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The possible existence ofweakly turbulent Kolmogorov spectra on oscillation modes of a 
homogeneous magnetized plasma is investigated theoretically. It is shown that these spectra can 
be related to Alfven, magnetosonic, or magnetized electron Langmuir waves, to whistlers, and to 
a number of other waves. In addition, the question of weak-turbulence Kolmogorov spectra of 
ion-sound waves is analyzed in a more general formulation than in preceding studies (the vector 
nonlinearity is taken into account and the concept of plane turbulence is formulated). The role of 
backward waves, allowance for which is essential in problems involving turbulence of strongly 
dispersed waves, is investigated. It is shown that in such problems there can be realized only one 
Kolmogorov spectrum, rather than the two in the case of weakly dispersed waves. 

1. INTRODUCTION 

A homogeneous magnetized plasma contains a signifi- 
cant number of oscillation modes, for which the dispersion 
equations can be written in the form 

where wk is the frequency of the waves in a suitably chosen 
coordinate frame, k,  and k,  = ( k  + k :  ) ' I 2  are the longi- 
tudinal and transverse components of the wave vector k, z is 
the direction of the equilibrium magnetic field B,, and a and 
b are certain constants. According to the general premises 
advanced in Ref. 1, these modes can be related to weak-tur- 
bulence Kolmogorov spectra. The method of finding exact 
solutions for the kinetic equation of the wave (sometimes 
called the method of factorizing the collision term in power- 
law solutions), which is based on the concept of Kolmo- 
gorov spectra,' has been known for more than two decades 
(since Zakharov's paper'). The existence of numerous 
modes of type ( 1.1 ) is known even longer (see, e.g., the re- 
view in Ref. 3) .  Accordingly, everything necessary to apply 
this method to problems involving a homogeneous magne- 
tized plasma and to develop a fairly complete theory of 
weakly turbulent Kolmogorov spectra of such a plasma have 
long been on hand. No such theory was developed to this 
day, however. The only significant contribution to the con- 
sidered problem is a paper by K u z n e t ~ o v , ~  dealing only with 
one variant of waves of type ( 1.1 ), ion-sound waves. Our 
present aim is to assess the possibility of obtaining weakly 
turbulent Kolmogorov spectra for a larger aggregate of os- 
cillation modes of a homogeneous magnetized plasma. This 
includes the fundamental modes whose dispersion equations 
can be written in the form ( 1.1 ), and also a class of waves 
with k ,  3 k,, characterized by a dispersion equation in the 
form 

where b ,  is a certain constant. Waves of type (1.2) can be 
analyzed by a formalism described in Ref. 5 for Kolmogorov 
spectra of drift waves (this formalism also stems from Zak- 
harov's method'). Development of such a theory is timely, 
in particular, in view of the need for interpreting the plotted 

wave-number dependences of the spectral noise-energy den- 
sity, obtained in present-day computer experiments, as well 
as in experiments with a real plasma under laboratory and 
outer-space conditions. Examples of such plots are the spec- 
tral characteristics of the turbulence in tokamak experi- 
ments," and also computer experiments7 dealing with drift- 
wave turbulence. 

Section 2 is devoted to an analysis of ion-sound turbu- 
lence. This analysis differs from that of Ref. 4 in the follow- 
ing respects. First, we show that in addition to the solutions 
of the kinetic equation for waves that depend on k ,  and k ,  
and correspond to the case of axisymmetric turbulence there 
are also solutions that depend on k,, k,, and ky  and corre- 
spond to the case of plane turbulence. The latter solutions 
can be of greater interest than the axisymmetric ones, for 
example for a plasma in a magnetic wave with shear. In this 
case the coordinates x and y are not on a par and, according 
to Ref. 8, the least sensitive to shear are waves with k ,  3 ky 
( X  is the direction of the magnetic-field gradient). Second, it 
was assumed in Ref. 4 that the interaction between the ion- 
sound waves, which establishes stationary spectra, is due 
only to the so-called scalar nonlinearity, whereas we, follow- 
ing Ref. 9, take both scalar and vector nonlinearity into ac- 
count. As shown in Sec. 2, the vector nonlinearity is more 
substantial than the scalar if k,/k,  is small enough and k,p, 
is not too small (p, is the Larmor radius of the ion at the 
electron temperature), i.e., in the region of greatest interest, 
when dealing with the buildup of ion-sound waves by drift 
effects (see, e.g., Refs. 8 and 10). 

Dispersion equations of form ( 1.1 ) are obtained both 
for weakly dispersed and strongly dispersed waves. A gen- 
eral prescription for calculating the Kolmogorov-spectra ex- 
ponents for weakly dispersed waves of type ( 1.1 ) was formu- 
lated by Zakharov. ' Its gist is that if the wave frequency is 
characterized by homogeneity exponents a and b [see ( 1.1 ) ] 
and the matrix element of the interaction by homogeneity 
exponents u and u (relative to the variables k,, and k,, , where 
i is the index of the interacting waves), then the "number of 
photons" N,  in the Kolmogorov spectra 

is characterized by exponents a and B equal to 
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The use of this prescription is the basis of our following anal- 
ysis of stationary axisymmetric turbulence of weakly dis- 
persed waves. 

A specific feature of the problem of turbulence of 
strongly dispersed waves of type ( 1.1 ) is the need for taking 
into account the interaction between the forward and back- 
ward waves, i.e., waves with different signs of the longitudi- 
nal phase velocity wk/k,. In other words, we should consid- 
er in this case simultaneously (i.e., within the framework of 
one and the same problem) two oscillation modes: 

mk(l '  oc 1 k ,  1 aklb sign k,, 

w ~ ( ~ ' =  - (k,lakLb sign k, .  

The calculation of the exponents of the Kolmogorov spectra 
in this situation is considered in the Appendix below. It fol- 
lows from the Appendix that under conditions (1.6) and 
( 1.7) there can be realized only one Kolmogorov axisym- 
metric-turbulence spectrum characterized by the exponents 
(1.4). 

According to Ref. 5, two variants of plane turbulence, 
two-and three-dimensional, can be associated with waves of 
type (1.2). In the case of weakly dispersive waves, each of 
these turbulence variants corresponds to two Kolmogorov 
spectra. 

General prescriptions for calculating spectral expo- 
nents, of both two- and three-dimensional turbulence, were 
formulated in Ref. 5. In the case of two-dimensional turbu- 
lence, when 

the spectral exponents are a"', PI'" or a"', fl,"', where a'", 
a"'are given by Eqs. ( 1.4) and ( 1.5), ~hi lel? , ' " ,p , '~ '  denote 

where v ,  is the homogeneity index of the matrix element with 
respect to k, . In the case of three-dimensional turbulence, 
when 

we have two aggregates of spectral exponents, a'",P,'", 
or a'2), ~ 1 ( 2 ' ,  f12('), where a"' and a"' are given by Eqs. ( 1.4) 
and ( 1.5), ,6','", fl,"' by ( 1.9), and&"', f12'2) take the form 

where u, is the homogeneity index of the matrix element with 
respect to k, . 

The calculation of the exponents of plane-turbulence 
Kolmogorov-spectrum exponents of strongly dispersed 
waves is dealt with in the Appendix. It is shown there that in 
such waves only one Kolmogorov spectrum can be realized, 
just as in the axisymmetric turbulence considered above. 
Two-dimensional turbulence is characterized by spectral ex- 
ponents a"', @,"), and three-dimensional by a'", fi,"', &("  
(see the equations above). 

Let us dwell also on the case of plane turbulence with 

v, = 0, i.e., when both the oscillation frequency and the ma- 
trix element depend only on two wave-number components 
(on k, and k, in the situation considered). Such a turbu- 
lence is physically two-dimensional, but it can be treated as 
three-dimensional by recognizing that the two-dimensional 
Kolmogorov spectra W,,, ,  , are physically equivalent to 
three-dimensional spectra W,,,,,,, of the form 

It is borne in mind here that 

We apply these ideas concerning weakly dispersed 
waves, in addition to the above case of ion-sound waves, also 
to problems involving Alfven and magnetosonic waves. The 
Alfven turbulence will be investigated in Sec. 3, and the mag- 
netosonic in Sec. 4. Among the strongly dispersed waves 
considered by us are magnetized electron Langmuir waves 
(Sec. 5)  and whistlers, also called whistling atmospherics 
(Sec. 6).  

It is noted in Sec. 7 that problems involving turbulences 
ofcertain other types of waves in a homogeneous magnetized 
plasma are reducible mathematically to those investigated in 
the preceding sections. These include electron-sound, short- 
wave ion-sound, and short-wave Alfven waves. We show by 
the same token that weak turbulence of waves of this type 
can also be characterized by Kolmogorov spectra. 

2. ION-SOUND TURBULENCE 

2.1. Initial equations 

By analogy with Ref. 9, we choose as initial for ion- 
sound waves the continuity and ion longitudinal-motion 
equations 

a " dt + no( 5 a z + div v,) + - a z (iiv.) PO, 

and choose for the electrons the Boltzmann law written in 
the approximate form 

Here n,, and T, are the equilibrium plasma density and elec- 
tron temperature, f i  and V, are the perturbations of the plas- 
ma density and of the longitudinal ion velocity, q, is the elec- 
trostatic potential, and V, is the transverse inertial velocity 
of the ions. The expression for div V, is 

The operator d,/dt is defined as 

a, a c -=- +-[Vcp, VI..  
dt at B, 

The remaining notation is: wBi = eB,/m,c is the ion cyclo- 
tron frequency, e and m, the ion charge and mass, c the speed 
of light, and A, = a 2 / d ~ 2  + a 2/dy2. 

925 Sov. Phys. JETP 68 (5), May 1989 Mikhanovskil etal. 925 



We introduce 5 = z - c,t, i.e., we change over to a ref- 
erence frame moving along z at the ion-sound velocity 
c, - ( T,/mi  ) 'I2. After a number of transformations we ar- 
rive at the following equation for p :  

(2 .6)  

where p, = c,/w,, . The terms with [Vp  X V],A,p and 
b'p 2/b'[ correspond to the vector and scalar nonlinearities, 
respectively. 

We change over to a Fourier representation, introduc- 
ing by the same token the amplitude of the kth Fourier har- 
monic of the potential p, ( t ) .  We obtain from (2.6)  the fol- 
lowing equation for p, : 

where 

We introduce the normalized potential C, defined by 
the relation IC,' a N,. Recognizing that for ion sound we 
have W, a Ip, 1' ( Wk is the spectral density of the wave en- 
ergy) and for weakly dispersed waves the number of quanta 
N, is connected with W, by the relation 

we obtain the connection between C, and p, : 

Writing (2.7)  in canonical form1 I 

. ack 
2 -  V(k. kt, k,)Ck,Ck, exp[-i(~r,+ok,-ok)t], 

at k,+k2=k 

(2.1 1 ) 

we obtain an expression for the interaction matrix element: 

i 
V(k. kt, k ~ ) ~  ( kzktzk2, 1" sign k.{i - - po3[ktk,], 

4 

The symmetry properties of the matrix elements are verified 
by using the obvious equalities [k ,  X k,], = [ k x  k,], 
= [k lXk] , .  

2.2. Spectra due to vector nonlinearity 

If 

the scalar nonlinearity is insignificant, i.e., the first term in 
the curly brackets of (2.12) can be neglected. The matrix 
element becomes then scale-invariant with exponents 
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We recognize also that according to (2.8)  we have for the ion 
sound [cf. Eqs. ( 1.1 ) and ( 1.2) ] 

a=l,  b=b,=2. (2.16) 

Using (2.161, ( 1.41, and ( 1.5) we obtain the axisym- 
metric-turbulence spectral exponents: 

According to (2.9) ,  these exponents correspond to the ener- 
gy spectra 

In the case of plane turbulence we obtain similarly 

As a result we arrive at the following equations for the ener- 
gy spectra of a plane ion-sound turbulence 

At the validity limits of the approximation of small ky/k,, 
i.e., at k, -- ky z k, Eqs. (2.20) change into (2.18). 

2.3. Spectra due to scalar nonlinearity 

We assume now 

In addition, 

With theaidof (2.22),  (2.16),  (1 .4 ) ,  and (1 .5)  we find that 
in the case of axisymmetric turbulence 

These exponents correspond to energy spectra 

The results (2.23) and (2.24) are due to K u z n e t ~ o v . ~  
Since v, = 0, we can speak, in accord with the state- 

ments in Sec. 1, of two variants of plane turbulence, three- 
dimensional and two-dimensional. The expressions for the 
three-dimensional planar-turbulence spectra take the form 

, 
For k, z ky z k, these spectra go over into (2.24 j. For two- 
dimensional turbulence, on the other hand, we have in place 
of (2.25) 

wk a (k;" kX-l, k;% ) . (2.26) 

Relations (2.25) and (2.26) illustrate the statements made 
in Sec. 1 with respect to Eq. ( 1.12). 

Note also that at the limits of validity of the inequalities 
(2.13) and (2.21 ), i.e., at k, a kL4, Eqs. (2.24) have qualita- 
tively the same meaning as (2.18). A similar remark holds 
for (2.20) and (2.25).  In other words, the spectra due to the 
vector and scalar nonlinearities change smoothly into each 
other in the region where these linearities are of equal impor- 
tance. 



3. ALFVEN TURBULENCE 

We take the sought equations for nonlinear Alfven 
waves from Ref. 12. These are the vorticity equation 

the electron longitudinal-motion equation 

and the continuity equation for the electrons 

Here A is the z component of the vector potential 

c, = B, / (4~n,m,) ' '~  is the Alfven velocity, and pi 
= ( Te/Ti ) 1'2po is the ion Larmor radius. 

We introduce = z - c, t, meaning a change to a coor- 
dinate frame moving along z with velocity c, (cf. Sec. 2).  We 
introduce in place ofA the function2 defined by the relation 

Assuming small dispersion and weak nonlinearity of the 
waves, we transform the system (3.1)-(3.3) into 

where / Z 2  = p i  +@f. Changing in (3.6) and (3.7) to a 
Fourier representation, we arrive at the following equation 
for pk ( t ) :  

where 

~ k = ) L ~ ~ ~ k , k , ~ / 2 .  

We have left out of the right-hand side of (3.8) an inessential 
factor of order A 2 .  

In the case of Alfven waves we have 

The connection between Wk and Nk is given by (2.9). 
Therefore [cf. (2.10) 1 

Taking (3.11 ) into account, we reduce (3.8) to the form 
(2.11 ), and arrive as a result at the following expression for 
the,Alfven-wave interaction matrix element [cf. (2.12) 1 : 

We see that this matrix element is scale invariant with re- 
spect to k,, and k,;, with exponents 

The wave frequency (3.9) is scale invariant with exponents 
(2.16). From this follows, in accordance with ( 1.3) and 
( 1.4), the feasibility of Kolmogorov spectra of an Alfven 
axisymmetric turbulence, with exponents 

Taking (2.9) into account, we find that these exponents cor- 
respond to energy spectra in the form 

We consider now a plane Alfven turbulence. From 
(3.12) we have 

Taking into account (3.17) and the statements in Sec. 1, we 

get 
,zj1(I)=-3 (1)-  (2)-  ( Z ) - - 2  

3 p z  - p i  4 2  - . (3.18) 

We arrive as a result at the following expressions for the 
energy spectra of a plane Alfven turbulence: 

Fork, =.k,=:k, Eqs. (3.19) go over into (3.16). 

4. TURBULENCE OF HIGH-FREQUENCY MAGNETOSONIC 
WAVES 

Consider high-frequency (w w,, ) magnetosonic 
waves propagating across an equilibrium magnetic field in 
the x-axis direction, and assume that the field of these waves 
has also a weak dependence on z and y [ (k, , k, ) g k, 1. We 
use a coordinate frame moving with Alfven velocity along 
the x axis. We introduce correspondingly the coordinate 
[ = x - c, t .  We put k,/k, $ (m,/mi)1'2, where m, is the 
electron mass. Using the results of Ref. 13, we find that un- 
der these assumptions and in the weak-nonlinearity approxi- 
mation the magnetosonic waves are described by the equa- 
tions 

where w;; = 4n-e2n0/mi is the squared ion Langmuir fre- 
quency. 
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Changing to a Fourier representation, we obtain with 
the aid of (4.1) and (4 .2)  

a c p k  ek, i-=- 
c3 

where 

Just as for ion-sound waves, we have in this case W k  a lpk 1'. 
The connection between W k  and Nk is 

therefore 

Using (4 .6 ) ,  we reduce (4.3) to the form (2.11 ). We obtain 
then 

x(k,k?-kl,ki:-k,,k,,')] sign k,. (4.7) 

The first and second terms in the square brackets of the 
right-hand side of (4.7) are due respectively to scalar and 
vector nonlinearity. Evidently the scalar nonlinearity ex- 
ceeds the vector nonlinearity if 

In this case the matrix element is scale-invariant with respect 
to k,, with exponent 3/2. Recognizing also the scale invar- 
iance of the oscillation frequency [see (4.4) 1 ,  we obtain by 
the above method the following two Kolmogorov-type ener- 
gy spectra [cf. (2 .26) ] :  

Equation (4.9) is written in two-dimensional space, i.e., it is 
indicative of a two-dimensional spectrum. It is clear from 
the statements in Sec. 1 that these two-dimensional spectra 
correspond to three-dimensional spectra of the form [cf. 
(1.12),  (2 .25) ]  

we can neglect the contribution of the scalar linearity to the 
right-hand side of (4 .7) .  The matrix element is also found to 
be scale invariant, so that under the condition (4.1 1 ) there 
can also be realized a pair of Kolmogorov spectra. In this 
case 

W, a (k;*k,-3ku-2, kzC kz-2ky-2). (4.12) 

The spectra (4.12) have the same meaning as in (4.9) at the 
limits of validity of the inequality (4.1 1 ) . 

5. TURBULENCE OF MAGNETIZED ELECTRON LANGMUIR 
WAVES 

Consider purely electronic electrostatic waves in a cold 
magnetized plasma. We start from the standard hydrody- 
namic continuity and electron-motion equations 

and the Poisson equation 

Here n = no + i i, f i  and V are the density perturbations and 
the electron velocities, d /d t  = a / &  + V-V, and e, is the 
electron charge. After a number of simplifications (cf. Sec. 
2) we reduce the system (5.1)-(5.3) to the form 

where wj, = 4n-e:no/me is the squared electron Langmuir 
frequency, and w ,  = e,Bdm,c is the electron cyclotron 
frequency. It is assumed that the characteristic frequency of 
the waves is low compared with the electron cyclotron fre- 
quency, a /at< o,,, and the longitudinal wave numbers are 
considerably smaller than the transverse ones, a 2/az2< A,. 
Note also that we have neglected the scalar nonlinearity in 
(5.4) and (5 .5) ,  i.e., account is taken of only the vector non- 
linearity [which is connected with the operator d,/dt, see 
(2.511. 

The change to the Fourier representation in (5.4),  
(5.5) is with the aid of the equation 

where the superscript i labels oscillation modes with differ- 
ent signs of the frequency [cf. ( 1.6), ( 1.7) ], and the remain- 
ing notation is obvious. We express V, in similar form. Ne- 
glecting the nonlinear terms and the time dependence of 
p F ' ( t )  we obtain from (5 .4)  and (5 .5)  a dispersion equa- 
tion that determines the frequencies ok "': 

It follows from a comparison of (5 .7 )  with ( 1.6) and ( 1.7) 
that in our case 

Allowance for the nonlinear terms and for the terms 
with apk "'/at in (5 .4 )  and (5.5) leads to the following 
equation for pk "'; 

( 1 )  (i) . x q k ,  q ~ ,  exp [ -  i (okl,' + - ot)) t ] .  (5 .9)  
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To simplify the notation we omit here and in several equa- 
tions below the subscript "1" of k,, k , ,  , and k,, . 

We recognize that the spectral energy density Wk of the 
considered waves is connected with pk by relation (3.10). 
According to (5.7), the connection between Nk and Wk is 

therefore 

Changing in (5.9) to the variables Ck and expressing the 
result in a form similar to (2.1 1 ), we obtain an expression for 
the interaction matrix elements 

I kzkizkzz 1 '" 
V'j' (k ,  k l ,  k,)  o: i ( -1) '  [ k l k , ] ,  

(kk,k,)'" 

X[ ( - 1 )  'k+  (-1)jki+ ( - l ) ' k 2 ] s i g n  k,.  (5.12) 

The meaning of the superscripts i, j, and I of the matrix ele- 
ments is clear from the foregoing and from the Appendix. 

The matrix elements (5.12) are scale-invariant in the 
longitudinal and transverse wave numbers with exponents 

We conclude therefore, with allowance for the statements 
made in Sec. 1, that an axisymmetric Kolmogorov turbu- 
lence can be realized in this case, with exponents 

According to (5.10), the spectral energy density in such a 
turbulence is of the form 

Fork, $ k, the oscillation frequency (5.7) and the ma- 
trix elements (5.12) are scale invariant in k,, k,, and k,. In 
this case 

so that, in accord with ( 1.9) and ( 1.11 ) , we are dealing now 
with spectral exponents 

Taking (5.10) into account, we find that these spectral expo- 
nents correspond to a plane turbulence with an energy spec- 
trum 

Wk k;" k;" k,-2. (5.18) 

We note also that at the limits of its applicability, i.e., 
for k, --, k, - k ,  , Eq. (5.18) is in qualitative agreement with 
(5.15). 

6.TURBULENCEOF WHISTLERS 

The electrostatic approximation assumed in Sec. 5 is 
valid only if k ,  $c/w,, . We assume now that k ,  <c/w,, . We 
regard the perturbations as quasineutral. In the case of pure- 

ly electronic waves, i.e., neglecting the ion motion, this 
means r? = 0. Equation (5.1 ) is then simply the condition 
that the electron component of the plasma be incompress- 
ible, 

div V=O. (6.1) 

We modify the electron equation of motion (5.2) as 
follows. On the one hand, we neglect in it the inertia, and on 
the other we take into account the unperturbed magnetic 
field B and the fact that the electric field E is not potential. In 
other words, we replace (5.2) by 

1 
E + - [VB]=O,  

C 
(6.2) 

where B = B, + B is the total magnetic field. We use also the 
equation (cf. Ref. 14) 

ALEz=-4ne,no rot, V lc ,  (6.3) 

which follows from the Maxwell equations and from the 
expression j = e,n,V for the electric current. We obtain 
from (6.1 )-(6.3) the system of nonlinear equations 

Obviously, (6.5) is a particular case of (3.2) as T, -0 [cf. 
also Eq. (4.2) 1. At the same time, (6.4) is the analog of 
(4.1). 

In analogy with (5.7), it follows from (6.4) and (6.5) 
that 

(1.W - 
a k  -* 1 0 B . I  ~ ~ k , k ~ / ~ ~ s l ,  (6.6) 

so that now [cf. (5.8) ] 

a=I, b = l .  (6.7) 

At the same time we have in the present casein place of ( 5 . 9 )  

x exp [- i (oE) + o$: - ~ 2 ) )  tl. (6.8) 

Just as in the cases of ion-sound and magnetosonic 
waves (see Secs. 2 and 4),  the connection between Wk and 
pk is Wk cc Ipk 1'. Taking (6.6) into account, we obtain 

Consequently 

With the aid of (6.8) and (6.10) we get, by analogy with 
(5.121, 
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V'j' ( k ,  k , ,  k , )  a i (- l )  ' sign k,  I kzkizklz 1 ' 
(kk,k,)  '" [k,k,lz 

X {?[ ( - l ) j k , - ( - l ) l k l ]  

Evidently, the matrix elements are scale invariant in k, 
and k, , with exponents 

With allowance for (6.12) and ( 1.4) we find that the 
spectral exponents of the Kolmogorov turbulence of whis- 
tlers are 

Using (6.13) and (6.9) we conclude that the considered tur- 
bulence is characterized by a spectral energy density of ex- 
actly the same form as in the case of magnetized electron 
Langmuir waves, i.e., it is given by (5.15). As for plane tur- 
bulence of whistlers, the spectral energy of such a turbulence 
is determined by Eq. ( 5.18). 

7. KOLMOGOROV SPECTRA OF CERTAIN OTHER TYPES OF 
WAVES 

7.1. Electron-sound waves 

Electron-sound waves5 occur in the case of a plasma 
with hot ions, Ti > T, . They are characterized by a disper- 
sion equation 

where ce2 = T,/m, is the squared electron-sound velocity, 
andp,, is the electron Larmor radius calculated from the ion 
temperature. It is assumed that the terms with k, in (7.1 ) 
are small dispersion corrections. In a coordinate frame mov- 
ing along the magnetic field with velocity c,, the dispersion 
equation (7.1 ) is replaced by 

Apart from the interchange of the subscripts labeling the 
species of the charges, Eq. (7.2) is the same as the dispersion 
increment (2.8) to the ion-sound frequency. The nonlinear 
equations for the electron-sound waves are obtained from 
(2.1)-(2.4) likewise by interchanging the subscripts. The 
results of the analysis of Sec. 2 are consequently valid also for 
the problem of electron-sound waves. It is clear from the 
foregoing that the electron-sound waves can be the cause of 
weak turbulence with Kolmogorov spectra in the form 
(2.18), (2.20), and (2.24)-(2.26). 

7.2. Short-wave ion-sound waves 

In Sec. 2 we have considered the turbulence of waves 
described by the dispersion equation (2.8). This equation is 
the long-wave limit (k,p,< 1) of the general dispersion 
equation of ion-sound wavesI5: 

In the short-wave limit k,p,>l we get from (7.3) in place of 

A comparison of (7.4) with (5.7) reveals the formal analogy 
of the dispersion properties of short-wave ion-sound waves 
and magnetized electron Langmuir waves. The initial non- 
linear equations of the short-wave ion-sound waves are simi- 
lar in form to (5.4) and (5.5). Therefore, taking the analysis 
of Sec. 5 into account, we conclude that waves in question 
can be related to weak turbulence with Kolmogorov spectra 
of the form (5.15) or (5.18). 

7.3. Short-wave Alfven waves 

Short-wave Alfven (SA) waves are continuations of 
modes of long-wave Alfven waves (see Sec. 3) into the re- 
gion k,p, > 1. They are characterized by a dispersion equa- 
tion 

This equation is similar in structure to the whistler equation 
(6.6). In the SA wave problem the electron continuity equa- 
tion differs from (6. l ) by the presence of a contribution of 
the perturbed density i i :  

doE/dt+na d i v  V=O. (7.6) 

We obtain the perturbed plasma density ii with the aid of the 
Boltzmann law for ions 

In contrast to (6.2), we take into account in the equation of 
motion of the electrons a term with a gradient pressure, and 
neglect the temperature perturbations, i.e., we use the equa- 
tion 

We neglect the perturbation of the longitudinal magnetic 
field 3,; this is justified if fip < 1, where fi,, is the ratio of the 
plasma pressure to the magnetic-field pressure. As a result 
we arrive at the system of equations (cf. Ref. 17) 

Apart from the constants, this system is equivalent to (6.4) 
and (6.5). It is clear therefore that the considered problem 
of the turbulence of SA waves reduces mathematically to the 
problem of whistler turbulence. We conclude then without 
further analysis that SA waves can give rise to a weak Kol- 
mogorov turbulence with spectrum exponents of form 
(6.13) and with spectral density distributions of form 
(5.15) and (5.18). 

8. CONCLUSION 

The foregoing analysis attests to the presence in a ho- 
mogeneous magnetized plasma of a rather great variety of 
oscillation modes on which weakly turbulent Kolmogorov 
spectra can be realized. We have confined ourselves to find- 
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ing the stationary turbulence spectra of the corresponding 
modes. It is also of interest to study the dynamic properties 
of these spectra (in particular, analysis of the spectral fluxes 
and of the problem of locality of the turbulence); this can be 
the subject of future research. 

APPENDIX 

KOLMOGOROV STATIONARY SOLUTIONS WITH 
ALLOWANCE FOR THE EFFECTOF 
COUNTERPROPAGATING WAVES 

Consider the interaction between waves of type i = 1 ,2  
[see (1.6), (1.7)] having a wave vector k  and waves of type 
(j, 1) = 1,2 having vectors k ,  and k,.  Such an interaction is 
described by the kinetic equations for the waves (cf. Ref. 
11): 

5 = J dk,  dkzU"' ( k ,  k , ,  k , )  
at j,, 

x 6 (k -k , -k , )  dk,  dk,. ( A l )  

Here 

U"'(k, kl ,  k z )  =I V j 1 ( k i ,  k , ,  k , )  I Z ,  (A2) 

and V v ' ( k ,  k , ,  k,) is the matrix element of the interaction. It 
is assumed that the forward and backward waves have equal 
numbers of quanta. 

Changing over in the right-hand side of (A 1 ) to posi- 
tive frequencies and integrating over positive k,, and k,, , we 

get 

Here 

z i = U i i l  ( k , ,  k,; kiz, k i i ;  kzr, k2,) 6  (k2 
-kiz-kzz) + Uiz' ( k z ,  k,; -kiz, ki,; kzz, kz,) 

~6 (k,+kiz-kzz) +Ui i z (kz ,  k,; kt,, kt,; 
-kzz ,  k,,)  6 ( k z - k l z + k z z )  ( A4a 

Z,=U1'2(k, ,  k,; ki,, k l i ;  kz,, kz,) 
(kz-kiz-kzz) +UiZZ (kz7 k i ;  -kir, ki,; 

kzz, kz,) 6  (kz+kIz-kzz) +Ui" (kz, k,; 
k ~ z ,  ki,; -k2z1 kz1) 8  (kz-k~r+kzz) ,  (A4b) 

Z,=UlZi (kz7 k i ;  klrr k ~ , ;  kzrr kz,) 6 (kr 
-kiz-kzz) +Ui" (kz, k,; -kin ki,; kzz, kz,) 

X 6  (k,+kiz-kz,) +UiZ2(kz,  k,; k*,,  kt,; 
-kzz, kz,) 6 (kz-kiz+kzz).  (A4c) 

The use of Zakharov's factorization method' permits trans- 
formation of the right-hand side of (A3), which contains 
three different frequency S functions into a form containing 
only one S function, say S(w, - w,, - w,, ). In this case 
(A3) takes the form 

rn 

d N k  
- = 5 dk,,  dk,, J dk, ,  dkz,6 (k,-kl,-k,,) 
a t  

In the case of axisymmetric turbulence, the function K is 
given by' 

where 

For plane turbulence with k, 9 k, we have in place of (A6) 
(Ref. 5 )  

where c, as before, is determined by the first equation of 
(A7), while 7 and 6 stand for 

Let a = a"' andB = fl "', where a"' andB '2' are defined 
by (1.5). The function K defined by (A6) then takes the 
form 

Neglecting the backward waves, i.e., taking into account in 
Z ,  only the term with U"' ,  we have 

i.e., in the absence of backward waves the integrands in (A5) 
vanish at the indicated values of a and 0. This corresponds 
to stationary spectra with a = a"' andB = fi'2'. If, however, 
backward-wave effects are taken into account, i.e., it is as- 
sumed that (U12 ' ,  U'12) #O, we have according to (A4a) 
and (A10) 

In this case no stationary solutions with a = a"' and 
0 = fi '2' are realized. 

Equation (A6) can be written also in the form 

where a"' and B'" are given by Eqs. ( 1.4). For a = a"' and 
p = P"' it follows hence that 

Since6(wk - w,, - w,, ), in contrast to S(k, - k,, - k,,), 
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is a common factor of the integrand in (A5), the case 
K = K "' corresponds to stationary solutions both in the ab- 
sence and in the presence of backward waves. In other 
words, solutions with a = a"' a n d p  = B"' are not sensitive 
to effects of the backward waves. 

Returning to Eq. (A8),  it can be verified that a similar 
picture obtains also in the case of plane turbulence. 
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