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The rotational Hamiltonian in action-angle variables is written down for the water molecule 
considered as a rigid asymmetric top. A method for parametrizing multidimensional potential 
surfaces is proposed. Quasiclassical quantization of the Hamiltonian, based on the Bohr- 
Sommerfeld principle, is carried out. Analytic formulas for the cross sections for excitation of 
rotational levels of the H,O molecule in collisions with atoms are derived by the quasiclassical 
Dubrovskii-Bogdanov T-matrix method. The rotational excitation constants for a number of 
rotational levels in the H 2 0  + He system are calculated over a broad temperature range. The 
results are compared with those of calculations based on the close-coupling method. 

1. INTRODUCTION 

The rapid development of both high and superhigh res- 
olution molecular spectroscopy, t the appearance of sensitive 
experiments measuring the rotational distributions of the re- 
action products of photodissociation' and monomolecular 
d iss~cia t ion,~  the search for a means of obtaining population 
inversions of rotational levels in gaseous f l o ~ s , ~ . ~  the prob- 
lem of cosmic masers,' and a number of other problems have 
necessitated a deep study of the rotational dynamics of po- 
lyatomic molecules. The goal of the present article is a consi- 
deration of collisional rotational transitions within the 
framework of the quasiclassical Boganov-Dubrovskii T-ma- 
trix method,' which uses a representation of the scattering 
amplitude in action-angle variables, and the generalized ei- 
konal approximation based on It  may be noted that 
such an approach has a number of advantages over the sud- 
den-perturbation approximation, presently in wide use, or 
"exact" calculations based on the close-coupling method, 
since the latter involve uncontrollable approximations 
(such as, e.g., the choice of the basis in the close-coupling 
method) and do not enable one to obtain analytic approxi- 
mations for the cross sections or the rate constants of the 
rotational transitions. 

The generalized eikonal method has been previously 
used for the description of the rotational excitation of asym- 
metric-top molecules in Ref. 10, but the method used there 
of introducing the action-angle variablestt did not permit 
the calculation of the quasiclassical spectrum of the mole- 
cule, thereby creating definite difficulties of the calculation 
of the cross sections of the rotational transitions. 

For this reason we introduce (in Sec. 2 )  the action- 
angle variables for the asymmetric top, following the tech- 
nique in Ref. 12. In Sec. 3 we discuss questions of the quasi- 
classical quantization of the rotational degrees of freedom of 
the H 2 0  molecule, and in Sec. 4 we consider the probability 
of the rotational excitation of this molecule by a helium 
atom. 

2. ACTION-ANGLE VARIABLES FOR AN ASYMMETRIC TOP 

The classical Hamiltonian of the asymmetric top has 
the form 

where J c ,  J,, , and Jc are the projections of the angular mo- 
mentum vector on the l ,  7, and 6 axes of the moving molecu- 
lar coordinate system and are aligned with the major axes of 
the ellipsoid of inertia of the molecule, and A,  B, and C are 
rotational constants of the molecule, inversely proportional 
to its principal moments of inertia. We will assume for defi- 
niteness that A > B > C. For the water molecule this condi- 
tion leads to a choice of the moving system shown in Fig. 1. 
Rotation of the molecule is described with the help of the 
Euler angles a,  8, and y, which characterize the orientation 
of the molecular system with respect to the fixed laboratory 
coordinate system x ,  y, z (Fig. 2 ) .  

To  transform Eq. (2.1) to action-angle variables we 
first write this expression in the canonical conjugate coordi- 
nates of Deprit" L = Jg , I, = J, and I, = J,, 

The angle I as well as the angles p2 and p,, which will be used 
below, are indicated in Fig. 2 and defined in its caption. 

From Eq. (2.2) it can be seen that the variables I2 and I, 
are integrals of the motion, from which it follows that the 
energy of rotational motion is degenerate. Thus, for a given 
value of I2 the problem of rotation of an asymmetric rotator 
reduces to determining the motion of a conservative system 
with one degree of freedom 

Solving Eq. (2.2) for L ', we obtain 

For a fixed value of the momentum I2 the phase space 
(L,I) of the Hamiltonian (2.2),  filled with the trajectories of 
one-dimensional motion, is a sphere of radius I?. The trajec- 
tories L ( I )  on this sphere, which are determined by the value 
of the energy E = H, are closed. The separatrix r = 1 divides 
the phase space into four invariant regions (see Fig. 3),  in 
each of which one can introduce the action-angle variablest' 
I, and q ,  (Ref. 12): 
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FIG. 1. Choice ofthe molecular coordinate system for the water molecule. 

FIG. 3. Phase space of the system with Hamiltonian (2.2) (scan of the 
sphere of radius Zz). 

Substituting expression (2.4) into the integrand and taking 
into account the periodicity of the trajectory, we write this 
integral in the form 

where the choice of I,, and 1, for regions I-IV is made as 
shown in Table I. 

For r < 1, the integral (2.5b) with the help of the substi- 
tution 

ctg 1 = - (l+xZ)'h tg g (2.6a) 

reduces to complete elliptic integrals of the first K ( r )  and 
third II (?t2,r) kinds: 

I t  can be shown" that I, is monotonically decreasing 
with increasing r, therefore Eq. (2.7a) determines r as a 
function of the action variables 

Recalling the definition of the parameter r (Eq. 2.3 ), we 
solve it for H, which, taking Eq. (2.8a) into account, gives 
the Hamiltonian function in action-angle variables 

A-C x2 
II=AI: (1 - --) 

A x2+r2 ' 

FIG. 2. Mutual placement of the laboratory (x,y,z) and the molecular 
({,v,() coordinate systems: a, B, yare  the Euler angles, and /, p2, p1 are 
the Deprit angle variables ( OPis the line of nodes, OM l J ,  OM 1J). 

For r >  1 integral (2.5b) reduces to elliptical functions 
with the help of the substitution 

(l+xz) 'Iz sin 
cos l= - 

r ( I +  (x2/r2) sin2 g )  ' 

After some transformation we obtain in this case in place of 
Eq. (2.7a) 

It=- 212 ( - :2zl ) [(r2+x2) n($, k) - r ' ~ ( s ) ]  . 
nxr  

Like Eq. (2.7a) expression (2.7b) determines the depen- 
dence of r on the action variables: 

The Hamiltonian in action-angle variables in regions I11 and 
IV, as before, has the form (2.9),  but the r defined by Eqs. 
(2.8b) and (2.7b). 

The angle variables q = ( q ,  ,q,,q, ) , canonically conju- 
gate to the action variables I = (I , , I , , I , ) ,  are calculated 
with the help of the generator G(I,,12,1,;1,p2,p,) of the ca- 
nonical transformation 

I 

G=Z,q,+12rp2 * dx L (x; I ) .  (2.10) 
1 0  

where the minus sign is chosen in region I1 and L(1,I) is 
defined by Eqs. (2.4) and (2.8). Differentiating G with re- 
spect to the corresponding action variables, we find ( @  = @, 
o r @ , f o r r < l  o r r >  1)  

With the help of substitutions (2.6) the integrals in these 
expressions reduce to elliptical functions 
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TABLE I. Choice of the initial point of the integration (Lo, 1,)) in the integral (2.5)  for the 
various regions of phase space. 

For the sake of brevity the following notation has been 
introduced in Eq. (2.1 1 ) : 

To complete the description of the free rotation of the 
asymmetric rotator in the variables (1,q) we express in these 
variables the elements of the direction-cosine A (a,P,y) ma- 
trix ofthe system g ~ c i n  the system xyz. From Fig. 2 it can be 
seen that a rotation about the angles a ,  0 ,  y can be represent- 
ed in the form of two successive rotations: p,, 6, ,  0 and p,, 
62, 1, 

A (a,  b, T) = A  ((~2,82,1) A (q~s,61,0).  (2.13) 

Since p, = q, and cosS, = I,/I,, the second factor in Eq. 
(2.13) is already written in terms of action-angle variables. 
To write the first factor in terms of these variables it is neces- 
sary to invert relation (2.11 ), taking into account Eqs. (2.4) 
and (2.6) and the definition of the angle 6,: cos6, = L /I,. 
The result of this inversion can be written in the form' ' 

where 

n F (arctg plh, ( I -hZ)  '") 
2 K (h)  

9 

In these formulas the notation (2.12) is used again. The 
quantity L is expressed in terms ofI , ,  I,, and q ,  in the follow- 
ing way: 

0, am, dn, and cn are elliptical functions. Simplification of 
(2.14) can be realized by expanding the elements of the first 
factor in series in the Jacobi parameter2': 

Note that the action variable I, can be introduced in an 
analogous way by averaging the projection L ' = Jc of the 
angular momentum along the {axis. The choice ofone of the 
projections (which for us means a choice of the quantization 
axis) is connected with the peculiarities of the motion of the 
top for different values of the parameters r and will be dis- 
cussed in the next section. 

3. QUASICLASSICAL QUANTIZATION OF THE ROTATIONAL 
DEGREES OF FREEDOM OF AN ASYMMETRIC TOP 

Applying the Bohr-Sommerfeld principle, the action 
variables above can be expressed in terms of the correspond- 
ing quantum numbers: 

Z3=mti, I,= (jf1l2)fi, I,= (k+y) fi, (3.1) 

where y is a number of the order of unity. To determine y, let 
us consider in more detail the character of the rotational 
motion of an asymmetric rotator. This can be most easily 
visualized with the help of an analog of the potential energy 
surface-the rotational-energy surface, which was intro- 
duced in Ref. 13. The form of the rotational-energy surface 
and the trajectories on it are shown in Fig. 4 for an asymmet- 
ric top. 

As can be seen from the figure, for Ji- - J ( r <  1) the 
vector J precesses rapidly about the < axis, completing small 
librational oscillations with respect to the two other axes. 
For J6 -J(r>) 1)  the vector J precesses about the c axis. 
These two types of trajectories are separated by the separa- 
trix, which is defined by the equality r = 1. The trajectories 
close to the separatrix are characterized by nonuniform rates 
of motion: the vector J, slowing down, approaches the 7 
axis, remains close to it for some time, and then with acceler- 
ating motion migrates to its opposite end. It can be seen from 
Eqs. (2.3) that on the separatrix the energy of rotational 
motion is equal to 

Since the quantization rule (3.1 ) with y = 0 is most 
appropriate for prescessional motions, it is reasonable to 
take the axis as the axis of quantization for r <  1 
(CI;  <E<BI;) ,  in which case" k = k,, and to take t h e c  
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FIG. 4. Rotational energy surface for an asymmetric-top molecule: the 
solid lines with the arrow are the trajectories of the vector J; the dashed 
lines show the constant energy sphere for E = En,;,, = A I ; ;  the dotted 
lines show the separatrix, defined by the intersection of the rotational 
energy surface with the sphere E = BI: . 

axis for r >  l (BI;  <E<AI: ) ,  in which case k =  k-. Pas- 
sage across the separatrix is accompanied by a changeover 
from rotational precession to oscillatory libration for which, 
due to the existence of two turning points, I yl equals 1/2. 
Such a choice of y is in agreement with the results of the 
calculation of the quantity I, according to Eq. (2.7) based 
on experimental data14 on the rotational spectrum of the 
water molecule. In the region of small values of the projec- 
tion Jc these quantities with good accuracy take half-integer 
values, and in the region of large values of the projection, 
close to the value of the total angular momentum J, these 
quantities take on integer values with the same accuracy. 
Results of calculation of the spectrum of the H,O molecule 
within the framework of this approach are displayed in Ta- 
ble 11, where they are compared with experimental data.14 It 

can be seen that quasiclassical quantization works well in the 
region / T I  22, where T = k_  k+ is the "number" of the level. 
The so-obtained quasiclassical spectrum turns out to be de- 
generate: for each level with energy less (greater) than BZ :, 
to each value of k+  ( k k )  there correspond two values of 
k-(k,), equal to 

This degeneracy is lifted when one allows for the finite value 
of the probability of transition from a rotational state with 
given J to a state with angular momentum - J (Ref. 15). 

In conjunction with the assumed quantization rule for 
the calculation of the transition probabilities it is convenient 
to have available the possibility of a unified description of the 
rotational levels. This can be achieved with the help of the 
relation 

where I, (,, denotes the action variable (2.5a) quantized 
along the a axis (i.e., L = J,  ). To prove (3.4) we differen- 
tiate (2.7a) with respect to r: 

The choice o f f  as the axis of quantization corresponds to 
exchanging A and C in Eqs. (2.2) and (2.3). Here formulas 
(2.7a) and (2.7b) remain valid if in them one makes the 

I substitutions r -  rc = r and x -. x,, = ?t- I .  We obtain 
then for (2.7b) (r,, > 1 for r <  1) 

FromEqs. (3.5) and (3.6) i t f o l l ow~tha td ( I , , ~ ,  + I , , c ,  ) /  

TABLE 11. Rotational spectrum of the water molecule (in cm- I ) :  Upper row (which takes into 
account degeneracy, see text)--calculation according to equation ( 3 .  l ) ,  Lower row-experi- 
mental spectrum.'4 
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dr=O,  and since I,(5, ( r = O )  =I2 and I , , 6 ,  ( r = O )  = 0 ,  
we obtain the result (3.4). Quantization of relation (3.4) 
with the help ofEqs. (3.1) for y = + 1/2 leads to Eq. (3.3). 

4. CALCULATION OFTHE PROBABILITY OF EXCITATION BY 
AN ATOM OF THE ROTATIONAL STATES OF AN 
ASYMMETRIC-TOP MOLECULE 

To approximate the true potential-energy surfaces of 
the interaction of an atom with an asymmetric-top molecule 
one commonly uses an expansion of these surfaces in spheri- 
cal harmonics. Thus, to describe the interaction of a water 
molecule with a helium atom S. Green" has proposed a po- 
tential of the form 

where R is the radius vector directed from the center of mass 
of the molecule to the atom, and 9 and p are the angle corre- 
sponding to the direction R in the spherical coordinate sys- 
tem associated with the molecule (with major axis directed 
along the 7 axis, see Fig. 1 ). The prime in Eq. (4.1 ) signifies 
that the sum is to be taken only over even 8, as dictated by 
the symmetry of the H 2 0  molecule. The radial dependence 
of the coefficients VnB, calculated within the framework of 
the electron-gas model, is given in Ref. 16 in tabular form. 

In the construction of the analytic approximations of 
the partial coefficients VaB we take the spherically symmet- 
ric part of the potential V,,,, in the form of a sum of a repulsive 
V&' and an attractive Vg'  part, and we represent the re- 
maining coefficients in the form 

where a$'" are the coupling constants for the repulsive and 
attractive parts of the potential and are indepenent of R. Use 
of two coupling constants in place of one permits a more 
accurate account of the dependence of the coefficients VaB 
on the intermolecular distance. The necessity of such an ap- 
proximation, reflecting the different degree of anisotropy of 
the long- and short-range parts of the potential, follows from 
the strong and nonmonotonic dependence of the cross sec- 
tions of the inelastic transition on these parameters." We 
will approximate the functions Vga'  by either an exponen- 
tial or an inverse-power law dependence. In this case one can 
recover both the parameters of the spherically symmetric 
part and the coupling constants a$) from the data in Ref. 
16. 

The scheme of calculation of the scattering cross sec- 
tion within the framework of the generalized eikonal meth- 
odXs9 reduces to the following. The potential (4.1 ) is written 
in action-angle variables with the help of the transition ma- 
trix (2.14) (see Appendix A).  The problem of finding the 
trajectory in multidimensional phase space is then solved 
(usually within the framework of one of the variants of per- 
turbation theory, making use of a separation into fast and 
slow motion). The increment of the classical action along 
the trajectory is then calculated, followed by the scattering 
profile, the square of the modulus of which determines the 
probability of the inelastic transition. 

As was shown in Refs. 8 and 9, the quasiclassical scat- 
tering amplitude T (Ref. 7 )  can be represented in the form of 
a product of the elastic scattering amplitude To and the in- 
elastic scattering profile T: 

The integration in Eq. (4.3) is carried out over the three- 
dimensional cube with side equal to 2r;w is the vector of the 
frequencies of the rotational motions (see Appendix A ) ,  and 
H i s  the Hamiltonian of the unperturbed motion (2.9). The 
integration in the calculation of Sin is carried out along the 
multidimensional classical trajectory9 consisting of two 
branches with fixed values of the action variables I = Ii(,, at 
t = - a ( + co ) and angle variables q = qo at t = 0. Such a 
statement of the problem of finding the trajectory in multidi- 
mensional phase space provides a more effective application 
of perturbation theory, for even in the zeroth approximation 
the boundary conditions are satisfied for the trajectories at 
t = f a. The perturbation theory is based on a separation 
of the cases of fast (A, < 1) and slow (Aa % 1)  motions, 
where A, = wad / u  is the classical Massey parameter, d is 
the radius of the interaction region, and w, is the frequency 
of the a t h  internal degree of freedom, where in estimating 
the frequency one commonly chooses its value in the corre- 
sponding channel k = i, f. 

A perturbation theory for slow collisions was developed 
in Refs. 18 and 19. Its main result is that in this case the 
increment of the action is mainly a result of motion in the 
direction perpendicular to the bisectrix of the scattering an- 
gle. This permits one to reduce the problem of the transla- 
tional motion to a one-dimensional problem and to obtain 
analytic expressions for the increment of the classical action 
Sin . 

For fast collisions, one treats the increment of the ac- 
tion S,, by neglecting the intramolecular motion (w, = 0 )  
or by using interpolation procedures based on the approxi- 
mation of average frequencies (o = ( o ,  + of )/2) and 
aveage translational energies (E = (Ei + Ef) /2)  (Refs. 8 
and 20). 

We include in our scheme one more simplification, 
which has to do with the degeneracy of the Hamiltonian H 
with respect to the action variable I, = mfi. The probability 
of a transition between two states with different energies is 
determined by the square of the modulus of the scattering 
profile averaged over the initial values of the quantum num- 
ber and summed over all of its values: 

Since the transitions between states with different m do not 
interest us, we use in what follows a potential averaged over 
the angle variable q, conjugate to I ,  (Ref. 10): 
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Using the explicit form of the transition matrix (2.14) given 
in Appendix A, we obtain (R = (p, $, z )  where p, $, and z 
are the coordinates of the atom in a cylindrical coordinate 
system with major axis aligned with the z axis of the labora- 
tory system) 

After averaging over q,, those terms drop out which are pro- 
portional to p. It can be shown that in the case of fast colli- 
sions (A 4 1 ), where A is determiend by the rotational fre- 
quencies corresonding to the transition under consideration, 
the discarded terms are proportional to A, and in the case of 
slow collisions they are proportional to A-', i.e., in both 
limiting cases the difference of the increments of the action, 
calculated in the potentials Vand v, are small, which argues 
strongly in favor of using potential (4.6). 

After averaging the potential [Eq. (4.6) 1 it is possible 
to integrate over q, in the expression for the scattering pro- 
file (4.3). Indeed, since Sin is already independent of q,, we 
obtain 

where a,,, is the Kronecker symbol. 
Relation (4.7) shows that with the given accuracy the 

projection of the angular momentum on the axis of the fixed 
coordinate system is conserved. Here it is fitting to say a few 
words about the consequences of this fact which are connect- 
ed with the collisional selection rules for polyatomic mole- 
cules. If one considers the state of a molecule with fixed m, 
then one can choose the fixed coordinate system to be such 
that the projection of J on a chosen axis is zero. This makes it 
possible to write the rotational wave function of an asym- 
metric-top molecule in terms of the spherical functions Y. 
Then, as follows from the analysis in Ref. 21, additional 
collisional selection rules appear which follow from the sym- 
metry of the specific choice of the coordinate system. How- 
ever, the summation in Eq. (4.5) lifts these exclusions (they 
are manifested only in the vanishing of the term 
T,,, = , ,,,, =, ). Thus, to describe the collisional transitions it 
is neces$ary either to write the rotational wave functions in 
terms of Wigner's D-functions or, if one wishes to remain 
within the framework of the Y-description, to take into ac- 
count the necessity of carrying out the average indicated in 
Eq. (4.5), meaning in this case an average over the ensemble 
of chosen coordinate systems. 

Let us now go directly to the calculation of the cross 
sections of the rotational transitions in the collision of a wa- 
ter molecule with a helium atom, choosing as an example the 
transition lo ,  - 1 ,,,. Using the set of quantum numbers intro- 
duced in Eqs. (3.1), we can write this transition as j, = 1, 
k, = 0-j,. = 1, k,. = 1. The first term of series (4.1) which 

gives a nontrivial contribution to the amplitude of this tran- 
sition is the one associated with the harmonic Y,, = (3/ 
412) '12cos9, where 9 is the angle between the symmetry axis 
of the molecule (7) and the direction vector to the atom. The 
connection of this function with the angular variables and 
the coordinates of the radius vector of the atom in the fixed 
coordinate system R = (x,y,z)  is made with the help of the 
transition matrix (2.14), whose explicit form is given in Ap- 
pendix A: 

cosfi=(O, i ,O)A($). (4.8) 

After averaging over q,, we obtain 

where O and g are parameters of the transition matrix. 
Hence it is clear [see the definition of cost?, following Eq. 
(2.13) and Fig. 21 that only for m, = 0 does expression 
(4.9) indentically vanish, leading to the exclusion of the cor- 
responding transition. 

We will dwell briefly on the solution of the problem of 
finding the trajectory in multidimensional phase space. For 
high enough collision energies Ei > D (D  is the well depth of 
the potential V,,) in the case of fast collisions ( A  < 1 ) a quite 
accurate solution of the equations of motion is given by a 
rectilinear trajectory with constant velocity and A = 0 (i.e., 
q = qO). It is possible to account for slow collisions with the 
help of an interpolation procedure which reduces to the sub- 
stitution q,+q, + ot (Ref. 8), andin thecase )A,! - A;) ,< 1 
we will use the average frequency approxiation, while in the 
opposite case we will set w, = mink = i J { ~ a k  ). In order that 
this approximation may be introduced on a par in the high- 
energy (E, > D) and the low-energy cases, the generalized 
adiabaticity parameters A' = wpd /(2,uE ') ' I 2  were used 
above, where E '  = E for E > D and E '  = D for E<D. As a 
result we obtain a single formula for the scattering profile for 
both fast and slow collisions. Calculation of the profile for 
slow collisions using canonical perturbation theory leads to 
the same dependence on the parameters of the problem and 
to close values for the scattering cross sections. It is therefore 
more convenient in obtaining analytic approximations of the 
rate constants to use formulas derived in the framework of 
the interpolation approach. In this case we obtain for the 
increment of the action (see Eq. 4.3) 

AS,,=tiG sin qlo 

Po [ ( )  ( 2: ) K.( % (A,1+4) ' 1 2 )  =hF-cos G 1  a,, exp - 
d 

- 2a,r)exp ( ~ ) K O ( % ( ~ l l z + ~ )  ' l ' ) ]  sin 9i0. 

where D, d, and r, are the parameters of the Morse potenital 
which approximates Vo, and V,,, and p, is the distance of 
closest approach (the impact parameter). For not too high 
collision energies (Ei 5 500 K )  the conditionp,/d$l is sat- 
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isfied, by virtue of which it is possible to use the asymptotic 
representation of the Macdonald function KO in Eq. (4.10) 
for large values of the argument. As a result we obtain for the 
profile T I  the Bessel approximationX T I  = elv' J ,  ( G), where 
e, ' is the phase and is of no significance in what follows. The 
quantity G, which characterizes the increment of the action 
"accumulated" in the potential V,,,, turns out to be quite 
small ( G  < I ) ,  which makes it possible to use the asymptotic 
limit of the Bessel function for small arguments. After doing 
this and taking into account the equality c o d ,  = m/ ( j + 1/ 
2)  -,m/(( j (  j + 1) ) ' I 2 ,  the averaging (4.5) can be carried 
out explicitly ( j, = j, = j ) :  

We remark that by virtue of Eq. (4.10) the ratio G /  
cos8, is independent of m. 

In the case when it is determined by rectilinear trajec- 
tories, it is convenient to write the total scattering cross sec- 
tion in the form of an integral over the impact parameterI7: 

where B = pf/pi for activation processes and B = 1 for de- 
activation processes. 

To obtain analytic approximations it is convenient to 
model VoO by the Lennard-Jones potential 

making use of the fact that the parameters of the Morse and 
Lennard-Jones models can be revaluated by using the rela- 
tions = ro - d ln2 and r,, = 2"6p0 for equal well depths. 
Then 

The integral in Eq. (4.12) can be calculated by the Laplace 
method, taking into account the fact that the main contribu- 
tion to it comes from the lower integration limit. 

As a result we obtain an analytic, albeit somewhat com- 
plicated, expression 

A,=2 (a,':') '/ (ni2+4)'", 

st=2 (At2+1)'", s,=(A12+1)'"+ (A12+4)'", s3=2 (A12+4) ". 

Calculation of the cross section according to this for- 
mula for the transition lo ,  - 1 ,,, for the energy E = 300 K 
gives the value u = 2.6 (a.u.)', which is in good agreement 
with the data in Ref. 16 u = 3.1 (a.u.),. Here the values of 
the parameters D = 0.52. lo-' a.u. andp0 = 5.18 a.u. of the 
Lennard-Jones potential V,,,,, with anisotropy coefficients 
ah;' = 0.30 and a:;' = 0.15 were used, which were recovered 
by the method of least squares from the potential surface in 
Ref. 16. 

In the low-energy region E 5 D it is necessary to change 
the form of our scheme for calculating the cross section 
somewhat because of the onset of the rotational barrier (at 
E < 4 0  /5 for the Lennard-Jones potential) and the appear- 
ance of the classically forbidden region of closest-approach 
distances (pol ,  p,,,), which should be included in the integral 
in Eq. (4.12). For the Lennard-Jones potential 

poi, z='/,po ( I *  (1-5Ei/4D) '") - ' / a .  

In addition, it is necessary to refine the approximation of the 
solutions of the problem of finding the trajectory in multidi- 
mensional phase space. Estimates show that the main contri- 
bution to the integral in Eq. (4.12) comes from the region of 
distancesp,, <po l  associated with trajectories close to head- 
on. The region p,, >p0, corresponds to scattering from tra- 
jectoires which are close to rectilinear, and contributes insig- 
nificantly to the cross section under the considered 
conditions. 

Using the explicit form of the transition matrix for the 
increment of the action in the case of the transfer of one 
quantum, it is possible to obtain the representation 

sin qt ( t )  at. x cos 61 - 
R ( t )  

For trajectories which are close to head-on, we have z / R  - 1, 
and 

D Jj' - ' h  

R(t)=R.+dln [ - ( I  Ez +i) D e h -  1 1 , 
P d 

where 8, is the scattering angle. If, as before, we use the 
generalized eikonal approximation q ,  ( t )  = q,,, + u , t  for 
q ,  ( t ) ,  we obtain 

AS$,= (3n)'"d cos 61@ (2pDg(l+x2) ) '" 

where (4.15) 
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In the small-energy region this function depends weakly on 
.9, , wherefore in the calculation of the total cross section the 
inelastic scattering profile TI ,  defined by AS,, , can be taken 
out from under the integral over the scattering angle, calcu- 
lating it at some fixed value of & (e.g., 9, = T ) ,  and in the 
rest of the expression transform to an integral over the im- 
pact parameter. Then for the low-energy cross section we 
obtain the approximate expression 

- - .. n ! I', (n) 1 2 =  7(d@/f i )Zg( l+~2)  pD exp(-2Al, arctg(E,lD)") - 

The bar denotes averaging over the projections of the angu- 
lar momentum of the form (4.5), and b, is the impact pa- 
rameter corresponding top,, (for the Lennard-Jones poten- 
tialb: =p i ,  (1  - V,,(p,,,)/Ei)). 

Let us now consider the peculiarities associated with 
the calculation of the cross sections of other transitions. The 
scheme of such a calculation for diatomic molecules, based 
on the form of the interaction potential written in action- 
angle variables and represented in the form of a Fourier se- 
ries over the angular variables, was developed in Refs. 8 and 
19. It is based on singling out in the potential the one term 
corresponding to the given transition. An analog of this 
scheme can also be proposed for the general case under con- 
sideration. Thus, for example, the transition in which the 
quantum number k changes to the value Ak for fixed jcorre- 
sponds to a term in the potential which is proportional to 
sin(Akq, + q') (see Appendix A ) .  The transition with si- 
multaneous change of both quantum numbers to the values 
Aj and Ak correspond to two terms, proportional to 

sin( + Akq, + Ajq, + q" ), where q' and q" are some con- 
stants. For the cross section of single-quantum transitions 
formulas of the form (4.13) and (4.16) were used, and for 
multiquantum transitions more complicated expressions 
were used. However, the potential surface is usually given in 
the form of an expansion in spherical harmonics. It is possi- 
ble to somewhat simplify the cumbersome procedure of 
transforming to action-angle variables with the help of per- 
turbation theory, within the framework of which contribu- 
tions from the harmonics Y,,, with different values of the 
index a do not interfere (see Appendix B). This makes it 
possible to recover the individual parts of the potential sur- 
face generated by the partial sums Z Va8 YaD, to calculate the 
corresponding probabilities, and after this to carry out the 
summation over a. 

In conclusion we present the results of the calculation of 
the rate constants of a number of rotational transitions 
which were determined according to the formula (for the 
activation process) 

s 

In the recovery of the parameters of the potential V(1,q) the 
contributions from the three harmonics Y,,,, Y,,,, and Y,, 
were taken into account. Data on the corresponding coeffi- 
cients VaD were taken from Ref. 16. To simplify the integra- 
tion in Eq. (4.17), which was carried out numerically, we 
made use of the circumstance that the quantity 6 ,  from Eq. 
(4.16) depends weakly on the energy and for the investigat- 
ed energy region varies within the limits b: = (3.5- 
4.5) This latter circumstance permitted us to set b: 
= 4(p012. 

In Table I11 the values which we obtained for the con- 
stants in the temperature region 50-500 K are compared 
with the results of an exact quantum-mechanical calculation 

' 
) .  101 ' c d / s  in the TABLE 111. Rate constants of the rotational transitions. KV,, , ,, , +j/, , ,, , 

system He + H,O. The upper row gives the calculation according to equation (4.17) and the 
lower row gives the calculation based on the close-coupling method." 

T, K 

Transition 101 -+ 110 

Transition 101 + 212 

Transition 101 + 221 

Transition 212 -+ 221 

Transition 7 ~ 3  + 7 3 4  
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carried out within the framework of the close coupling meth- 
od." From the displayed data it can be seen that the pro- 
posed method accurately reproduces both the temperature 
dependence of the constants (especially for temperatur- 
es k 80 K )  and their dependences on the quantum numbers. 

Thus, the quasiclassical method which we have devel- 
oped here for calculating the probabilities of collision-in- 
duced intramolecular transitions has enabled a major ad- 
vance in the direction of obtaining analytic expressions for 
the scattering cross sections and has made it possible to cal- 
culate quite accurately the constants of rotational transi- 
tions in polyatomic molecules with incomparably smaller 
requirements of computer time in comparison with quan- 
tum-mechanical methods. 

The authors express their deep gratitude to A. V. Bog- 
danov, D. A. Varshalovich, and V. K.  Konyukhov for fruit- 
ful discussions. 

APPENDIX A 

Retaining the first terms of the expansion of the matrix 
of direction cosines in a series in the Jacobi parameters, we 
obtain the following expressions for the matrix A(A, 
S,,I) A(q,,O,O) [see Eq. (2.14) 1, given here line-by-line, for 
r <  1: 

and for r >  1: 

where 

X?t 3c 
8= o=- F (arctg plk, (1-k2) Ib). 

pH (k) (r2+x2) 'h ' 2K (A) 

The difference between the matrix forms is connected with 
the different character of the rotational motion of the asym- 
metric top, which is shown graphically in Fig. 4. Using for- 
mulas (2.7)  and (4.4), we obtain the following formulas for 
the frequencies 

n12 ( A - C )  x2 
01 = 

K(h) ~c ( ( l + x Z )  (rZ+x2))'"' 

The matrix A(q,,S,,O) = A, has the usual form 

sir1 q, 
- cos 6, s in  q, cos 6, cos q, 
sin 6, s in  q, - sir1 6, cos q, cos 6, i cosq3 

APPENDIX B 

Within the framework of perturbation theory, applied 
to the case ASi,/fi< 1 where AS,, is the increment of the 
action accumulated in the anisotropic part of the potential 
V =  C,, V,, Y,,, it is possible to show that the contribu- 
tions to the transition probabilities from the harmonics Ya8 
with different values of the index a do not interfere. Consid- 
er the transition amplitude W: 

m 

i 
= - - j d t  ei'~'/' Z v a b  (R (t) ) yap(& $)(!I 1 i) 

- _  a01 

where 

The asterisk denotes the complex conjugate. Using the orth- 
ogonality properties of the Clebsch-Gordon coefficients 

for the average transition probability P, we obtain 

which completes the proof. 

"Equation (2.5a) can be rewritten in the form I ,  = ( 1/277) $ldL,  where- 
upon it becomes equivalent to the formula in Ref. 15. 

"The matrix of direction cosines, calculated by the indicated technique, is 
given in Appendix A. 

" k ,  and k are pseudoquantum numbers which are used in the spectros- 
copy of theasymmetric top and which characterize the rotational energy 
levels. 
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