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The radiating properties of an extended medium consisting of resonant two-level atoms are 
investigated with allowance for the field reflection from the boundary of the medium. The 
existence of stationary field modes resonantly interacting with the atomic subsystem is 
demonstrated. The radiation-pulse profile of such high-symmetry states of an atomic-field system 
is determined. 

I. INTRODUCTION 

Since the publication of Dicke's now classical paper,' 
superradiance (SR) has been intensively studied for three 
and a half decades both experimentally and theoretically 
(see, e.g., Ref. 2 ) .  The effect was experimentally investigat- 
ed at wavelengths from the radio to the visible band, in dif- 
ferent transitions of atoms, molecules, and ions, and under 
various experimental conditions (the methods used to pro- 
duce the active media, their condensed state, and their inter- 
action with the ambient). Theoretical research into SR has 
led to the development of new methods in quantum electro- 
dynamics and influenced substantially the development of 
methods used to describe the interaction between coherent 
electromagnetic radiation and resonant A signifi- 
cant stage in the development of SR theory was the introduc- 
tion of the single-mode extended model, which gave the 
same SR pulse temporal profile as the concentrated Dicke 
model, but with different variation of the characteristic time 
scale. Further detailed investigations, however, have shown 
that allowance for the spatial distribution of the medium and 
for its transverse inhomogeneity complicates greatly the dy- 
namics of the SR-pulse formation, alters the pulse profile, 
and increases its duration. The results of such generalized 
theories agree better with present-day experiments. 

From the mathematical point of view the cause of these 
complications is the neglect of the radiation-field amplitude 
in the Bloch-vector conservation law that determines the 
coherence of the decay of an atomic subsystem. The field 
enters thus as a variable that is not compatible with the 
atomic subsystem, and the spatial distribution of this vari- 
able affects the atomic-subsystem decay rate. This conserva- 
tion law, however, is local, raising the question of the exis- 
tence of a field distribution that is compatible with the local 
radiating properties of an extended resonant medium. We 
show in the present paper that such field states do exist, and 
we determine their form. The symmetry of these system 
states is higher than that of Bloch states, since the latter 
reflect the symmetry of only the atomic subsystem and cor- 
respond therefore to higher decay rates than in the case of 
traditional SR in an extended system. It is clear even from 
general consideration that such matched field states should 
correspond to stationary wave-amplitude distributions. By 
analogy with the term "collective spontaneous emission" 
used to define superradiance, one can introduce the term 
"collective superradiance," reflecting the fact that the atom- 
ic subsystem interacts with the stationary modes of the field. 
Field retardation becomes therefore immaterial, and the 

spatially distributed system of atoms decays as a concentrat- 
ed one. The relative rate of change (dn/dt)nP'  of the field 
density (where W(x,t) = h ( N /  V)n (x,t) is the field-ener- 
gy density) is the same at all points of the sample, in contrast 
to the traditional SR in extended systems. 

2. SEMICLASSICAL SYSTEM OF INTERACTION EQUATIONS 

The system of semiclassical dynamic equations of the 
interaction between resonance two-level atoms and two 
counterpropagating field waves with amplitudes a ,  and a, in 
a medium 

where w, is the frequency of the resonance transition and N / 
Vis the density of the resonance atoms, is of the form 

where 

T = L /cis the photon time of flight through the cavity, T, is 
the homogeneous transverse-relaxation time, T, is the coher- 
ence time, 

2n 2nhc2 N '" 
pn (x, t )  =-i - zj, (I, t )  

31 

the components j, (x,t) of the resonance-transition current 
density, and the atom-inversion density R ( x , t ) ,  are ex- 
pressed as follows in terms of the spin Pauli matrices: 

V, is the physically small averaging volume, and m is the 
transition-current matrix element. Normalized time t - t /T 
and coordinatex -x/L are used in ( 1 ). We consider sponta- 
neous decay of a system of atoms in a cavity, so that the 
initial conditions take the form 
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where p,, is determined by the spontaneous-polarization 
sources, i.e., by the initial value of the Bloch angle. In the 
absence of external resonance fields, the boundary condi- 
tions are 

where r ,  and r, are the amplitude reflection coefficients of 
the cavity mirrors. 

3. DYNAMIC EQUATIONS OF COLLECTIVE SR 

The collective SR is based on one interesting feature of 
the well-known integral of motion of the system ( 1 ) in the 
c a s e a = O  (T?= w ) :  

2 2 

namely, that the pseudovector R = {p,,p,,jfl - l " p )  is con- 
served at each point x of space. Thus, in the presence of a 
stationary field mode interacting with resonance atoms, the 
vector R rotates over a sphere, without change of the azi- 
muthal angle in a plane (e,,e,). The stationary modes of the 
field in the cavity are the following two superposition modes: 

Introducing analogously 
1 1 

ql = = (p,+pz), qz = -= (pl-pz), 
1'2 )/ 2 

(6 )  

we can rewrite the system ( 1 ) in the form 

n=l 
and the integral of motion (4)  takes the form 

where 

pZ(x, t )  =pI2(x, t)+pz2(x, t) =qlZ(x, qS.4: (x, t ) .  

We replace q ,  and q, by the new variablesp (x,t)  and q, (x,t) : 

ql(x, t)=p(z, t)cosq(x, t), q 2 ( ~ ,  t)=p(x, t)sinq(x,  t ) ,  
(8  

q, (x,t) is the azimuthal angle in the plane of the pseudovec- 
tor p(x,t) = ( ~ , t ) , ~ , ( x , t ) ) .  In accord with the forego- 
ing, we obtain for the system ( 7 )  solutions such that 
q,(x,t) = q,(x). Substituting the expressions ( 8 )  in the sec- 
ond two equations of the system (7) ,  we get 

dpldt=P ( b ,  cos cp+b, sin cp)p, (9a) 

p (dq/dt) =p (b, cos cp-b1 sin cp) p. (9b) 

The condition dq, /at = 0 is thus met by the following choice 
of the variables b ,  and b,: 

b, (5, t) =a (x, t) cos cp (x) , b2 (x, t) =a (x, t) sin cp (3). ( 10) 

Substitution of (8 )  and (10) in the last three equations of the 
system (7)  transforms the latter into 

Substitution of expressions ( 10) in the first two equations of 
the system (7 ) ,  with allowance for ( l l ) ,  transforms them 
into 

It follows from the last equation that 

a (x, t) [COS 29 (x) ] 'j2=C (t) , (13) 

i.e., the spatial dependence of a(x , t )  is uniquely determined 
by the form of the q,(x) dependence. Equation ( 12a), with 
( 12b) or ( 13) taken into account, takes the form 

where 

r (5) = 
1 dcp 

cos 2cp (x) z- ' 

Using the integral of motion of the system ( 11 ), we intro- 
duce, as usual, the Bloch angle 

p (x, t) =cos 0 (x, t) , (16) 

and it follows then from ( 1 1 ) that 

Substituting ( 17) in ( 14) we obtain 

The spatial dependence of O(x,t) is determined by the condi- 
tion ( 18), so that y (x )  in ( 18) should not depend on x. This 
condition leads to the following equation for q,(x): 

dcpldx=y cos 2q (x) , (19) 

the solution of which is 
sin 2q (-'/,) + th[2y (x+'/,) ] 

sin 2cp (x) = 
1 + sin 2q (-'/,) th[2y (x+l/,) 1' (20) 

Using the boundary conditions (3) ,  which now are of the 
form 

we obtain finally 
1 

sin 2cp (x) = th [X in - rlr2 - ln ($ ) I h ] ,  

4. SPATIAL DEPENDENCE OF FIELD AMPLITUDES 

The amplitude a(x , t )  is thus given by 
A 

a (x, t)  = a (t) = A  (ch @ (x) )"a (t) , (24) 
(cos 2cp (x) ) " 

where A is a renormalization constant, 

and u ( t )  is the solution of the following equation: 
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5. SCALING PROPERTIES OF THE COLLECTIVE SR 

Substituting (24) and (22) in ( 10) we easily obtain 

n, ( x ,  t )  =lal (x ,  t )  J2='l2A2e0'"aZ(t), (26a) 

n, (2 ,  t )  = 1 a, ( x ,  t )  1 = 1/2A2e-o(x)a2 ( t )  . ( 26b ) 

The normalization constant A in (26) can be found 
from the following integral of motion of the system ( 1):  

A2 1-rI2 1-rZ2 
This yields -[-- + -1 Ja2( t )d t= l .  

2 rl r2 

The integral in the last expression is defined as 

Consequently 

Thus, 
2yrirzem(') 

n1 ( x ,  t )  =aZ ( t )  
(1-rt2) r2+ (1-r?) rl ' 

2y r,r2e-m(x) 
n2 ( x ,  t )  =a2 ( t )  

(1-r12) r2+ (I-r?Z) ri ' 

The field intensity at the exit from the cavity is 

with a similar expression for the left-hand end of the cavity. 
The total intensity of the emission from the cavity is 

I ( t )  =Il  ( t )  +I2 ( t )  =2ya2 ( t )  . (31) 

The field intensity inside the cavity 

n ( x ,  t )  =nl ( x ,  t )  +n, (2, t )  =AzaZ ( t )  ch Q, ( x )  

has an extremum point x = xO defined by the condition 
@ (xO) = 0: 

The intensity n (x,t) has a minimum on the left side of the 
medium (xo = - 1/2) if r ,  = 1 (r,# 1 )  and on the right 
side ( x ,  = 1/2) if r ,  = 1 ( r ,  f 1 ). The integrated field inten- 
sity inside the cavity is given by 

li '12 

~ . ( t )  = J n ( x ,  t ) d x = ~ ~ a ~ ( t )  J ch o (x)dx=a2( t ) .  
- 'L - 12 

We introduce a new dimensionless time 

+=@I" 

for which (25a) takes the form 

d2u du 
- + 6 - = sin u, 
dtZ dt 

where 

6=y/p"'. 

Consequently, I o ( t )  = a 2 ( t )  depends only on the parameter 
S. Figure 1 shows plots o f a ( r )  (Fig. l a )  and u ( t )  (Fig. l b )  
against 7.  The dependences of the delay time 7,) and of a' (T,,) 
on the parameter S are shown in Figs. 2 and 3. 

Various SR regimes in a cavity were investigated in 
Refs. 6-8. In Ref. 8 it was shown by numerical calculation of 
the system ( 1 ) that the cavity Q has an optimal value deter- 
mined by the condition aI(-r,,)/dr = 0, at which the radi- 
ation intensity at the exit from the cavity is a maximum. 
Figure 3 shows a plot of the product 2 6 ~ " ~ ~ ) )  against the 
parameter S. The ensuing value of So allows us to carry out 
analytically the above optimization of the collective SR. 

6. ALLOWANCE FOR INHOMOGENEOUS BROADENING 

For ensembles of inhomogeneously broadened atoms 
the system ( 1 ) is replaced by 

FIG. 1. Field amplitude a ( r )  (plot a )  and pulse area u(r) (plot b) as 
functions of the dimensionless times T = tfi '" for 6 = 0.5. 
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7, 
ZOO r 

FIG. 3 .  Dependences of a2(7,,) and 28a2(r,,) on 8. 

FIG. 2. Delay time r,, vs the parameter 6 = y/D "'. 

dpn(A' x' + iAa'p,, (A, r,  t) =Ban (x, t) p(A, 3, t ) ,  
d t 

Recognizing that T 2 / r ,  = p J ,  where po is the resonant 
gain, we get 

e4~Lr , r2>I .  (40) 

8. CONCLUSION 

where f( A) is the inhomogeneous-broadening line shape and 
a* = r/TT;l/TT is the width of the inhomogeneous-broad- 
ening profile. Since the integral of motion ( 4 )  is valid also 
for inhomogeneous broadening we get, performing all the 
calculations as in Sec. 3, 

B'" p (A, X, t)  = - e-'&"" sin 0 (A, x, t) , 
2 

(36a) 

The final expression for a (x,t) is 

where 

and u(A,t) satisfies the equation 

d2u (A+ t) + (y-iAa.) du (A, t)  
dt' dt 

= B J e - i ( ~ - ~ r b . t  sin u (A', t) f (A')dAr (38) 

7.THRESHOLD CONDITIONS 

We take it into account that the homogeneous relaxa- 
tion time Tz is finite. In this case a in ( 1 ) is not equal to zero 
and substitution of ( 8 )  and (10) reduces the system ( 1) to 
the form 

da (2, t) l d t f  ya (2, t)  = p  (x, t)  , 
ap (2, t)  /dt+ap (2, t) =Pa (2, t)  p (2, t) , 

(39 

ap (x, t) /at=-4a(r, t )p  (x, t). 

The threshold conditions are obtained by solving the system 
(39) during the initial stage, when po(x)  - p (x,t) <p,,(x). 
They are given by 

The above investigations show thus that among the 
field states in the cavity there are some that are optimally 
matched to the radiating properties of the atomic subsystem. 
In these states there is realized a collective field and medium 
state that is compatible with the geometry of the radiating 
medium. The high symmetry of these states is manifested by 
the fact that the five variables a ,  (x, t) ,  a z  (x , t ) ,  p,  (x,t) ,  
p2(x,t) ,  andp(x, t )  depend only on the two functions B(x,t) 
and p ( x )  according to (8) ,  ( l o ) ,  (16),  and (17). Such a 
decay differs fundamentally from the decay of free system or 
from decay in a cavity upon excitation of mismatched field 
modes, when the field imposes a decay phase on the atomic 
system and influences by the same token the decay rate. 
These differences are most pronounced in systems with 
f i> 1. Here, as is well known, stimulated emission plays an 
important role in the ordinary case and as t- cc the Bloch 
angle B(t) 1 ,+, -.rr/2. For the matched state of the field, on 
the other hand B(t) I ,-, -T. 

The question is, how can this state be realized? The ini- 
tial conditions of the problem point to two ways. First, ac- 
cording to (16),  (17),  and the initial conditions (25b) we 
have 

a (x, 0) =0, 

B'" . B"' 
p (x, 0) = -sin 2 0 (x, 0) = - 2 sin[A (ch @ (x) ) '"u,] , 

p (x, 0) =cos 0(x, 0) =cos[A (ch O (x) )'" uo]. (41 ) 

Second, it is possible to alter the initial conditions (25b), by 
recasting them in the form 

The sought initial conditions take then the form 

1 duo 
a (x, 0) = A  (ch @ (x) ) Ih -- 

28'/' dt ' 
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In the first case it is necessary to produce the spatial 
distributions, defined by (41), of the initial population dif- 
ference and of the current density of the sources of spontane- 
ous (initial) polarization. In the second case it is necessary 
to produce the distribution, defined by (42), of the initial 
bare field. The second procedure is apparently simpler to 
implement in experiment. 

We note in conclusion that the threshold condition 
(40) can be rewritten in the form T, > T, , where T, = T, y /2  
depends on the reflection coefficients r ,  and r,, and is conse- 
quently easily varied by changing these coefficients. 
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