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Long-lived growing perturbations (unstable quasimodes) exist in all self-similar scalar-collapse 
regimes. The quasimodes, however, have no time to evolve in the absence of small-scale 
perturbations of sufficient intensity, and this complicates the question of the existence of true 
unstable modes, a question not investigated to this day. We investigate the spectrum of the true 
eigenvalues in all central-symmetry self-similar regimes of a scalar collapse. We prove the 
existence of self-similar solutions that are stable against arbitrarily small perturbations, and 
formulate a very stringent necessary condition for the stability of self-similar solutions of general 
form. 

1. INTRODUCTION 

The evolution of a high-frequency scalar field t,b that 
simulates the electric fields of Langmuir waves is described 
by the following equations proposed in Ref. 1 : 

These equations, as well as their vector operands,' have col- 
lapsing solutions. In the ultrasonic adiabatic approximation 
(which becomes more and more accurate as the collapse de- 
velops) we obtain from ( 1.1 ) and ( 1.2) the following equa- 
tions for the time envelope $of the field 1C, (a is the dimension 
of the caviton): 

d3r 1 ip 12=0. 
dt 

(1.5) 

They admit of the self-similar substitution 

$(r, t) =a-"E (p), n(r, t )  =aPZu(p), 
( 1.6) 

As t-t ,  the caviton dimension a tends to zero and the entire 
energy trapped in the caviton is localized at the point r , ,  a 
situation corresponding to a strong wave collapse. The func- 
tions E (  p) and u ( p) satisfy the equations 

The Laplace operator A is written here now in terms of the 
variables p, while the field E is chosen to be real (this is 
always possible). That Eqs. ( 1.7) and ( 1.8) have solutions 
was proved in Ref. 3 with a computer example. It became 
possible later to determine the structure of the entire set of 
self-similar solutions ( 1.6) and find some of them analytical- 
l ~ . ~  A computer investigation5 of the evolution of the centro- 
symmetric solution of Eqs. ( 1.1 ) and ( 1.2) revealed an evo- 
lution of the self-similar solution obtained in Ref. 3. In Ref. 
6, at the same time, a general criterion 

is obtained for the instability of the self-similar solutions and 
coincides with the necessary condition for their existence, 
i.e., it attests to instability of all the self-similar solutions 
within the framework of the system ( 1.3)-( 1.5). The analy- 
sis in Ref. 6 has shown that allowance for the small ("acous- 
tic") term An [discarded in the transition from (1.2) to 
( 1.5) ] and the corresponding corrections to the self-similar 
solution ( 1.6) transform the unstable eigenmodes of the lin- 
earized equations ( 1.3 I-( 1.5) into quasimodes. The latter 
retain their form and no longer increase up to the instant of 
singularity formation, but only when the caviton is contract- 
ed by a number of times that is finite albeit large relative to 
the Mach parameter. This number is estimated to equal the 
ratio of the caviton dimension a at the instant of quasimode 
formation to the minimum wavelength 2 of the perturba- 
tions that are modulationally unstable at the same instant of 
time (shorter-wavelength perturbations are stabilized by the 
acoustic term An, in the absence of which2 = 0).  The quasi- 
mode instability becomes manifested in those cases when the 
density n hasb perturbations of some small spatial scale 2 
which are so strong, even in the start of their modulational 
instability, that they attain an amplitude - 1/2 before the 
cavity is contracted to a size" -2. The opposite condition 
was satisfied with a tremendous margin in the numerical 
 computation^,^ where the initial level of the small-scale per- 
turbations was determined by the computer round-off error. 
The results of Ref. 5 therefore do not contradict Ref. 6, but 
point to stability of the self-similar solution obtained in Ref. 
3 for infinitesimally small centrosymmetric perturbations. 
The problem of the stability, in the small, of all the remain- 
ing self-similar solutions and also of the solution of Ref. 3 to 
multipole perturbations, has not been studied before. We 
undertake here to fill this gap. 

2. BASIC EQUATIONS 

Stipulating that the functions $ and n be represented in 
the vicinity of the caviton center (p  = 0) by expansions of 
the type 

where Y,,,, are spherical harmonics, we can solve the prob- 
lem posed in the Introduction within the framework of the 
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system ( 1.3)-( 1.5) (see Ref. 6) .  Functions that have expan- 
sions of type (2.1) will henceforth be called regular at the 
caviton center. 

Linearization of the system ( 1.3)-( 1.5) against the 
background of the self-similar solution (1.6) leads to the 
following equations for the eigenfunctions (see Ref. 6 ) :  

Growing perturbations correspond to eigenvalues a located 
in the left-hand half plane: 

All the eigenvalues are located in the region 

outside of which the function ii increases like p"'2-2 

asp-  m. For each self-similar solution there exist the eigen- 
modes: 

generated by the symmetries of Eqs. (1.3)-(1.5) with re- 
spect to spaciotemporal shifts and to stretching of the co- 
ordinates: 

The presence in the left-hand half plane of even one eigenval- 
ue that differs from - 1 and - 2/3 means instability of the 
investigated self-similar solution. When searching for such 
eigenvalues it is desirable to avoid a thorough "combing" of 
the left-hand a half plane, which is a laborious and unrelia- 
ble method of instability checking. We can attempt to con- 
struct a function analytic in the left half plane and having 
zeros that coincide with the eigenvalues a ,  and in which 
poles are absent or easily counted. The number of unstable 
eigenmodes is explicitly expressed in terms of the logarith- 
mic derivative of such a function on a contour r passing 
upwards along the imaginary a axis and closed by an infinite 
semicircle on the left. The function having the required 
properties is easiest to introduce in this case if the investigat- 
ed self-similar solution has central symmetry. The perturba- 
tions can then be easily classified in accordance with their 
multipolarity. 

For perturbations with an "orbital momentum" I >  1 the 
condition (2.3) is satisfied automatically, the value of fi in 
Eq. (2.2) is zero, and the system (2.2)-(2.4) can be written 
in the form 

The solution of Eqs. (2.8), which is regular at the center of 
the caviton and is normalized by the condition 

B 
lim = 1, (2.9) 
P+Q P 

depends on a single complex parameter a .  Asp-- cc there 
exists an analytic a-dependent limit 

lim p e - O E  (p, a )  = I ,  ( a ) .  (2.10) 
P-- 

The eigenvalues E corresponding to modes with orbital mo- 
mentum I >  1 coincide with the roots of the equation 

I1 (a) =O, (2.11) 

located in the region (2.6). The poles of the function I, (a)  
are those values of a for which Eqs. (2.8) have a nontrivial 
solution, regular at the caviton center, satisfying the condi- 
tion 

lim (B/pl) =O. (2.12) 
P-rO 

Analysis of the recurrence relations between the coefficients 
of expansions, similar to (2.1), of the functions and fi 
shows that such a solution exists only at the points 
a=a,'+,,,  k=0 ,1 ,2  ,... : 

For the M th term of the sequence of centrosymmetric self- 
similar solutions available for each method of populating the 
caviton, and numbered in increasing order of E '(O), the lat- 
ter sat~sfies the inequalities 

With the aid of (2.13) and (2.14) it is easy to find the num- 
ber P, of the poles of the function I, ( a ) ,  located in the left 
half plane: 

The number Z, of the zeros of this function in the same 
location is given by 

The integral of the logarithmic derivative I, (a)  along the 
infinite semicircle of the contour r is zero, inasmuch as for 
la1 - cc (Re  a < 0 )  the function I, ( a )  tends to a finite limit. 
By using the property I, ( a * )  = I T ( a ) ,  we can rewrite the 
integral along the imaginary axis, which remains in J,, in the 
form 
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The number of unstable eigenmodes with fixed "orbital mo- 
mentum" 122 is equal to (21 + 1 )Z,, and the number of 
those with I = 1  is 3 (2, - 1 ), so that at  I = 1 there exists an 
eigenvalue a = - 2 /3  that has no bearing on the stability 
problem. 

For perturbations with 1 = 0  the condition (2 .3)  is not 
trivial, and fi in (2 .2)  differs from zero. For each complex 
value of a the spherically symmetric solution of ( 2 . 2 )  and 
( 2 . 4 )  which is regular at the center of the caviton depends 
linearly on two parameters. The condition that k decrease as 
p-- oo determines uniquely the ratio of these parameters, 
and after introducing some normalization, for example 

it determines also the function E ( p , a ) .  Analytically depen- 
dent on a, together with E ( p , a ) ,  is the integral in ( 2 . 3 )  

The nonzero eigenvalues a corresponding to spherically 
symmetric modes are roots, located in the ( 2 . 6 )  region, of 
the equation 

I  (a )  =O. ( 2 . 20 )  

It is easy to show with the aid of Eqs. ( 2 . 7 ) ,  for the eigen- 
mode corresponding to zero a, that 

The asymptote of the function Z ( a )  for la1 - m and Re a < 0  
can also be calculated analytically: 

I (a )  = J d3pE2 (p) [l+a-'0 ( I )  1. 

The numbers ZO of zeros and P o f  poles of the function Z ( a ) ,  
which are located in the left-hand a half plane, are related by 

where 
0 

The difference between the signs of Z ( 0 )  and Z ( i m  ) is evi- 
dence that J i s  odd. To calculate P i t  should be noted that for 
each pole value of a Eqs. (2 .2)  and (2 .4)  have a nontrivial 
solution with I = 0 .  This solution is regular at the caviton 
center, decreases a s p -  m ,  and satisfies the condition 

The spherically symmetric solution of Eqs. ( 2 . 2 )  and ( 2 . 4 ) ,  
which is regular at the center of the caviton and has the 
property (2 .24) ,  has been determined for any value of a ac- 
curate to multiplication by an arbitrary constant. Normaliz- 
ing this solution by the equation 

we can introduce the analytic function 

I0 ( a )  = lim pecPB (p, a ) .  
P'" 

Its zeros are located at the poles of the function Z ( a ) ,  so that 
the latter can be calculated from the equation .. 

1 d 
P=Po + - 5 dp  - arg I. ( iP)  . 

0 

At the poles of the function I o ( a ) ,  the number of which in 
the left-hand a half plane is designated here by P,,, Eqs. (2 .2)  
and ( 2 . 4 )  have a nontrivial solution with I = 0 ,  which is 
regular at the caviton center and satisfies the conditions 

This solution exists only for a = a,',, k = 1,2, ... [cf. 
( 2 . 1 3 ) ] .  The number, coinciding with P,,, of the sequence 
a ,  ( k  = 1,2, ... ) can be easily expressed in terms of the num- 
ber M of the self-similar solution 

Combining Eqs. ( 2 . 2 3 ) ,  ( 2 . 26 ) ,  and ( 2 . 28 )  we get 
" 

1  d 
Zo=M-1 + - J d l  - arg[I  ( i p )  lo ( i p )  1. (2 .29)  

o d l  

The number of unstable eigenmodes with I = 0  is equal to 
Z,, - 1 ,  since the zero of the function Z ( a )  at the point 
a = - 1 ,  has no bearing on the stability problem. 

3. EXACT SPECTRUM IN SELF-SIMILAR REGIMES WITH 
POPULATEDGROUNDSTATE 

The results of the numerical investigation of the stabil- 
ity of the centrosymmetric self-similar solutions with popu- 
lated ground state and with not very high a number M a r e  
gathered in Table I. The values of a; and Z, were calculated 
from the equations of the preceding section. Knowing the 
number of unstable modes of each type, it was simpler to find 
the eigenvalues corresponding to them, which are given in 
the last column of Table I. I t  was easy to verify the stability, 
against multipole perturbations with 1% 1, of the self-similar 
solutions with M- 1 by using the fact that at  1% 1 the "cen- 
trifugal potential" l ( 1  + l ) / p 2  crowds out the perturbation 
into the region p% 1 ,  where the self-similar solution is al- 
ready close to zero. 

AS seen from Table I, a centrosymmetric self-similar 
solution with populated ground state and minimum value of 
the field E at the caviton center is stable to arbitrary small 
perturbations. Similar solutions with M = 2  and 3  are unsta- 
ble, and the largest growth exponent in both cases is reached 
in the dipole eigenmodes and exceeds the maximum growth 
exponent - a,, of the quasimodes. To  assess the degree to 
which the above properties are common, it is useful to ana- 
lyze the limiting case M$ l .  

Self-similar solutions with populated ground states and 
E ( 0 )  3 1 were obtained in Ref. 4. Inside the caviton, i.e., 
inside the region where u<  - 1, they satisfy the approximate 
expression 
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TABLE I .  

It is seen from ( 3 . 1  ) that the scale of variation of the field E is 
large compared with unity: 

1 Vln E2 I - ' - E ( 0 )  -M2+1. 

The approximation ( 3 . 1 )  is not valid only at distances 
S - M  ' I 3  from the caviton boundary. In the S-vicinity of the 
boundary the field E decreases, roughly speaking, by one- 
half, remainingofthe order ofE, - ( M S )  ' I '  - M ' I "  Outside 
the caviton the decreases of E is exponential. In the region 
S  5 p  - R < R -M, where R is the distance from the center 
to the caviton boundary along a specified line, the scale of E 
exceeds unity noticeably as before: 

With further increase o f p  this scale, according to estimates, 
remains unchanged and of the order of unity: 

The absence of zeros of the field E allows us to replace E 
by a singularity-free function 

It is easy to express Li in terms of this function by using Eqs. 
( 1 . 7 )  and ( 2 . 2 ) :  

Substitution of ( 3 . 2 )  in ( 2 . 4 )  yields a closed equation for y ,  
in the form 

Comparing various terms in the left-hand side of ( 3 . 3 ) ,  we 
can suggest the following estimates of the quantities A and 6 
corresponding to global eigenmodes: 

(y,,,,,. is the characteristic value of the function y ) .  The left- 
hand side of ( 3 . 3 ) ,  roughly estimated for such modes, is M  
times larger than the right-hand side. In the region 
lp - R / &R [where E is already much smaller than E ( 0 )  
and the scale of variation of E is still much larger than uni- 
ty] ,  the first term of the left-hand side of ( 3 . 3 )  can be esti- 
mated to be larger not only than the right-hand side, but also 
than all the remaining terms. This means in fact that the 
function y  remains practically constant in the direction nor- 
mal to the caviton boundary: 

The condition obtained makes it possible to pose a bound- 
ary-value problem in only one region of validity of Eq. ( 3 . 1  ). 
Integration of ( 3 . 3 )  over the interior of the caviton with 
allowance for ( 3 . 1  ) and the orthogonality condition 

yields ~ 6 ~ 0 .  A more thorough analysis, based on integra- 
tion of ( 3 . 3 )  over all of space, shows that 

Neglecting small corrections, Eq. ( 3 . 3 )  has in the interior of 
the caviton the form 

The solutions of this equation are extremals of the functional 

whence it follows directly that A is real and positive. The 
functional (3.9) is bounded from above on the set of func- 
tions y  satisfying the orthogonality condition ( 3 . 7 ) .  The 
maximum A,,, of this functional corresponds to the mini- 
mum eigenvalue a:  

With the aid of trial functions it is easy to show that 

A,,> m;x E2 ( p )  = E 2  (0) 
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and correspondingly a,,, < a;, in full accord with the 
eigenmode instability property noted in Table I. 

The above proof of the instability of solutions with 
E ' ( 0 )  $ 1  contains no assumptions whatsoever about the ca- 
viton symmetry. For a quantitative determination of a,,,,,, 
and comparison with the values indicated in Table I it is 
useful to consider in greater detail centrosymmetric self- 
similar solutions with a populated ground state and with a 
strong field E ( 0 ) .  Inside the caviton such solutions are ap- 
proximately described by 

Being interested in the most unstable eigenmodes, we can 
Put 

A=E2 (0) ( l+xZ) ,  x>O. (3.11) 

It is convenient also to introduce a new variable (: 

which is equal to unity on the boundary of the caviton. With 
these improvements, Eq. (3 .8)  can be written for perturba- 
tions with "orbital momentum" 1 in the form 

It is convenient to normalize the solution, regular as <-0, of 
Eq. (3.12) by the condition 

The boundary condition 

distinguishes a discrete set of real values of x .  All correspond 
to zero or unity "orbital momenta," since the coefficient ofy 
in (3.12) is negative for l>2 in the interval (0 ,1 ) ,  meaning 
that condition (3.14) cannot be met. The largest values of x 
for centrosymmetric and dipole eigenmodes can be numeri- 
cally determined: 

Assuming x' < 1 ,  we can simplify noticeably Eq. ( 3.12) in 
two regions that cover the entire interval 0 < ( < 1 : 

The solution of (3.6) is expressed in terms of a hypergeom- 
teric function 

and has in the region K <<< 1 the asymptotic form 

The solution of (3.17) has in the same region the asymptotic 
form 

From the condition that (3.19) and (3.20) be equal it fol- 
lows that 

The assumption x' < 1 is satisfied with fair accuracy even for 
j = 1 .  Retention of the small correction x' in (3.11 ) is not an 
exaggeration of the accuracy of Eq. ( 3 )  for j< ln  M. The 
number of eigenmodes that are more unstable than the qua- 
simodes ( A  > E ' ( 0 )  ) is thus of the order of In M. According 
to Table I, for M = 3 there are one mode each with I = 0 and 
1 .  The corresponding instability exponents a differ by only 
1% from those calculated from Eqs. (3.15),  (3.1 I ) ,  and 
(3 .4 ) .  

4. POINTSPECTRUM IN SELF-SIMILAR REGIMES WITH 
UNPOPULATED GROUND STATE 

The results of the numerical investigation of the stabil- 
ity of centrosymmetric self-similar solutions with populated 
first ( N  = 1 )  or second ( N  = 2 )  excited states and with not 
too large a number M are gathered in Table 11. All these 
solutions except the first ( N  = 1, M = 1 )  are unstable, with 
a pronounced tendency of the number of unstable eigen- 
modes and of the maximum values of the exponent - Re a 
to increase with the number M. It is useful to supplement 
Table I1 by an investigation of the limiting case N$1.  

Centrosymmetric self-similar solutions with higher-in- 
dex populated bound states were obtained in Ref. 4. In view 
of the low "binding energy" of the highly excited states with 
N>E(O) -M compared with the depth of the caviton, the 
shape of the latter is practically independent of N. In this 
sense, the function 

where p,  ' $ 1  is the maximum caviton depth, is universal. 
The asymptote of ii(b) fo rE$ l  is given by 

For  the M th self-similar solution, the quantity E ' ( 0 )  differs 
from the left-hand boundary of the interval (2.14) only by 
an increment that is exponentially small in the parameter 
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TABLE 11. 

N / M >  1, accurate to which we have 

EZ(0)-'/3M('/I,M+l). 

The behavior of the field E in the region p,  <p< 1 is de- 
scribed approximately by the following two equations: 

B 3 1 '" 
I - sin { [- ~ ' ( 0 )  - TI ln p+rp), O c t p ,  p.<n. 

P'" 2 

The first equation (with fixed values ofA and p . ) pertains to 
the solution of ( 1.7) and ( 1.8) which is regular at the cavi- 
ton center, while the second (with fixed phases p)  pertains 
to the solution that decreases as p - cc . The condition that 
the two equations in (4.3) be equal defines a discrete set of 
p* : 

p.-'= max[-u(p) ] =C exp 
P 

Here C- 1 is a number that depends on M. According to 
(4.1 )-(4.4), the depth of the caviton in the central region 
(p-p. ) decreases exponentially, while the field E in the 
energy-containing region (p-  1) decreases exponentially 
with increase of the parameter N / M >  1. 

Simple regularities can also be tracked in the disposi- 
tion of the eigenvalues a for N / M > l .  In particular, there are 
always eigenvalues that agree with the negative terms of the 
sequence a,, , apart from corrections exponentially small in 

the parameter N/M [see (2.13) 1. (This can be verified by 
using the recurrence relations between the coefficients of the 
expansions of B and ii in powers of p2 near the caviton cen- 
ter.) The proximity of E 2 ( 0 )  to the left-hand boundary of 
the interval (2.14) allows us to rewrite (2.13) in the form 

For M>2 the quantity a; < - 4/3 is negative and differs 
from - 2/3 and from - 1. The corresponding self-similar 
solution is therefore unstable. The case M = 1 calls for a 
more detailed examination. We can, for this purpose, sim- 
plify Eq. (2.2) for the unstable eigenmode B in the regions 
p>p, a n d p < l :  

We have used in Eq. (4.6) the asymptotic form (4.2) with 
E 2 ( 0 )  = 14/9, and the term iiE was left out because the 
function ii decreases at Re a < 0 more rapidly than u (p ) ,  
whereas E a n d  E decrease at equal rates. Equation (4.7) was 
obtained by taking into account the inequalities 1 u 1 $ 1  and 
I uE I I f i ~  I, which hold in the regionp < 1.   he solutionBof 
Eq. (4.7) and of the second equation of (2.8), which is regu- 
lar at the center of the caviton and is normalized by condi- 
tion (2.9) (if 12 1 ) or (2.18) (if 1 = 0) ,  depends analytically 
on the complex parameter a. For I = 0 this solution has in 
the region p. < p  < 1 the asymptotic form 

5 P E z A  ( a )  (P- ) " sin [: ln - + qj. ( a )  , 
P 21'3 p. 

I 
-n<Re @. (a )  Gn.  (4.8) 
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The centrosymmetric solution k/fi of Eq. (4.6), which de- [see (4.3) and (4 .4)]  we can explicitly distinguish the de- 
creases asp- w ,  was determined accurate to addition of the pendence of the function X, (a)  on the number N: 
function E multiplied by an arbitrary constant. This con- 
stant is obtained from the orthogonality condition x l ( a ) = A l ( a )  sin [cpl.(a)-cp,-'l,(cp.-cp+xN) I .  (4.14) 

~d 'PEE = 0, the main contribution to which is made by the ~ 1 1  five types of the asymptotic ( N $ l )  dipole spectrum in 
regionp- 1 .  The solution determined in this manner has in the region Re a < 0 (except for the eigenvalue a = - 2/3 
the region p, 4p 4 1 the asymptotic form which is common to all cases) are listed in Table 111. 

5 
A'=Wp-"' sin (---=In p+m ) (4'9) 5. CONCLUSIONS AND GENERALIZATIONS 

213 In the cases considered above we have considered only 
with known amplitude 3 and known ~ h a s e  @. The eigenval- one of the infinite sets of bound states present in a self-similar 
uesa are determined from the conditions that E ~ s .  (4.8) and caviton, i.e., "single-mode" regimes of a scalar collapse. The 
(4.9) be equal, are zeros of the analytic function family of single-mode centrosymmetric self-similar regimes 

This function has no poles in the left-hand a plane, so that 
we can calculate the number of zeros o f x ( a )  located there 
by using the equation 

Numerical calculation yields Z,, = 3. In addition to - 1, the 
eigenfunction are 

Centrosymmetric self-similar solutions with N$1 are 
thus unstable also if M = 1. It is useful to note that dipole 
eigenmodes can have growth exponents larger than 0.235. 
At I = 1 the solution of (4.7) which is regular at the caviton 
center, and the solution of (4.6) which decreases a s p -  m ,  

are given by 

1 P E = A ,  (a)  (P-) Ih sin[:ln- + cp,.(a) 
P 213 p. 

was parametrized with the aid of two integers: the number 
N = 0, 1 ,2 ,  ... of the populated bound state, and the number 
M = 1, 2, 3, ... of the term of the sequence of self-similar 
solutions existing for a given N a n d  arranged in increasing 
order of E ' (0 ) .  In this family only two solutions, ( N  = 0, 
M = 1)  and ( N  = 1, M = I ) ,  were stable against arbitrary 
small perturbations. 

The deduction that self-similar solutions with M>2,  
i.e., with 

E~ ( 0 )  > 4 " l g  (5.1) 

are unstable extends also to multimode centrosymmetric 
self-similar regimes of a scalar collapse, and in the case 
E '(0) $ 1  or N >  1 also to asymmetric self-similar scalar-col- 
lapse regimes. To all appearances, the instability criterion 
(5.1) is perfectly general, although it has so far not been 
fully proved. It is remarkable that the maximum instability 
exponent of all the investigated self-similar solutions that 
satisfy criterion (5.1 ) exceeds the maximum quasimode 
growth exponent: 

max ( - R e  a )  > - a , - = [ 2 E 2 ( 0 )  + ' / , ]"- l / , - ' / l , .  (5.2) 

A more variegated picture is revealed by examination of 
(4.13) self-similar solutions with 

i n / , t ~ Z  ( 0 )  <4419, (5.3) 

which include both stable and unstable ones. It is not clear at 
present whether the instability of the centrosymmetric solu- 

which coincide with the zeros of the analytic function tions with N>2 and M = 1 leads to asymmetric self-similar 
1 I solutions with the same N o r  to decay of the collapsing cavi- 

xi ( a )  = A ,  (a)  sin [ p l .  (a )  - ---= ln p.-cp, . 
213 ton into several new cavitons with fewer populated states. It 

is useful to note in this connection that the instability of the 
With the aid of the relation self-similar solutions that satisfy condition (5.3),  with large 

populated-state numbers, become stabilized even if the 
5 

9-cp. + :In p.=nN ground state is insignificantly populated. Indeed, the shape 
213 of the caviton is determined completely by the values of E ' in 

TABLE 111. 
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that region where this number is estimated to have its maxi- 
mum. The size o f  the indicated region ( o f  the same order as 
the size o f  the localization region o f  the ground state) is 
exponentially small compared with the size o f  the localiza- 
tion region of the  N th  excited states. Therefore, even starting 
with exponentially small (relative to the parameter N )  ener- 
gy ratios o f  the waves trapped in the ground and nth excited 
states, the maximum energy density E' ,  meaning also the 
collapse dynamics, is determined entirely by the waves that 
are in the ground state. 

W e  conclude by repeating the main results o f  the pres- 
ent article. They comprise a proof o f  the existence o f  self- 
similar collapse regimes that are stable against infinitesimal- 
ly small perturbations, and a determination o f  the necessary 
stability condition (5 .3)  that restricts radically the class o f  
solutions that need be investigated. Particularly important is 
the conclusion that the self-similar solution obtained in Ref.  
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3 ( N  = 0, M = 1 ), which, to all appearances, determines the 
dynamics o f  the scalar collapse under a wide range o f  initial 
conditions. This conclusion seems to point to stability o f  an 
analogous self-similar vector-collapse regime, which has not 
been found so far, but which has been proposed in a number 
o f  existing and stable models o f  strong Langmuir turbulence. 
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