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We study the influence of diffraction effects on characteristics of superfluorescence for a two- 
dimensional model on the basis of the semiclassical theory. The pulse shape and the directivity 
diagram are evaluated for superfluorescence in systems with various Fresnel numbers. A 
stochastic structure, which is due to quantum fluctuations of the initial polarization, is observed 
in the directivity diagram of the radiation. 

1. INTRODUCTION 

In the majority of theoretical papers devoted to the 
study of superfluorescence (SF) a one-dimensional model is 
utilized, in which the dependence of the field and of the char- 
acteristics of the medium on the transverse coordinates is 
ignored.'-3 However, even in those cases when the geometry 
of the system picks out a preferred direction for the propaga- 
tion of the radiation, an account of the divergence and dif- 
fraction of the field substantially influences the directivity 
diagram and kinetics of the process. 

The first non one-dimensional quantum models of SF  
were considered in several papers,4-"beginning with Dicke's 
work.4 From their results it was possible to estimate the 
average velocity of radiation in different directions as a func- 
tion of the geometry of the sample. In later papers'."' quan- 
tum theory was applied to a detailed description of the initial 
(linear) stage of SF  in three-dimensional systems. In investi- 
gating the nonlinear stage of S F  the semiclassical approach 
turns out to be effective. 

In Ref. 11 SF  was investigated for a two-dimensional 
model in which the radiators are two parallel infinite threads 
with dipoles oriented along them. The radiation from such a 
source (one thread) is isotropic in the two-dimensional 
space orthogonal to the direction of the thread. The authors 
discussed the dynamics and directivity diagram of SF  of the 
system of threads with transverse dimension of the order of 
the wavelength of the light 1. 

A more realistic picture of the influence of diffraction 
effects on the form of the SF  pulse is given in Ref. 12. The 
authors performed calculations for the data corresponding 
to the experiment of Ref. 13 and showed that taking into 
account diffraction and fluctuations of the initial polariza- 
tion improves agreement with experiment. 

In Refs. 14-16, the influence of diffraction on the dy- 
namics of superradiation of a planar crystal layer of excited 
nuclei was investigated. 

was also subject to fluctuations from one realization of the 
pulse to the next. 

2. STATEMENT OF THE PROBLEM 

We shall investigate S F  for a two-dimensional model, 
assuming that the field and atomic characteristics of the sys- 
tem depend on the longitudinal coordinate x(O<x<L)  and 
transverse coordinate y ( - D /2<y<D /2, L $ D). The opti- 
cal centers will be modeled by a two-level atom with equal 
frequencies w,, and dipole transition moments p ,  oriented 
along the z-axis." In this model the z-component of the me- 
dium polarization vector P, = P is different from zero, as 
well as three components of the electromagnetic field: one 
component of the electric vector E, = E and two compo- 
nents of the magnetic vector, B, and By. The Poynting vec- 
tor S, connected with the directivity diagram of the radi- 
ation, has in this case the following components: 

C C 
S = - [EB] = - (-EB,, EB,, 0) 

4n 4n 

Maxwell's equation for P,E,B, and By are written as 
follows 

d E 1 dB, dE 1 dB, 
-=--- -=-- 
a~ c a t  ' a x  c a t  ' 

Polarization of the medium is defined as 

where N,, is the concentration of optical centers and 
p12 = pZ,  * is the off-diagonal element of the atomic density 
matrix, satisfying the equations 

We investigate here the SF  of an extended two-dimen- Assuming that the fields E and B arising in the system are 
sional system, whose length L and transverse dimension D not very large (pE, pB<#im,,) we isolate in the characteris- 
satisfy the condition L%D$/Z. Our main interest is in the tics of the electromagnetic field and the off-diagonal ele- 
study of transverse effects and of the directivity diagram of 

ments of the density matrix the "fast" dependence, connect- 
the radiation as afunction of the Fresnel number F = D '/AL 

ed with the optical frequency and the radiation wavelength: 
in the range 0.1 <F< 10. The calculations were performed in 
the semiclassical approach, assuming a uniform as well as a 
random initial polarization of the medium. In the latter case piz=Ri+ e x p { i ( o , t - - k , x )  )+R,+ e x p ( i ( o , t + k , s )  }, (5a) 

fluctuations of the SF pulse parameters (delay times, ampli- pzl=Ri- e x p { - i ( o , t - k , x )  )+R,- e x p ( - - i ( o , t + k , x ) } ,  
tudes, etc.) were demonstrated in separate realizations. It 
was shown that the structure of the SF  directivity diagram (5b) 
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Here ko = wO/c, 7 ,  = fi/(4rk&'N,,L) is the S F  character- 
istic time,R,+ = ( R ,  )*,&,+ = (&,- )*, 6,: = (b,; )*, 6,: 
= ( 6 ,  ) *  are dimensionless polarization amplitudes and 

components of the electromagnetic field. The index j = l ( 2 )  
describes a wave propagating in the direction of the positive 
(negative) x axis. The equations for the slow amplitudes R,  
E ,  b (in the longitudinal coordinate and time) are obtained 
after substitution of (5 )  into ( 2 )  and (4 )  and neglecting the 
rapidly oscillating terms 

We note that we are not making use of the approximation of 
slow variation of the amplitudes with respect to the trans- 
verse coordinate, and the corresponding terms in Eq. (6a)  
contain second derivatives. 

From Eq. (6)  follows the local energy conservation 
law: 

d  
- (U,+U,) + div S=O, 
at 

( 7 )  

where U,  and U, are the atomic and field energy densities 
respectively: 

and the vector S = (S, ,S, ,0) 

is the Poynting vector ( 1 ), averaged over the field space and 
time oscillation periods. It is obvious that S may be ex- 
pressed as the difference S = S ,  - S2, where the vectors 

constitute current densities of waves propagating in the di- 

rections of the positive and negative x axis. 
It is convenient in solving Eqs. ( 6 )  to go over to dimen- 

sionless variables T = t /T, , &  = x/L, 7 = y/D. In terms of 
these variables Eqs. ( 6 )  become 

( 1  l a )  

We have introduced here the dimensionless velocity of light 
u = CT, /L and the Fresnel number F = D '/AL. We shall 
also write out the expressions for the dimensionless densities 
of the energy currents of the opposing waves 
S, = ( T, / N o h o )  (SjX /L ,  Sjy /D, 0)  : 

1 i 38,- 
s2=1(I&2*12. -eZf-+ 4nF d q  c.c., 0) .  (12b) 

To  solve the system of equations ( 1 1 ) it is necessary to 
specify the initial and boundary values of the field and atom- 
ic variables. Conventionally for the semiclassical S F  theory 
one specifies a vanishing initial field, full inversion, and pri- 
mary polarization imitating spontaneous emission: 

In addition the field should satisfy the boundary conditions 

We shall discuss below two ways of specifying the initial 
polarization: in the form of a constant over the sample value 
R ,: and in the form of a Gaussian random function with S- 
correlation. The first case corresponds to the so-called in- 
duced superradiance," when the radiation of the inverted 
system is initiated by a brief pulse, producing an approxi- 
mately uniform polarization in the sample, exceeding the 
level of quantum noise. Specifying the initial polarization in 
the form of a Gaussian random function is equivalent, as was 
shown in Ref. 18, to taking into account the quantum fluctu- 
ations of the polarization, corresponding to superfluores- 
cence as a spontaneous process. 

3. SOLUTION OFTHE MAXWELL-BLOCH SYSTEM OF 
EQUATIONS 

We confine ourselves to the study of S F  for systems with 
pulse time characteristics corresponding to the one-dimen- 
sional model of SF; 
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In that case one may ignore retardation effects, i.e., neglect 
in the equations for the field ( 1 la )  the derivatives with re- 
spect to time. 

The solution of Eq. ( 1 la) ,  satisfying the boundary 
conditions ( 13d) and ( 13e) and ignoring retardation 
( L  /crR g 1 ), has the form 

where the kernel M k  is given by the formula 

and describes two-dimensional diffraction of electromagnet- 
ic waves. 

As a result of the transformation ( 15) the initial system 
of partial differential equations ( 11 ) reduces to the system of 
integro-differential equations ( 1 lb,c) and ( 15). This form 
of Maxwell-Bloch equations is in a number of cases prefera- 
ble, in particular in the study of statistical properties of SF 
due to field and polarization quantum fluctuations. 

Based on numerical integration of the system of equa- 
tions ( l lb,c) and ( 15), the algorithm and details of which 
are given in the Appendix, we have evaluated the comDo- 
nents of the Poynting vector s, and s, [see formulas (9)  1 ,  
the full inversion of the atomic system 

i % 

the radiation intensity referred to one wave 

and the SF directivity diagram determined by the Umov- 
Poynting vector in the wave zone ({) 1 ). Using ( 15) and 
( 16) we have for this vector 

where 

Here j = 1,2,n is a unit vector directed to the point of obser- 
vation and lying in the x-y plane, and 6 is the angle between n 
and the x axis. In deriving (19) we used the approximation 
$9 1. 

4. UNIFORM INITIAL POLARIZATION 

As we have already remarked, specifying uniform ini- 
tial polarization corresponds to induced superradiance.I7 
The calculations were performed for the value R & = 0.02. 
The amplitude of the initial polarization of the second wave 
R 2 was set equal to zero. In that case that wave does not 
evolve. 

The time dependence of SF intensity obtained for var- 
ious values of the Fresnel number F is  shown in Fig. 1 (solid 
curves). A characteristic feature of the SF pulse for F2 1 is 
that between maxima the radiation intensity does not go 
down to zero, as is true in the one-dimensional theory, but 
instead goes to some value I,,,,, . Increasing the Fresnel num- 
ber F reduces this value. On the contrary, decreasing F in-  
creases I,,, and at the same time causes the peak intensity of 
the second maximum to decrease. They become equal for 
F z  1/4. As a result the oscillatory structure of the SF pulse 
is smeared out and only one peak is observed in the radiation. 

Figures 2-4 show the calculations (in the one-wave ap- 
proximation) of the distribution of the inversion through the 
sample (in view of the symmetry of the problem in the coor- 
dinate 7, we show the distribution over half of the sample 
only, 7 > 0)  and the radiation directivity diagrams 
1 f : (r,8) / *  at various instants of time for values of the Fres- 
nel number F = 0.1; 1; 4. These figures show a common re- 
gularity consisting of early development of inversion in the 
central part of the sample ( 7 ~ 0 )  with relatively late evolu- 
tion at the edges (7 = 0.5). This is most pronounced for 
F = 1. The transverse nonuniformity of the inversion is the 
reason for the above-mentioned smoothing out of the oscilla- 
tory structure of the SF pulse. 

With increasing Fresnel number F the width of the re- 
gion of synchronous variation of the inversion grows, en- 
compassing an ever larger part of the cross section of the 
sample. At the same time transverse uniformity is estab- 
lished and the longitudinal directivity of the Poynting vector 
is strengthened (Fig. 5), ensuring a decrease in the radiation 
energy flux leaving the sample through its side boundaries. 

The divergence of the radiation (Fig. 5 )  during the ma- 
jor part of the duration of the SF pulse is determined by the 
angle, equal in order of magnitude to the diffraction angle 
O,, ,  = 2 /D. However, at the instants between the maxima 
the intensity of the radiation is distributed approximately 

FIG. 1. Intensity of radiation for samples with different Fresnel numbers. 
Solid curves are for calculations in one-wave approximation, dashed 
curves-for two-wave. Initial polarization R ,,+ = 0.02; 1, 1-F= m 
(one-dimensional solution), 2, 2'-F = 1, 3, 3'-F = 0.1. 

893 Sov. Phys. JETP 68 (5), May 1989 Avetisyan etal. 893 



equally over the diffraction side lobes located within the lim- 
its of the geometrical angle O,,,, = D /L,  and decreases in 
size with increasing F. 

In this manner, for uniform initial polarization, in- 
creasing the Fresnel number causes in the SF pulse to ap- 
proach in its properties the pulse corresponding to the one- 
dimensional model of SF. 

For small Fresnel numbers, with increasing distance 
from the axis of the sample the transverse component of the 
Poynting vector increases rapidly (Fig. 5 ) ,  which indicates 
that an increasing fraction of the energy leaves the sample 
through its side boundaries. Thus, the ratio of the sum of the 
side radiation energy fluxes to the longitudinal at the maxi- 
mum instant of the SF pulse equals approximately 3/2 for 
F = 0.1, while this ratio is close to 0.1 for F = 1. The intense 
radiation in the transverse directions determines the distinc- 
tive property of the SF  pulse for F 4  1 :  establishment of 
transverse uniformity of atom-field characteristics, increase 
in the delay time, decrease in the peak value of the intensity, 
and increase in the width of the SF pulse. 

The directivity diagram of the radiation in the case of 
small Fresnel numbers (Fig. 4) testifies to the divergence of 
SF  within the limits of the diffraction angle 8,,, = il /D. 

The results described above were obtained in the one- 
wave approximation. To illustrate the effect of the second 
wave on the SF characteristics we show in Fig. 1 the results 
of the calculation of the SF intensity (dashed curves) when 
the symmetric opposing wave (R 2 = 0.02) is taken into 
account. According to Fig. 1 taking into account the oppos- 
ing wave affects mainly the later stages of evolution of SF, 
resulting in the case of FR 1 in a suppression of the intensity 
oscillations. With decreasing Fresnel number ( F <  1 )  the 
role of the opposing wave increases and manifests itself in a 
decrease of the delay time and of the maximum value of the 
SF intensity, as compared to the one-wave approximation. 

We also note that calculations performed for small 
Fresnel numbers with the opposing wave taken into account, 
whose results are not shown in Figs. 2-5, showed a tendency 
towards establishing spatial uniformity of atom-field char- 
acteristics not only in the transverse but also in the longitudi- 
nal direction. This circumstance justifies the formulas, pro- 
posed in Ref. 19, for the description of SF kinetics for F< 1 :  

x/L e I B d , ,  
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FIG. 2. Inversion distribution in the sample (left) and 
radiation directivity diagram (right) at different in- 
stants of time for Fresnel number F = 4. Initial polar- 
ization uniform throughout the sample. 

FIG. 3. Same as Fig. 2, for F = I. 
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FIG. 4. Same as Fig. 2, for F = 0.1. 

5. RANDOM INITIAL POLARIZATION 

Superfluorescence as a spontaneous process is due to 
quantum fluctuations of the field, which can be consistently 
described using quantum electrodynamics. However, it was 
shown by the authors of Ref. 18 that the quantum fluctu- 
ations of the field can be effectively taken into account in the 
semiclassical approach if the amplitude of initial polariza- 
tion R $ ( g , ~ )  is taken to be a Gaussian complex random 
function with 8-correlation. 

We have performed a number of calculations of the 
emission kinetics and the radiation directivity diagram using 

the one-wave approximation for a specified constant modu- 
lus of the initial polarization I R ( = 0.1 and random values 
of its phase in the interval [O, 2 ~ 1 .  

SF pulses evaluated for three random realizations of the 
initial polarization are shown in Fig. 6. As can be seen, fluc- 
tuations in the polarization appear in the fluctuations of the 
parameters of the SF pulse: its form, delay time and peak 
intensity. The largest fluctuations are experienced by the pa- 
rameters of the SF pulse for systems with small Fresnel num- 
ber, while for F = 1 the fluctuations are smallest. With in- 
creasing Fresnel number the effect of the fluctuations of the 
initial polarization on the delay time is weakened, but the 
scatter in the peak values of SF intensity remains, as before, 
significant. 

Figure 7 demonstrates the evolution in time of the SF 
directivity diagram for a typical realization of the distribu- 
tion of the initial polarization. The ray structure of the SF 
directivity diagram is particularly clear, as well as the com- 
petition between rays propagating at different angles to the 
axis of the sample. These angles undergo strong fluctuations 

FIG. 5 .  The Poynting vector field for maximal intensity of radiation. Ini- FIG. 6. Emission pulses for various random realizations of initial polar- 
tial polarization uniform throughout the sample, a = 0.56, b = 1.125. ization and Fresnel numbers F. 
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FIG. 7. Structure of the directivity diagram for ran- 
dom realization of initial polarization at different in- 
stants of time for F =  0.1: a-t = T,, b-lor,, 
c-30r, ; for F = 1 and F = 4: a-t = T, , b-57,. 
c-107, . 

from one realization to the next. For large Fresnel numbers 
( F >  1 ) the indicated fluctuations lie within the limits of the 
angular dimension D /L of the sample, with the angular di- 
mension of an individual ray having the diffraction scale 
R /D. In this manner the number of the rays equals approxi- 
mately the Fresnel number: ( D  /L)/(R /D) = D '/RL = F. 
For small Fresnel numbers ( F <  1) the total width of the 
directivity diagram is determined by the diffraction angle, 
and the angular dimensions of the system are manifested in 
the structure. 

6. CONCLUSION 

We have described SF  taking into account diffraction 
effects as well as quantum fluctuations of the initial polariza- 
tion. 

For systems with Fresnel number F2 1 the time scale of 
the pulse turns out to be the same as in the one-dimensional 
model. However, quantum fluctuations of the initial polar- 
ization give rise to transverse nonuniformity of atomic and 
field characteristics, which manifests itself in a change in the 
shape of the pulse and in the radiation directivity diagram. 
The pulse shape becomes smoother, the oscillations charac- 
teristic of the one-dimensional model become smoothed out. 
The SF  directivity diagram has a ray structure with angular 
dimensions of individual components (rays) of the order of 
the diffraction angleR /D. Since the full width of the directiv- 
ity diagram is of the order of the geometric angle D /L, the 
number of rays (for the two-dimensional model) approxi- 
mately equals the Fresnel number F. Due to the competition 
between the rays, some of them evolve earlier, with a sto- 
chastic intensity distribution as the result. 

With decreasing Fresnel number ( F <  1) the time scale 
increases as - F - ' " , and the spatial dependence of the in- 
version and the slow amplitudes of the field and polarization 
smooths out. This results in a SF  pulse shape with one maxi- 
mum and a practically one-ray character of the directivity 
diagram. The angular dimension of the ray equals the dif- 
fraction angle II /D, and its form changes relatively little in 
going from one realization of the distribution of the initial 
polarization to another. 

In Ref. 20 diffraction of superfluorescence was ob- 
served in the KCl:O,- crystal. In these experiments the exci- 
tation region was created with the help of a cylindrical lense 
and constituted a planar layer, whose width was determined 

by the absorption depth in accordance with Beer's law. With 
increased pumping intensity the number of diffraction maxi- 
ma increased from 1 to 4. Although this problem is in es- 
sence two-dimensional, quantitative comparison with exper- 
iment requires calculations using [instead of ( 16) 1 the 
Green function for the three-dimensional wave equation. 

In conclusion the authors thank V. I. Perel' for discus- 
sion of the results. 

APPENDIX 

The integration region G was taken somewhat larger 
than the size of the system, to permit determination of the 
field inside as well as outside the sample. In the plane of the 
dimensionless coordinates ( f , ~ ) ,  G was chosen as a rectan- 
gle with sides 2a> 1 and b> 1. The region was divided by a 
uniform grid into rectangular subregions (cells) of dimen- 
sion Hc x H,, numbered by the indices and k, I (Fig. 8) .  It 
was assumed in the calculation scheme that the inversion 
and polarization had a constant value inside a fixed cell 
(k,l), with the field E& equal to the sum of the contributions 
of the fields from cells to the left of the fixed cell (k,l) and 
acting at its center with coordinates f = ( k  + t )Hc ,  
17, = IH,: 

- 7 - 7 - T - T - T - T - T - 1  
- 4 - 4 - + - + - + - + - + - A  

1 I I I I--L-L- 1 
I l l /  I  I 1  

- - C - + - + - + - - - - + - f  -4 
1 / 1 1  I l l  - - - - - - - - - - . . - - - - - 
I I I I  I l l  

--+-+-+-+----+-+-4 
- - i - i - ~ - I - - - / - I - ' - j b  

I I I I  I  I r 
--+-+-+-+----+-+-4 

I I I I  I I I  
I l l /  

FIG. 8. The grid scheme for numerical integration of the Maxwell-Bloch 
system of equations. The solid line denotes the contour of the sample. 

896 Sov. Phys. JETP 68 (5), May 1989 Avetisyan eta/. 896 



x erp  in^ ( r l l - -q1 )2  

Ek-E'  
10 ca.-gt). 

The Heavyside function B ( x )  in Eq. (A2) is introduced to 
take correctly into account the contribution of the polariza- 
tions of the cells ( k  ' , I  ') to the field acting on the cell (k,l). 

The expression for the kernel M* may be transformed 
into 

where u = (F/<)'/~ 7 and a* (u )  are the Fresnel integrals 

m* (u) = 1 dt exp (7 ix t2) .  
0 

Fork = 0 the last two terms in formula (A3 ) are under- 
stood as the limiting values of the corresponding expressions 
(for <- , - + 0), which remain finite for arbitrary values of 
the index I and for I = 0 correspond to the contribution due 
to the polarization of the given cell to the field calculated for 
it, i.e. "self-action." 

The requirement of smooth variation of the kernel M 6 
in going from one cell to the next, necessary for correct re- 
placement of the integral relation (15) by the algebraic 
(A l ) ,  imposes definite restrictions on the number of grid 
points N, = l /Hg, N ,  = l/H,, corresponding to the size of 
the integration region. For large values of the Fresnel num- 
ber the indicated smoothness is ensured for Ng , N ,  $1. For 
small values of F-for Ng $1 /F, N ,  9 1. 

In this manner the initial system of partial differential 
equations ( 1 1 ) was reduced to a system of ordinary differen- 

tial equations (in time) ( 1 lb,c) and (A  1 ) , which was solved 
by standard methods. 

In specifying the uniform initial polarization the inte- 
gration region was broken up into 300 cells in a scheme 
1 2 ~ 2 5 ( ~ <  = 1/12,H, = 1/25). In calculations with ran- 
dom initial polarization we used instead 10X 15 = 150 cells 
(Ht = 0.1, H, = 1/15). 

The quality control of the numerical solution of the 
Maxwell-Bloch system of equations was achieved by testing 
the conservation laws for the energy ( 7 )  and for the length of 
the Bloch vector (R,' l 2  + (R2* l 2  + Z 2  = const. 

The method employed by us to integrate the Maxwell- 
Bloch equations can be extended to three-dimensional sys- 
tems, as well as to the case of scattered orientations of atomic 
dipoles. The latter is of interest in the study of the polarizing 
properties of superfluorescence. 

"The two-dimensional model may be applied to systems with pro- 
nounced anisotropy of optical properties. It allows the determination of 
the directivity diagram in the plane perpendicular to the axis of aniso- 
tropy. An example of such a system can be a uniaxial crystal. 
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