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A kinetic and hydrodynamic theory of emission from electron beams in a finite magnetic field 
under conditions of anomalous Doppler resonance with a one-dimensional monochromatic 
electromagnetic wave is developed. The transition from the hydrodynamic to the kinetic regime is 
investigated. The instability suppression mechanisms and the evolution of the distribution 
function of the emitting electrons are described. Analytic solutions of the problem of emission 
from the beam under conditions of the anomalous Doppler effect are obtained in the purely 
hydrodynamic and kinetic limits. It is shown that the physics of the kinetic instabilities under the 
conditions of the anomalous Doppler effect differ substantially from the physics of kinetic 
instabilities due to inverse collisional Landau damping. 

1. We know that a wave and an electron exchange energy 
effectively under conditions of Cherenkov resonance. The 
electron is retarded or accelerated, depending on the field 
phase in which it moves, and correspondingly delivers or 
draws energy to or from the wave. The net result depends on 
which of the electrons are in the majority, i.e., it is deter- 
mined by the derivative of the distribution function in veloc- 
ity, d f /du ,  at the resonance point u I  = w/k. This is reflect- 
ed in Landau's known equation for the decay rate of 
collisionless wave damping in a plasma. 

sumed to be lower than the longitudinal electron velocity 
u (c,, < u ) . It is the latter which ensures the existence of the 
instability, considered below, in the anomalous Doppler ef- 
fect. 

It is known that in the case of a beam with a small veloc- 
ity spread 

A v l , / u ~ 8 0 / o ,  (1 )  

the instability in the anomalous Doppler effect has a hydro- 
dynamic character and a growth rates 

The following general statement can be made: the colli- 813' ( o ~ ' ( J ) ~ / ~ o )  lh. (2 )  
'ionless damping decay rate (or  growth 'ate in the case of F~~ a hot beam, however, when inequality ( 1 ) is violated, 
instability) is proportional to the derivative of the distribu- the instability is kinetic with a growth rate" 
tion function df/dull only for processes accompanied by 

n 0aZ0s 
phasing of the electrons in the wave field, i.e., for wave- 6o = -- 

2  l k l o  
fO(~ll) l u l l = ( @ + *  B ) / k ,  ( 3 )  

particle interaction vrocesses in which the electrons can. de- 
pending on their phase in the field, give up as well as draw 
energy. There are, however, interactions that are not accom- 
panied by phasing of the particles. The present paper is de- 
voted to a kinetic and hydrodynamic treatment of such pro- 
cesses. 

Let us define clearly the processes we have in mind. 
Consider electrons moving in the field of certain gyroscopic 
or conservative external forces, i.e., acting as oscillators 
which we assume to be not excited in the initial state. Among 
the mechanisms whereby such oscillators interact with 
waves are the anomalous and normal Doppler effects.',? In 
the normal Doppler effect the unperturbed oscillator can 
only be accelerated (going simultaneously into the excited 
state), i.e., draw energy from the wave. Collisionless damp- 
ing of the wave should then be observed, with a decay rate 
proportional to the distribution function itself at the reso- 
nance point (but not to its derivative)."n the anomalous 
Doppler effect, on the other hand, the unexcited oscillator 
can only slow down (and become excited thereby) i.e., give 
up energy to the wave. The wave amplitude should increase 
then at a rate proportional likewise to the resonant value of 
the distribution function itself. 

One of the possible processes of this type is resonant 
interaction of transverse electromagnetic waves with a linear 
electron beam moving along a constant external magnetic 
field. We specify the spectrum of the electromagnetic waves 
in the form w' = k 'c,,', where the phase velocity c,, is as- 

i.e., proportjonal, as noted above, to the distribution func- 
tion itself. Here hull is the longitudinal-velocity spread of the 
beam electrons, w ,  and w ,  are respectively the electron 
Langmuir and cyclotron frequencies, andf;,(ull ) is the un- 
perturbed electron distribution function in the longitudinal 
velocities. We shall make it clear also that the instability in 
question evolves at frequencies and wave numbers satisfying 
the system 

We proceed now to the rigorous treatment. 
2. Let a non-monoenergetic neutralized electron beam 

propagate along an external magnetic field B,, directed along 
the Z axis, in a space filled by a homogeneous isotropic di- 
electric with a constant E~ > 1, and let it interact with a circu- 
larly polarized electromagnetic wave propagating in the 
same direction. In this case the equations of motion of the 
electrons for the velocity components u ,  and u, = u, + iu,, 
and also the equation for the transverse components 
A ,  = A, + iA,  of the wave vector potential, are 
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where c02 = c2/~,) ' .  The transverse component of the beam 
current is given by7 

where n ,  is the unperturbed density of the electron beam; 
L)(u,,), just as in Eq. (3 ) ,  is the unperturbed electron distri- 
bution function in the longitudinal velocities, while z( t ,  zo, 
u,,) is the trajectory of the electron leaving the point zo at 
t = 0. The first two equations of the system ( 5 )  are supple- 
mented by the initial conditions 

the second of which means that there are no transverse ve- 
locities in the unperturbed beam (beam of unexcited oscilla- 
tors). 

We seek the solution of the system ( 5 )  in the class of 
monochromatic waves 

.4,=A ( t )  exp ( i o t - i k z ) ,  (8  

where A ( t )  is a slowly varying amplitude. In addition, rec- 
ognizing that a circularly polarized wave does not modulate 
an electron beam in [and the system (5 )  is valid 
only under this condition], we use the relations 

e 
0, = - V ( t ,  uo)  exp ( iot - ikz  ( t ,  zo, uo) ) . 

mc 

Carrying out next an elementary integration with respect to 
zo in (6 ) ,  we obtain for j ,  

wherez, just as in ( 8 ) ,  is an independent variable. Substitut- 
ing furthermore ( 8 ) ,  ( 9 ) ,  and ( 10) in ( 5  ), we have the fol- 
lowing system of equations and of initial conditions 

which generalizes the equations obtained in Ref. 8 to include 
a non-single-velocity beam. We note in addition that since 
the electrons strongly interacting with the wave have 
u l l  = ( W  + w , ~  ) /k [see Eq. ( 4 )  1 ,  the second equation of 
( 11) can be rewritten in the form 

which we shall use henceforth. I t  is also easy to show that the 
system ( 11 ) has integrals 

the second and third of which are the energy and momentum 
conservation laws, while one of the integrals in (13) is a 
consequence of the other two. 

We obtain now a relation for the beam-electron distri- 
bution function in the longitudinal velocities. In the initial 
state this function is L)(uo).  In the succeeding instants of 
time the distribution function is given by 

where u l  ( t ,  uo) is either the solution of the last equation of 
the system ( 11 ) or, equivalently, the first expression of ( 13). 
Since 

where u,,, are the roots of the equation u,,  = U ,  (t, uo), we can 
rewrite (14) in the form 

Equations ( 11 ), the integrals ( 13), and relation ( 16) will be 
used below for a numerical analysis; it is therefore expedient 
to change in them to nondimensional variables and to stipu- 
late a specific function f;,(uo). We introduce the following 
quantities: 

In the new notation, Eqs. ( 11 ) become 

from which it follows that (vO) corresponds to the dimen- 
sionless velocity at which the electron is in exact cyclotron 
resonance with the wave. We shall assume that the distribu- 
tion function p(vO) has a maximum at 7,) = (v0) and is an 
even function of the difference v0 - (vO).  Very useful, as 
will be shown below, for analytic estimates and numerical 
computations is the following distribution function: 
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with (2 ) .  The second is kinetic, is given in dimensional form 

by 

where the parameter O can be regarded as the "tempera- 
ture" of the beam. Introducing now the quantities and coincides with (3) .  Indeed, in the case of our chosen 

distribution function we get 

we write down the system ( 18) in a form most convenient for 
numerical integration: 

as can be seen from ( 17).  
Obviously, the boundary of the hydrodynamic and ki- 

netic regimes is determined by the relation x - O. It must be 
emphasized that the dispersion equation (26) is algebraic 
not only in hydrodynamics but also in kinetics; this is an 
exceptional property of ( 19).  

We obtain now more general linear-approximation 
equations. To this end we reduce the problem (24) to an 
integral equation with delay, without specifying for the time 
being the form of thedistribution function. Solving theequa- 
tion for a with the zero initial conditions We present also a nondimensional form of the two indepen- 

dent integrals in ( 13) : 

1 x=x -- " la12, 
(22) 

le12-x2 Jrp(xo) l a 1 2 d ~ o = l e o 1 2 ,  

which are needed to monitor the computation accuracy. In 
the same variables, Eq. (16) for the distribution function 
becomes 

and substituting the solution into the equation for E ,  we get 

We consider three distribution functions: previous, Maxwel- 
lian, and "step": where x,,, is the root of the equation x = x(r ,xO).  

3, The suitability of the chosen distribution p(x,,) be- 
comes apparent in the linear analysis which we shall perform 
prior to discussing and analyzing the numerical computa- 
tions. In the linear approximation, the system (21 ) takes the 
form 

For these distributions we have from ( 3  1 ) 

Assuming E, a -eh ,  we obtain the dispersion equation 

sin OT 
k (T )  = --- 111, 

0 T 

the integral in which is easily calculated. As a result we have The distribution I is the simplest. Indeed, from the first 
equation of ( 3  1 ) and from (33) it follows that 

with one of the roots of (26) always positive, indicating the 
onset of instability 

6*,,=* ( ~ ~ + 0 ~ / 4 )  lh-012. (27) 
the last equation not being an intgral one. We differentiate it 
once with respect to r and  substitute again (34) in the results 
of the differentiation. We obtain then the ordinary differen- 
tial equation 

Let us consider the limiting expressions for the growth rates: 

The first growth rate here is hydrodynamic and coincides 
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which leads to (26).  
The situation with the remaining distribution functions 

is somewhat more complicated. To  solve Eq. (31) in the 
general case we use a Laplace transformation. We have then 
for the Laplace transform ~ ( p )  of the function E (7)  

Eo 
E ( P ) =  , K ( p )  = 5 e-p'k ( r )  d r ,  

p -x2K(p)  
(36) 

0 

where &I,, = E(). For the chosen distribution functions 
(32) we have 

1 0 
K ( p )  = - arctg - 

0 P 

where @ ( x )  is the probability integral. Taking the inverse 
Laplace transform we get 

where the contour Cpasses on the P plane to the right of all 
the singularities of the integrand. As expected, the integral 
( 3 8 )  cannot be calculated exactly for the distributions I1 and 
111. For I, however, we have 

where 

which coincides with (27).  The solution (39) can be ob- 
tained also from Eq. (35) by supplementing it with the ini- 
tial conditions 

Let us explain why distribution I of (32) is exceptional. 
In the solution of the initial problem there is specified, be- 
sides & I , ,  () also some initial perturbation of the electron- 
distribution function, e.g., it is assumed to be exactly zero. 
This leads to vanishing of all the moments of the distribu- 
tion-function perturbation. Since they form, in general, an 
infinite set, they can be made to vanish only if an infinite set 
of linearly independent solutions of the problem ( 3  1 ) is on 
hand. It follows hence that in the general case the linear 
dispersion equation should have an infinite set of solutions, 
i.e., it must be transcendental. In the case of distribution I of 
( 3 2 ) ,  however, all the higher moments of the distribution- 
function perturbations are expressed in terms of the first mo- 
ment. We know of no other distributions with this property. 

4. We obtain now an analytic solution of the system 
(21 ) in the hydrodynamic approximation and use it to esti- 
mate the maximum value of the wave amplitude IE,,, I and 
to explain the mechanism that eliminates the instabilities in 
this regime. Putting p(x,,) = S ( x o )  in (21 ) we obtainX 

Taking now the integrals (22) into account, we rewrite Eq. 
(40) for an adiabatic turning-on of the field in the past 
( & I , -  , = 0 )  in the form 

The term cubic in a in (41 ) describes the cyclotron-frequen- 
cy nonlinear frequency shift due to the beam stopping. It is 
this stopping which leads to saturation of the instability in 
the hydrodynamic approximation. 

The solution of (41 ) is 

It follows from (42) that the maximum dimensionless am- 
plitude of the electromagnetic is in the hydrodynamic case 

5. We discuss now the results of a numerical solution of 
Eqs. (21) that were integrated at x2 = 0.01 for different val- 
ues of the "temperature" O. Figure 1 shows the values of / & I ,  
l a / ,  and x (the last two values for resonant electrons for 
which X I , = ,  EX,, = 0 )  as functions of r calculated at 
O = 0.01; this can be regarded as a good hydrodynamic ap- 
proximation. The maximum wave amplitude calculated 
from (43) is IE,,, I = 0.09, in good agreement with that ob- 
tained by numerical methods. We see that the solution is 
almost periodic and that the stabilizing factor, as noted 
above, is the nonlinear frequency shift. As should be the case 
under the conditions of the anomalous Doppler effect, a 
growth of / & I  and la1 is accompanied by a decrease of x, i.e., 
the energy of the longitudinal motion of the beam goes to 
increase the transverse energy of the electron oscillations 
and to radiation. The same is observed also for particles with 
x,,#O, i.e., which are not at resonance with the wave from 
the very outset, but the larger Ixol the smaller la1 and 

I X  - xoI, this being due to the resonant character of the in- 
stability. It can be stated that with increase of lx,,I, i.e., with 
increasing deviation of the velocity of the electrons from the 

FIG. 1. 
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L 

FIG. 2. 

resonance region, their contribution to the radiation de- 
creases. 

Figure 2 shows the same values for the case 0 = 0.25, 
which can be regarded as kinetic (the boundary between the 
kinetic and hydrodynamic regimes is 0 = 0.1, i.e., when 
O -x) . It should be noted that a distinctive property of solu- 
tions with finite 0 is their non-periodicity: the amplitude I E  I 
decreases after saturation not to the initial value but to a 
higher one, and this tendency grows with increase of 8. It is 
probable that for very large 8 the amplitude I E /  assumes 
with time a quasistationary value. 

Figure 3 shows, for two successive instants of time and 
at the same "temperature," the distribution functions p ( x )  
[p(x,) I,=, is shown dashed], x(x,,r), and a(x,,,r). It can 
be seen that the maximum of the distribution function shifts 
to the left with time, and its half width decreases, and that 
significant perturbations of Ix - x,l and a ( x , )  are observed 
only for resonance electrons for which (x,l <S (where S for 
O = 0.25 is of the order of 0.035). Nonresonant electrons 
with Ix,l> 8 do not take part in the interaction. Subsequent- 

ly (Fig. 3b) the half-width of the distribution function de- 
crease even more strongly, and a dip is formed on the distri- 
bution function at velocities equal to the resonance value. It 
will be shown below that this last circumstance is the cause 
of the kinetic-instability saturation. In addition, in view of 
the decrease of the growth rate of the kinetic instability, the 
time of saturation of this instability becomes longer than the 
corresponding time in hydrodynamic instability, as is con- 
firmed numerically. The abrupt decrease of the distribution- 
function half width in the course of the evolution of the ki- 
netic instability allows us to state that a single-velocity beam 
is separated from all the available electrons and has a tem- 
perature much lower than in the initial beam. This phenome- 
non for the normal Doppler interaction between a beam of 
neutrals and radiation was noted in Ref. 9. It is also seen 
from an analysis of Fig. 2 that electrons with x,, = 0 go off- 
resonance before I E I  saturates, i.e., the further growth of the 
latter is due to electrons that were not in exact resonance 
with the wave at the initial instant, but landed in the reso- 
nance region as a result of deceleration. 

It must be stated that at O = 0.25 the strong-kinetics 
condition O $ K is not met. The figures presented pertain to a 
transition regime, when the kinetic effects are already very 
substantial but are not yet fully predominant. Numerical 
computations with even larger 0, however, are very diffi- 
cult. 

5. Let us make clear now the main nonlinear mecha- 
nism that suppresses the kinetic instability, and obtain the 
corresponding analytic solution. To this end we solve for- 
mally Eq. (12): 

W B  v =  
o - ~ v ~ ~ + o ~  A,  (44) 

where w-w - id/&. Substituting next (44) in the first 
equation, multiplied by A *, of ( 11 ) and adding the complex 
conjugate, we get 

FIG. 3. 
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-- 
6 .. duo) l ~ l ' ,  

dt  o l k l  [ u ~ - v ~ ~  (t, uo) 12+6' 

where = Ik / - 'a/&, while up = (w + w ,  )/k is the reso- 
nant velocity of the electrons. In the kinetic approach we 
have 6-0, so that we can rewrite (45) as 

Integrating in (46) with respect to u,, we obtain ultimately 

Here 

n wa2wB dull p 
- 1 

fsco,, = - - - - f a ( $  1- (u) 1 
2 o l k l  avo 

is the nonlinear growth rate, and G is the root of the equation 

which must be solved for u,,. In the kinetic approach, Eq. 
(49) has most likely one root (see, e.g., Fig. 3) ,  a fact reflect- 
ed in the form of Eq. (48).  In the linear approximation we 
have ul l  ( t ,~ , , )  = u,,, meaning G = u,, and from (48) follows 
the linear growth rate 

which coincides with (3 ) .  
Equation (48), of course, does not eliminate the prob- 

lem's main mathematical difficulties connected with finding 
the function ui l  ( t , ~ , , )  and determining the root G. It leads, 
however, explicitly to the nonlinear factors that stabilize the 
variation of the amplitude lA 1 .  

We assume, as before, thatf;, reaches a maximum at the 
resonant velocity up. Since D#vp, it follows that 
A)(;) <f;,(up ) which leads to a decrease of the growth rate, 
corresponding to a shift of the distribution function in veloc- 
ity space. This shift, however, takes place in a velocity inter- 
val 6w/k in which the distribution function in the kinetic 
regime varies little, and thereforef;,(G) zf;,(vp ). This non- 
linear effect can therefore be neglected and we can write 
(48) in the form 

where 6w is the linear growth rate (50).  
The main stabilizing factor is due to the multiplier 

As seen from Fig. 3, the derivative dull /duo for v,, = G is larg- 
er than unity and increases with time (it is equal to unity 
only if t = 0 ) .  It is this which decreases the growth rate. The 
physical meaning is that electrons with resonant values of 
the velocity u, transfer energy to the wave intensely and shift 
in velocity space towards lower velocities (are slowed 
down). As a result, the distribution function acquires a dip 
at u ,  = up and a peak at lower velocities-as is clearly seen 

from Fig. 3. Decreasing the number of resonant electrons 
suppresses the instability. 

It must be noted that the calculation of (51) is a very 
complicated task. We formulate therefore certain simplified 
equations by using a linear approximation, or more accu- 
rately the solution (44) with w = w - iSw, where 6w is the 
growth rate (50).  Substitution of (44) in the last equation of 
( 11 ) gives 

O B ~ O  

dt [ o f  wB-kuIl (t, u0) ]'+6a2 
1-41' (52) 

The system (52),  (47),  and (5  1 ) is closed. We express it in 
terms of the dimensionless variables: 

and obtain 

Here 2 is the root of the equation x, = x ,  (r,x,,). Since the 
system (54) contains not even a single parameter, the char- 
acteristic value of the saturation amplitude B is of the order 
of unity. This leads to the estimate 

where 6w is the kinetic growth rate (50) .  
The system (54) can be further simplified. First, with- 

out loss of generality, we can put x, = 0, which corresponds 
to a change of the origin in velocity space. Second, introduc- 
ing a new function B = da/dr, we integrate the second equa- 
tion of (54) and obtain 

Since xp = 0. The root 2 is determined from the equation 
xl i  ( r ,2)  = 0, and putting next x, = 2 in (56) we get 

Differentiating furthermore (56) with respect to xo and sub- 
stituting 2 for xo in the result, we arrive at 

with allowance for which the first equation of the system 
(54) can be rewritten in the form 

a 

where 2 is determined from (57). If a are small enough 
(strictly speaking, the simplified system (54) can be used 
only for such a ) ,  the last equation becomes much simpler: 

B=da/dr=2 arctg a+Bo. (60) 
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This shows once more that B ,,,, - 1 (for B,,< 1 ). Further 
analytic integration of (60) is impossible, but the instability 
suppression due to depletion of the distribution functions at 
velocities close to up = (w + w, )/k can nonetheless be de- 
scribed even in the framework of the crude model (54). 

In the linear approximation it follows from (60) that 
B = B0e2' as it should. If, however B , )  1, then B-B,, i.e., 
the radiation under the conditions of the anomalous 
Doppler effect is insignificant. 

Figure 4 shows the result of numerical integration of 
Eq. (59) for various B,,. For small B,,, the growth of the wave 
remains exponential for a long time. At large B,,, the initial 
exponential section is rapidly replaced by a more gently slop- 
ing one. This is due to departure of resonant electrons into 
the region of lower velocity and depletion of the resonant 
part of the distribution function, a depletion that is stronger 
the larger B,,. 

It should be noted that Eq. (59) with jl determined 
from (57) does not describe the total saturation ofthe ampli- 
tude B. At some instant of time the exponential amplitude 
variation simply gives way to a substantially slower one. 
This is in fact the instant of saturation. The absence of total 
saturation of B is the consequence of the approximations 
used in the derivation of these equations. 

The estimate (55) can be obtained by another method. 
It follows from Ref. 10 that in the anomalous Doppler effect 
each of the resonant electrons transfers to the wave an ener- 
gy equal to 

where S W, is the change of the energy of the electron's trans- 
lational motion. Obviously, S We =: muSo/k. The total wave 
energy, on the other hand consists of the changes SW, of all 
the resonant electrons. The number of such electrons per 
unit volume is 

From the last two relations we obtain then 

FIG. 4. 
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Taking now into account the definition of Win terms of the 
vector potential A and the expression (50) for the growth 
rate, we again arrive at (55). 

Let us compare the maximum wave amplitudes in the 
hydrodynamic and kinetic regimes under conditions of the 
anomalous Doppler effect. Taking (43), (17) ,  and (2 )  into 
account we can write 

We obtain then from (64) and (55) 

where V is the half width of the distribution function in ve- 
locity space. In dimensional variables this relation is of the 
form 

inasmuch as O%x in the kinetic equation. The decrease of 
the wave amplitude on going from the hydrodynamic to the 
kinetic regime follows also from Figs. 1 and 2. 

Figure 5 shows the dependence of the saturation ampli- 
tude I E ~ , , ,  on the "temperature" O, obtained by numerical 
integration of Eqs. (21) at x = 0.01 and E,, = 10-"or var- 
ious O (curve 1 ). The curve agrees well with (66) (dashed 
line). The same figure shows the dependence of the dimen- 
sionless saturation time on O (curve 2),  obtained by numeri- 
cal integration of the same equations. As seen from (28), at 
high "temperatures" we have r,,, - 1/S - O, corresponding 
to the calculated curve 2. 

The main deduction from the analysis of the nonlinear 
dynamics of the kinetic instability under conditions of the 
anomalous Doppler effect is the following: the saturation is 
due to depletion of the distribution function (to formation of 
a dip on i t)  in the resonant-velocity region. This mechanism 
differs from that of the nonlinear stabilization of processes 
connected with the direct and inverse Landau damping, 
where the saturation is due to capture of the resonant elec- 
trons and to formation of a "plateau" on the distribution 
function. ' ' 
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