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A dynamic theory is derived for the motion of a Bloch point, i.e., a point topological soliton which 
is homotopically equivalent to a "hedgehog," along a Bloch line in a ferromagnet. The effective 
Lagrangian for motion of this type is derived from the Landau-Lifshitz equations and the 
Slonczewski equations. An expression is derived for the mass of a Bloch point for a medium with a 
large quality factor (i.e., a large ratio of the uniaxial-anisotropy energy to the magnetostatic 
energy). Oscillations of a Bloch point in a potential well formed by magnetostatic fields in a film 
or plate of finite thickness are analyzed. The possibility of observing such oscillations 
experimentally is discussed. 

1. INTRODUCTION 

A number of topologically stable intrinsic defects, or 
topological solitons, can exist in ferromagnets: plane defects 
(domain walls), line defects (Bloch lines), and point defects 
(Bloch points). 

By now the dynamics of domain walls has been the sub- 
ject of a very long list of theoretical and experimental stud- 
ies.' There have also been theoretical and experimental stud- 
ies of the dynamics of Bloch lines (e.g., Refs. 2-4 and the 
bibliographies there). It is now time for a theoretical and 
experimental study of topological solitons of more compli- 
cated structure, Bloch points. In Ref. 5 we derived a theory 
for the motion of a Bloch point normal to the Bloch line in 
which it is positioned. The Bloch point was treated as the 
boundary between sections of a Bloch line with different top- 
ological charges. The intrinsic mass of the Bloch point was 
ignored, so the dynamics of this micromagnetic structure 
was determined not by the dynamics of the Bloch point but 
by the dynamics of the Bloch line, which necessarily partici- 
pates in the transverse motion of a Bloch point. 

In the present paper we analyze the longitudinal motion 
of a Bloch point along a Bloch line, i.e., the motion associat- 
ed with a displacement which is a continuous parameter of 
the energy degeneracy in the absence of magnetic fields. The 
dynamics of the Bloch point itself is thus the governing fac- 
tor for the motion. We use the procedure of transforming 
from a description of this micromagnetic configuration with 
a Bloch point in terms of Landau-Lifshitz field equations to a 
description in terms of generalized coordinates of the Bloch 
point. A feature which distinguishes this procedure in a fun- 
damental way from corresponding procedures which have 
been developed for domain walls and Bloch lines is that in 
the cases of these walls and lines it is sufficient to know the 
unperturbed (i.e., immobile) distribution of the magnetic 
moment in order to derive a dynamic theory in terms of gen- 
eralized coordinates. In those cases it is not necessary to find 
corrections which are linear in the velocity of the motion, 
and the equations in generalized coordinates are constructed 
from the condition under which the equations for these cor- 
rections can be solved. In deriving dynamic equations for a 
Bloch point, in contrast, we must have explicit solutions for 
these corrections to the field of the magnetic moment M(r),  
which are linear in the velocity of motion. The equation of 
motion found for a Bloch point constitutes Newton's second 
law with a mass for which we will derive an expression here 

for the case of a ferromagnetic medium with a large quality 
factor Q = K / 2 r M  (i.e., theuniaxialanisotropy energyKis 
considerably larger than the magnetostatic energy 2 r M 2 ,  
where M  is the magnetic moment), of the type used in mag- 
netic-bubble technology. 

A Bloch point is an analog of a "hedgehog" in field 
theory.6 An isotropic soliton of this sort exists in the isotrop- 
ic Heisenberg model. As follows from the results of the pres- 
ent study, however, as the anisotropy energy tends toward 
zero the size of the soliton increases without bound, and the 
mass becomes infinite. The result is the peculiar dynamics of 
a hedgehog in the isotropic Heisenberg model. 

As an experiment in which the dynamics of a Bloch 
point might be manifested, one might attempt to observe 
oscillations-excited by an oscillatory external field-of a 
Bloch point in a potential well formed by magnetostatic 
fields. We will discuss such an experiment at the end of this 
paper. 

2. THE LANDAU-LIFSHITZTHEORY ANDTHE SLONCZEWSKI 
EQUATIONS 

Our derivation starts with the Landau-Lifshitz equa- 
tions in polar coordinates for the magnetic moment M 
(rn = cos 9 = M,/M, p = arctg M,,/M, ): 

where y is the gyromagnetic ratio. The Lagrangian density 
for these equations is 

and the energy density 2Y is given by the expression1 

%=A [(V6)Z+sin2~(Vcp) + [K+23tM2 sin2 cp] sin2 6 

Here we are taking into account the inhomogeneous-ex- 
change energy ( - A ) ,  the uniaxial-anisotropy energy 
( - K)  , the magnetostatic energy in the Winter approxima- 
tion' ( - M  '), and the energy of the interaction with the 
weak nonuniform magnetic field Hz = H :y, which creates a 
potential well for a domain wall, whose central surface coin- 
cides with the xz plane. The micromagnetic structure which 
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we are discussing here is shown in Fig. 1. The domain wall 
(the xz plane) is separated by a Bloch line along the z axis. 
The Bloch point is at the origin of coordinates, which breaks 
up the Bloch line into two regions differing in the sign of the 
topological charge. 

Research on both the statics and dynamics of domain 
walls makes extensive use of a simplified description which 
leads to the Slonczewski equations.' This description is 
based on the assumption that the thickness of the domain 
wall, A, is much smaller than the other length scales in the 
theory. The change in m = cos 6 as the domain wall is 
crossed is then described by the Landau-Lifshitz solution 

13, = 2 arctg exp (yiq - )l 

and the wall thickness A, the wall displacement q, and the 
angle p are smooth functions in the xz plane. The dynamic 
behavior of this system is described by the pair of canonical- 
conjugate variables q - p (coordinate-momentum), which 
are defined in a plane (instead of the m - q, canonical pair, 
which are defined throughout space in the Landau-Lifshitz 
theory). 

The effective Hamiltonian for the Slonczewski equa- 
tions 

2 M d q  6 0  ( 6 )  
Y a t  6 c p '  
2M dcp 6 0  

(7) 
Y a t  6 q  

is the energy of the domain wall, with a density (per unit 
area) 

where uo = 4(AK) ' I2  and A, = (A / K ) ' / ~  are the energy 
density and thickness of the Bloch domain wall in the 
ground state (p = 0, q = O), and the last term is the energy 
of the surface tension of the domain wall, which increases as 
the wall bends. 

FIG. 1. Domain wall in the xz plane. The Bloch line runs along the z axis; 
the Bloch point is the origin of coordinates. 

The Slonczewski equations (6) and (7)  could also be 
derived from a Lagrangian with a density (per unit area of 
the domain wall) 

The densities u and 2, , of the energy and the Lagrangian, 
are found by integrating Y and X, respectively, over y 
[Eqs. (3) and (4 ) ] .  As 6 here we are using the Landau- 
Lifshitz solution 6, from (5). 

We can use the Slonczewski equations at distances from 
the center of the Bloch point which exceed the thickness of 
the domain wall, A,; at distances less than A,, we must 
switch to the more general Landau-Lifshitz equations. 
When we move closer to the center of the Bloch point and 
reach small distances on the order of the correlation length, 
we enter a region in which the micromagnetic approach 
(which starts from the assumption that the modulus of the 
vector magnetic moment remains constant) must be aban- 
doned, since topological considerations' show that the mo- 
ment M must vanish at the center of a Bloch point. However, 
as will become clear below, the contribution of small dis- 
tances is by no means dominant for the mass of the Bloch 
point, so there is no need to analyze the structure at atomic 
scales, where we cannot use the Landau-Lifshitz equation. 

3. STATIC SOLUTION 

We now consider the static structure in the ground 
state. In the range of applicability of the Slonczewski equa- 
tions, the static structure corresponds to an undisplaced do- 
main wall (q = 0)  with an azimuthal-angle ( p )  field which 
satisfies the sine-Gordon equation found by minimizing the 
energy, Gu/Sp = 0; 

sin 29 
Acp-T=o, 

A0 

where the length 

is the thickness of the Bloch line.' 
A Bloch line along the z axis with a given topological 

charge is described by a one-dimensional solution of Eq. 

' cp (x) = + 2  arctg exp - ( ) 
For our structure, on the other hand, with a Bloch point 
dividing the Bloch line into regions with different topologi- 
cal charges [z > 0 corresponds to the upper sign in ( 12), and 
z < 0 to the lower sign], the field of the azimuthal angle, 
p(x,z), asymptotically approaches the solution ( 12) only at 
distances from the Bloch point greater than A, (Fig. 2).  The 
solution of the sine-Gordon equation ( lo) ,  on the other 
hand, at small distances from the Bloch point is described 
approximately by the solution of the Laplace equation and 
constitutes a "vortex solution" which does not depend on 
the distance from the center of the Bloch point, 
r = (x2 + z2) ' I 2  

where @ = arctg z/x is the azimuthal angle in the xz plane. 
We now consider extremely small distances from the 

center of the Bloch point-small not only in comparison 
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FIG. 2. Contour lines of q, in the xz plane which satisfy the sine-Gordon 
equation. 

with A, but also in comparison with the wall thickness A,. 
Here we cannot use the Slonczewski equations, and we 
should use the more general Landau-Lifshitz equations. The 
term - A  (the inhomogeneous-exchange energy) is now the 
dominant one in expression (4) for the energy density. We 
know quite well1 that a static solution of the Landau-Lifshitz 
equations ( 1 ), (2)  in this case is 

where we have introduced the spherical coordinates 
R = x2 + y2 + z2, @ = arctg z/x, 0 = arccos y/R with po- 
lar axis y in configuration space (cf. the polar coordinates 
9 = arccos My /M, p = arctg M, /M,  in the space of mag- 
netic moments M).  A solution of ( 14) is a solution for a 
hedgehog soliton in the isotropic Heisenberg model. By per- 
forming various arbitrary three-dimensional rotations of the 
structure which we have found, we find all possible struc- 
tures of this homotopic class. 

We have thus derived an explicit expression for the field 
of the moment M around a Bloch point in spherical coordi- 
nates for three regions: 

4. DETERMINATION OF DYNAMIC CORRECTIONS; MASS OF 
THE BLOCH POINT 

Our problem is to derive the effective Lagrangian of a 
Bloch point in terms of the displacement z and velocity 
V = dz/dt of the Bloch point along the z axis. In the deriva- 
tion of an effective Lagrangian or Hamiltonian of this sort in 
generalized coordinates in the construction of a dynamic 
theory of a domain wall and a Bloch line, it has proved to be 
sufficient to substitute into these expressions a static solu- 
tion for the corresponding structure expressed in terms of 
generalized coordinates. In the problem of interest here, i.e., 
the dynamics of a Bloch point, the static solution proves to 
be inadequate for deriving an effective Lagrangian. The sub- 
stitution of the static solution into the Lagrangian does not 
result in terms which depend on the velocity of the Bloch 
point, since the kinetic term in Lagrangian ( 1 ) disappears in 
this approximation, by virtue of the symmetry. It is thus 
necessary to seek a solution for the field of the magnetic 
moment M by expanding it in the velocity of the Brillouin 

point, V, i.e., by setting m = mo + m, and q = po + q,. We 
find the corrections which are linear in V, m, and q , ,  initially 
in the region of applicability of Slonczewski equations (6)  
and (7),  i.e., under the condition r, A,. In this case we have 
m, = qdmo/dy, and we must solve Eqs. (6) and (7) by set- 
ting dq/dt = - Vdqo/dz = 0 (since there is no displace- 
ment of the wall in the static case) and dq  /at = - Vaqddz. 
We immediately find p, = 0, and q is found from an equa- 
tion which follows from (7 ) :  

where the length I is determined by the "rigidity" of the 
domain wall: 

0 0  1' = ---- 
2MH,'  ' 

We can write a solution of Eq. ( 15) by making use of the 
Green's function of this linear, inhomogeneous equation: 

where Ko(z) is the modified Bessel function of index zero, 
and r and r' are two-dimensional radius vectors in the xz 
plane. 

Going back to Lagrangian density (9) for the Slonc- 
zewski equations, and substituting q from ( 16) and the static 
solution p = p,, dpO/ptz  - Vdp,/dz into that expression, 
we find the following Lagrangian for a Bloch point after 
integrating over the xz plane: 

where 

and where 

is the static energy of the Bloch point [see (9.14) in Ref. 11. 
Expression ( 17) thus gives us the Lagrangian for a Bloch 
point in free motion. The "potential energy" of the Bloch 
point, which depends on its coordinates, appears if the mag- 
netic field has a y component (Sec. 5). 

From ( 12) we find aqo/dz+O at large distances r) A, 
from the center of the Bloch point, and we find that the 
integral ( 18) is dominated by the region r <  A, of the vortex 
solution ( 13), in which the relation aqo/dz = (cos )/r 
holds. The kinetic term m,, V2/2 in the Lagrangian of the 
Bloch point is formed by both the kinetic term -qdq /dt in 
the Lagrangian of the Slonczewski theory, (9) ,  and the con- 
tribution to the energy density a which is quadratic in q [see 
(811. 

For A,$ I, the term - Aq in ( 15), which results from 
the surface tension, can be ignored, and Eq. ( 15) transforms 
from a differential equation into an algebraic equation for q. 
The solution of this algebraic equation is 
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The Green's function for Eq. ( 15) in this approximation is a 
S-function in the xz plane, and expression ( 18) reduces to a 
logarithmically divergent integral 

where the lower limit of the cutoff within the logarithm is 
r, =I i f I>A,or r ,  = A,ifA,> 1. 

In the other limit A,< I, in which the displacement q is 
determined exclusively by the surface tension, the value of 
mBp can be estimated in order of magnitude from 

According to (21 ) the mass of a Bloch point is the product of 
the Doring mass l/yA, and the area A:. It should be kept in 
mind, however, that the area of the domain wall which lies 
within the Bloch point (i.e., in the region in which the static 
solution is distorted by the Bloch point) is A:, not A:. Ac- 
cordingly, inside a Bloch point the mass density (per unit 
area) is smaller than the Doring mass by a factor of 
Q = A:/A:. 

Let us estimate the contribution to the mass of a Bloch 
point from the region r < A,, in which we cannot use the 
Slonczewski equations, and in which we should make use of 
the more general Landau-Lifshitz equations ( 1) and (2),  
replacing dm/& by - Vam,/az and ap /at by - Vap,/dz 
in them. The corrections m, and p, (linear in the velocity V) 
found from these equations should then be substituted into 
the kinetic term of the Lagrangian, and an integration 
should be carried out over the region R < A,. In this region, a 
leading role is played by the energy of the inhomogeneous 
exchange, - A .  A dimensional estimate of the corresponding 
contribution to the mass of Bloch point yields 

Comparing (22) with (20) and (21), wesee that if the quali- 
ty factor Qis large, and if the condition 1% A, holds, the mass 
is dominated by the region r >  A,. These estimates of the 
mass of a Bloch point show that when we switch to the iso- 
tropic Heisenberg model, i.e., when we let A,, A,-+ CO, the 
mass of the point tends toward infinity. In the isotropic Hei- 
senberg model it is thus not possible to derive particle-like 
equations of motion for a point soliton. 

5. OSCILLATIONS OF A BLOCH POINT; POSSIBILITIES FOR 
EXPERIMENTAL OBSERVATION 

The mass calculated above for a Bloch point should de- 
termine the frequency of the oscillations of this point in a 
nonuniform field Hy =Hit.  Such a field, interacting with 
the magnetic moment at the core of the Bloch line (this mo- 
ment has opposite directions on the parts of the line above 
and below the Bloch point), distinguishes the position of the 
Bloch point at the origin or coordinates. The Lagrangian of 
the Bloch point in such a field is 

wherez is the coordinate of the Bloch point. The energy H,, , 
which does not depend on z, has been omitted here. The 
frequency of the resonant oscillations for a Lagrangian of 
this sort is 

As an example we consider a Bloch point with a twisted 
domain wall in a film of thickness h. According to ( 8.33 ) of 
Ref. 1, the field H,, at the center of the film has a gradient HI 
= 16M/h. Using expression (2 1 ) for the mass of the Bloch 

point, we then find 

Whether such oscillations can be observed depends on the 
magnitude of the viscous loss during the motion of the Bloch 
point, i.e., on the resonance quality factor Q = wBp/2 Im w. 
The quality factor is related to the mobility of the Bloch 
point in the field Hy , which is given by the following expres- 
sion according to (9.20) from Ref. 1: 

PBpany ( A d o )  '"IaM 

We then have 

Taking M=: 100 G, A,= cm, h -- cm, and aZ0.01 
(Ref. 1 ) for an estimate, we find the frequency of the reso- 
nant oscillations to be on the order of 4 MHz, and we find a 
quality factor a-40. These results indicate that it would be 
possible to experimentally observe resonant oscillations of a 
Bloch point. These oscillations might be excited by an oscil- 
latory field H ,  . 

6. CONCLUSION 

We have derived an effective Lagrangian for the motion 
of a Bloch point along a Bloch line. The mass calculated for a 
Bloch point here can be determined experimentally through 
the excitation of oscillations of a Bloch point in a potential 
well formed by magnetostatic fields. The mass of the Bloch 
point should also be manifested in dynamic transformations 
of the Bloch line, in which it would determine the rate of 
these processes. 
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