lsolines in the ( r , z )  plane: a )  poloidal magnetic field; b) toroidal 
magnetic field; c )  poloidal current; d )  toroidal current. The magnitudes 
of the corresponding parameters are shown by the fractional numbers on 
the isolines. 

we performed experiments with other values of $, . In partic- 
ular, we found that 0 = p ( $ ,  ) /2R increases with increas- 
ing $, and is stabilized at a level of - 14%. The graphs ob- 
tained are rather well approximated by the functions 

~ 1 . 1 ,  P-0.14-0,149,-', 6$=$0-$,- 
%0.73-0.11$c-t, 

I ($*)  ~-0.055$c-', q (%b)  ~ - O . I I ~ c - ' .  

To check the strict positive definiteness of s2Ywe must 
study the analog of Eq. (24);  in the case of a toroid this is 
already a partial differential equation that depends on a sin- 
gle parameter-a Fourier expansion is possible only with 
respect to the variable {. In the experiments described above 
we restricted ourselves to less-to Mercier's criterion": 

where v = IHrp2 .  
Of course, this is not a complete check which can, for 

instance, be carried out by minimizing S2Y under the condi- 
tion llSA 1 1  = 1. 

When we take dissipative effects into account, in first 
instance the finite conductivity, we must restrict ourselves to 
those extremals of the functional L on which d, L [X(t) ] <0, 
where the derivative a, X is calculated already by means of 
the dissipative set of equations. 

6. COMPARISON WITH EXPERIMENTS 

The main object of the present paper is to show that the 
stability conditions which we obtained are not too rigid and 
that they can be satisfied. The configuration examples ob- 
tained here (i.e., stabilized pinches in which B, - B,, B, #0, 
and q < 1 and decreases montonically towards the edge) had 
been already been considered in Ref. 17. Amongst them is 
the well known ZETA installation. At the present time the 
installation closest of all to it with a "supersmall" q is Re- 
pute-1 at the University of Tokyo." The aspect ratio in it is 
82 cm/22 cm, the electrical current 350 kA, the temperature 
350 eV, and the relative pressure 5-1 5%; q decreases from a 
value of 0.3 in the center and starts to grow near the bound- 
ary. The presence of a minimum in q inside the plasma leads 
to an instability connected with the finite pressure. It is as- 
sumediX that the level of magnetic fluctuations is lower than 
in installations with a turning field. This confirms the nu- 
merical experimentw which shows that in the case when B, 
turns there arises a nonlinear instability. 

l 'he  ratio of the longitudinal current at the boundary to 
the current at the center is in Fig. 3 less than 1/300. Near the 
boundary the pressurep cc x7, 8, q cc x, and p cc x2 - h,  where 
x is the distance to the boundary. This guarantees stability 
and thermal insulation, but worsens the conductivity. One 
therefore need additional measures to sustain the longitudi- 
nal current which guarantees that q is monotonic up to the 
boundary. In spheromaksX'q also decreases up to the bound- 
ary, but the stability condition (15) cannot be satisfied. 

The authors express their gratitude to V. D. Shafranov 
for advice and discussions. 
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