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A simple solution is found in the limit w g w,  for the problem of the spectrum of edge 
magnetoplasmons for a wave which is traveling along an ideal boundary of a semi-infinite 2 0  
system with a stepfunction electron density profile, without screening. A generalization of this 
theory to the case in which the boundary of a 2 0  system is perturbed by a periodic small 
perturbation {(y) with f ' (y ) < 1 is proposed. This perturbation is shown to enter the theory in the 
combination f '(y)ax, /axx. which may be large under the condition w gw, .  by virtue of the ratio 
av/axx 1. An integral equation whose solution determines the properties of edge 
magnetoplasmons in the case {(y) # 0 is constructed. An approximate solution of this equation 
shows that a deformation f (y  ) of the free boundary of a 2 0  system can have a significant effect on 
the spectrum of edge magnetoplasmons. 

The theory of edge magnetoplasmons in bounded two- 
dimensional ( 20 )  charged systems has been derived under 
the assumption that the corresponding boundaries-of half- 
planes, disks, etc.-are ideal.'-' The boundaries of actual 2 0  
conducting systems in various semiconductor devices are of 
course not ideal and must be characterized by a certain de- 
gree of roughness. The basic purpose of the present study is 
to learn how a weak (in the sense df /dy g 1 ) periodic pertur- 
bation f (y) described by 

( 1  = i n ,  4 ,  5 E (Y) ~ Y = O  9 (1) 

of a rectilinear boundary of a semi-finite 2 0  electron system 
which occupies the half-plane x>0 with a free boundary 
along they axis affects the properties of edge magnetoplas- 
mons which are traveling along they axis. As we will see 
below, this effect turns out to be far from trivial. 

Since the problem of the properties of edge magneto- 
plasmons has an abundance of external parameters, we begin 
with a determination of the range of applicability of the re- 
sults which have been derived previously. To begin with, we 
are talking about a 2 0  system with a step electron density 
profile n(x)  = n, 0(x) ,  where n, is the average electron den- 
sity far from the boundary, and 0(x)  is a 0-function without 
screening (the case of a heterostructure) . The magnetic field 
H, which is directed normal to the surface of the 2 0  system, 
is classically strong (i.e., the condition w,r > 1 holds, where 
w, is the cyclotron frequency, and r is the momentum relax- 
ation time), but the length scale I [defined in ( 10) ], over 
which most of the charge of the edge magnetoplasmons is 
concentrated, is still significantly greater than the cyclotron 
radius r , .  In describing the edge magnetoplasmons we can 
thus use a local Ohm's law (see the discussion in Ref. 8) with 
conductivity tensor components cr, from the Drude formu- 
las 

o,=iwn,e2/m' (w2-w:) ,  
ozv=a,n,e2/m* (w2-a ," ,  wc=eH/m'c.  (2)  

Here e is the electron charge, w is the wave frequency, and 
m* is the effective mass of the electrons. The wave number q 
of the waves is much smaller than the value of q, from ( 1): 
4 Q 90. 

This paper is organized in the following way. In the first 
section we find the spectrum of edge magnetoplasmons for 
waves which are traveling along an unperturbed boundary of 
a 2 0  system. Our reason for discussing this problem, which 
has already been studied in detail by Volkov and Mikha- 
i l ~ v , ~ , '  is that we need to put the theory in a form convenient 
for a generalization to the case of a perturbed boundary. In 
the second section of the paper we generalize the theory of 
edge magnetoplasmons for an ideal boundary to the case in 
which the shape of the boundary undergoes a nonzero per- 
turbation f ( ~ )  of the form ( 1 ). 

EDGE MAGNETOPLASMONS AT A PLANE BOUNDARY 

A. Our starting point is a system of equations for the 
electric potential p(x,  y, t )  and the oscillatory part of the 
density, 6n (x, y, t )  : 

Here x is the dielectric constant of the substrate, which occu- 
pies the half-space z<0, and K , ( x )  is the Bessel function of 
imaginary argument. 

The boundary conditions on systems (3)-(5) are 

In writing relations (4)-(6) we assumed that the equilibri- 
um electron density n (x )  has a nonzero limit as x-0, i.e., 
n (0)  - n, . The alternative possibility, n (x)  1, + 0, ultimately 
leads to results which are the same as (4)-(6), although the 
intermediate calculations are slightly different (see the Ap- 
pendix). 
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To study Eqs. (4)-(6), we substitute Sn from (5)  into 
(4)  and carry out a single integration by parts. We then take 
the approach of Ref. 9 to regularize the singular part of the 
integral equation which arises for p (x )  : 

According to (4a), at large distances x )  1 the function 
p ( x )  has the basic behavior 

All of the other terms on the right side of (4a) decay more 
rapidly than e - q x ,  e.g., as e-2qx,  at large distances. The 
asymptotic expression for ~ ( x )  in (7) has the form of the 
potential of a periodically charged rectilinear filament. The 
length scale I is determined by ( 10). 

In the region x < I the behavior p (x)  is determined pri- 
marily by the integral term on the right side of (4a). The 
point of greatest interest here is x = 0, at which Eq. (4a) 
becomes - 

Assuming 

we can easily rewrite (8) and (9)  in terms of I: 

20, 1 axr 
- l = - l n - ,  1 = - ,  qZ<l. 

i o x  ql iqo,, 

From ( 10) we immediately find the dispersion law for edge 
magnetoplasmons for long-wave excitations which are trav- 
eling along a semi-infinite 2 0  system: 

2qaxu 1 2qaxu ia,, o = - - l n - = - -  l n - .  
X ql X Oxx 

(10a) 

Results ( 10) and ( 10a) reproduce qualitatively the basic 
conclusions of the theory of Refs. 4 and 7 for this limiting 
case.'' 

B. We now return to our orginal equations, (4)-(6), 
and make use of the inequality ql< 1, which holds quite well 
in the region of classically strong magnetic fields. We put 
these equations in a form convenient for subsequent general- 
ization to the case f #O. Here it is natural to assume that the 
oscillatory density Sn(x,y,t) has the form of a &function in 
the x direction, i.e., 

where Q(y) is the linear charge density of the edge magneto- 
plasmons. Substituting Sn from ( 11 ) into the general Pois- 
son integral for p(x,y,t), we find 

At the boundary x = 0, Eq. (12) is rewritten as follows 
[p(O,y,t) = q,(y)e- '"I I :  - 

Here we have "manually" introduced a cutoff factor I from 
( lo),  which guarantees a correct description of the logarith- 
mic singularity of the integral (12). 

Equation ( 5 1, integrated over x from 0 to cc , gives us 

Using ( 13) and (61, we can then relative Q(y) and ap /dy: 

ioQ ( y )  =--0,8cp/ayl.=o. (14) 

Finally, using ( 13) and ( 141, we can put Eq. ( 12a) in the 
following form, which is convenient for generalizations: 

+a 

x u  J ( a d ~ s i ? a Y t  
cp(y)= -- l o x  -, [ 1 2 +  ( ~ - y ~ ) ~ l ' ~  

A solution p = pOelqy of this integral equation quickly 
leads to a dispersion law w(q) which is the same as the 
expression for w (q) in ( 10a). 

EDGE MAGNETOPLASMONS AT A PERIODICALLY 
PERTURBEDBOUNDARY 

A. We assume that the boundary of the 2 0  system is 
perturbed by the periodic ripple f (y) given by ( 1 ). We thus 
wish to find an analog of Eq. (15) which holds in the case 
6 ZO. 

The oscillator density Sn takes the form 

which is a generalization of expression ( 11) for Sn. Substi- 
tuting Sn from (16) into the general Poisson integral, we 
find 

Equation (5),  integrated over x from f (y)  to co, along 
with the relations q, :l%q:q,%q2q,, gives us 

In this case the boundary condition (6)  takes the form 

or, in expanded form, where we are using ( 18 ) , 

Substituting Q(y) from (20) into expression (17) for 
p(x,y), taken at x = 6(y), we find the expression for p (y)  
which we have been seeking: 
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The solution of this equation should provide information 
about the structure of the spectrum of edge magnetoplas- 
mons in the case #O. 

The most nontrivial circumstance which arises in a 
study of Eq. (21 ) is obviously the appearance of the combi- 
nation 

in the integrand. The presence of this combination means 
that despite the small value of the parameter f ' ( y )  4 1  [it 
must be small if our derivation of Eq. (21 ) is to be legiti- 
mate] the effect of a perturbation (on the properties of edge 
magnetoplasmons can be quite strong, because in the region 
of classically strong magnetic fields we have a ratio 
a,, /a,, % 1, so a situation with ( 'o,/a,, 5 1 or even 
( 'a,/ax, > 1  is completely possible. We can make use of the 
latter comments to simplify Eq. (21)  slightly, retaining in it 
only the most important contribution from the perturbation 
a y ) :  

4.m 

(23)  

An equation for p ( y )  written in the form (23)  is valid 
for an arbitrary perturbation l ( y )  with d(/dy< 1  and 
Jgdy = 0. However, this equation can be solved only for cer- 
tain specific functions ( 0 7 ) .  

B. Let us assume that the perturbation of the boundary 
is specified by expression ( 1 )  for g (y ) .  To solve Eq. (23)  in 
this case we can use a version of the moment method. 

We assume that p ( y )  can be written in the form 

(P ( y )  = ( ( P ~ + ( P ~  cos sin goy)  eiqu. (24)  

We substitute this expression for p into Eq. (23)  and inte- 
grate both sides with respect toy (Ref. 10) : 

(Pi i w ( q 0 y  - - sin qoy + - cos qoy 
qo 40 

A (g) =iqqi cos qoE+qocpi sin qOE+qoQl cos qoE, 
B ( S )  =iqcpi sin qoE-qocpl cos qoS+iqgl cos qoE, 

a(E) =e  cos qOE, p(E) = E  sin qoE, e=qoSaxU/o,, ~ ' = a ~ + i 3 ~ ,  

S ax 

I f  a cos x f  sin x 

In the region q ~ %  1  the left side of Eq. (25)  increases 
linearly as a function of y:  

j q ( y ) d y  

On the right side, the first term is again linear in y, while the 
second depends on y  in a complicated way, but with depen- 
dence weaker than linear. Finally, the third term is linear in y  
in the region E &  1 but not for E 2 1. Consequently, to first 
order in y, Eq. (25)  is satisfied if we equate the coefficients of 
the terms on the two sides of Eq. (25)  which are linear in y.  
As a result we find a relation among the amplitudes p,,, p , ,  
and 4,: 

To find a second and a third independent relationship 
among p,, p , ,  and @, we have to multiply both sides of Eq. 
(23)  by cos q g  or, sin qtp, integrate the resulting relations 
over y, and equate to zero the resultant coefficient of the 
term which is linear in y: 

On the basis of (26)  and (27)  we find a dispersion law 
for edge magnetoplasmons at a periodically deformed 
boundary: 

In the limit E > 1 the roughness of the boundary obviously 
changes the spectrum of edge magnetoplasmons dramatical- 
ly. We should stress that a transition from the case E < 1 to 
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the limiting case E >  1 can be observed on a given sample 
with a fixed ripple c(y) as the magnetic field is increased 
monotonically. 

In discussing results (28) and (28a), we recall an im- 
portant assertion from Refs. 4 and 7: For a bounded 2 0  sys- 
tem with dimensions L,, L,)I one can determine the dis- 
crete spectrum of edge magnetoplasmons by using 
expressions ( 10a) for w(q) with wave numbers q, repre- 
sented in the form 

where P is the parameter of the sample. According to this 
hypothesis, the effect of a periodic perturbation ((y) with 
{ ' 4 1 on the dispersion law for an edge magnetoplasmon 
which is traveling along the edge of a semi-infinite 2 0  system 
reduces to the substitution qdq*: 

Comparing this expression for w(q) with the results (28) 
and (28a), we easily see that (29a) is untenable. We are thus 
led to doubt the universal applicability of hypothesis (29). 
For example, the spectra of edge magnetoplasmons on a 
square and on a circle with identical perimeters can, general- 
ly speaking, be different, while according to (29) they are 
completely identical. 

C. Equation (23) is also convenient for describing the 
interaction of edge magnetoplasmons with a local perturba- 
tion of a boundary. We assume that this perturbation is a 
single step: 

! 
0, -w<y<-d 

(JZU - - f 1 ( y ) =  e ,  -d<y<O, E 1 ( y ) < l .  
an 

(30) 
0, ocyc+. .  

The distance d, over which the relation 6 ' # O  holds, is as- 
sumed to be quite large in comparison with I but small in 
comparison with the length scale of the variation in g,(y) 
near the perturbation. 

Using expression (30) for C 1 ( y ) ,  and assuming that g, 
varies slowly in the vicinity of the perturbed region, we can 
rewrite the general equation (23 ) as 

In writing (3 1 ) we assumed that the derivative d p  /dy has no 
discontinuities along they axis. 

We solve Eq. (3 1 ) by means of Fourier transforms. As- 
suming in this connection 

we easily find from (3 1 ) 

Now using for ~ ( 0 )  the expression 
+a 

cp(0) =an J v (q)dq . 
- m 

and also using the explicit expression for p(q)  in (33), we 
find a dispersion relation which determines the natural fre- 
quency of a localized edge magnetoplasmon: 

I=-2n J oX,x-'qF(q) dq 

- m  o+20x,x-'qKo (q l )  ' 

Equation (34) is reminiscent of equations which arise 
in the theory of quasilocal vibrations of a lattice with de- 
fects.'' Accordingly, a general analysis of this equation can 
be carried out by analogy with the well-studied problem of 
quasilocal modes. In this paper we will instead restrict the 
discussion to the appearance of a solution of Eq. (34) at 
small values of E. 

Determining whether a solution of (34) exists in the 
limit E 4 1 reduces to testing the convergence of the integral 

If this integral does converge, Eq. (34) has no solution as 
E-+O. If, on the other hand, it diverges, there must be such a 
solution. In the particular case in which F(q)  is given by 
(32a), integral I divergences linearly at large q. For this 
reason, a solution'of Eq. (34) exists for arbitrarily small E; 
the natural frequency w of the localized edge magnetoplas- 
mon is linear in E. 

Interestingly, the problem of the reflection of edge mag- 
netoplasmons from a single step, or from a barrier, which is 
similar in physical content, cannot be solved by a formalism 
which uses Eq. (3 1 ) by itself. The reason is that this equation 
has no standing-wave solutions in the unperturbed region 
[the same is true of Eq. (23) 1, so the standard mechanism 
for the passage of a wave through an obstacle, involving inci- 
dent, reflected, and transmitted waves, does not operate in 
its pure form in this case. 

D. To complete this discussion of the properties of edge 
magnetoplasmons at a deformed boundary of a 2 0  system, 
we examine the effect of a deformation of the boundary on 
the properties of edge magnetoplasmons in a 3 0  problem. 

Let us assume that a metal fills the half-space x>O, that 
a magnetic field is directed along the x axis, and that a plas- 
mon "runs" along they axis. The problem reduces to one of 
solving the equations 

with the components a, in the Drude approximation [see 
expression (2) for u,, with n, +no, where no is the bulk elec- 
tron density]. 

While the continuity equation (36) takes the form div 
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j = 0 in a surface wave in the interior of the metal, it is not 
difficult to see that this assumption agrees with the Poisson 
equation (35), which is also satisfied in the interior under 
the condition Aq, = 0. As a result, an edge magnetoplasmon 
in the 3 0  problem has charges which are completely local- 
ized at the free boundary of the metal. If the surface charge 
density is u, the continuity equation at the free boundary 
leads to a relationship between u and jx : 

In addition, there are familiar electrodynamic boundary 
conditions 

which relate the derivatives of the potential on the two sides 
of a boundary at which there is surface charge u, and also the 
potentials themselves. The problem of the properties of edge 
magnetoplasmons in the 3 0  case thus reduces to one of solv- 
ing the Laplace equation 

on the two sides of the boundary of the metal and joining the 
solutions with the help of the boundary conditions (37) and 
(38). 

At an ideal boundary the dispersion law for edge mag- 
netoplasmons is determined in the 3 0  case by the equation 

In the limit o s w ,  we find from (40) the familiar expression 
for the frequency of an edge plasmon in the 3 0  case: 

If, on the other hand, the condition ogw,  holds, we find 
from (40) that, as in the 2 0  case, there exists an edge magne- 
toplasmon with a frequency 

which falls off with increasing magnetic field. In this sense 
the presence of a mode w with dw/aH < 0 in a strong magnet- 
ic field is not a unique property of a 2 0  charged system. A 
similar mode exists in the 3 0  case. 

There is a qualitative difference between edge magneto- 
plasmons in the 3 0  and 2 0  cases: The existence of a surface 
charge u means that there will be nonvanishing electric fields 
in the x direction [the derivatives dq, /ax in boundary condi- 
tions (38) are nonzero]. These fields increase slowly with 
increasing magnetic field. For this reason, the normal de- 
rivatives aq, /ax cease to play a significant role in determin- 
ing the dispersion law for edge magnetoplasmons in the re- 
gion of strong magnetic fields. Formally, this circumstance 
corresponds to the legitimacy of ignoring the first term on 
the right side of general equation (40). In 2 0  systems, on the 
other hand, the localization of charge in an edge magneto- 
plasmon at a free boundary is accompanied by anomalously 
large values of the derivative dq, /ax, which increase with 
increasing magnetic field. For this reason the derivatives 
dq, /ax "participate" in shaping the spectrum of edge magne- 
toplasmons for 2 0  systems over the entire magnetic field 
range. For the same reason, the boundary perturbation { ( y )  
strongly influences the properties of edge magnetoplasmons 

in 2 0  systems and has no anomalous properties in the 3 0  
case. The latter assertion can be tested quite easily by using 
the expression j, = jx + { '(y)j,, which is similar to ( 19), 
for the component jx and by going through the obvious cal- 
culations to generalize Eqs. (40) to the case {(y) #O. In this 
equation, as in the 2 0  case, a combination (uxy/uxx )C1 (y )  
arises, but it appears in only the first term on the right side of 
(40), which, as we have already mentioned, ceases to play 
any significant role in the case w 4oc. 

CONCLUSION 

Let us summarize. We have presented an approximate 
method for solving the problem of the spectrum of edge mag- 
netoplasmons at a rectilinear plane boundary in the limit 
w gw, . This new method makes it possible to avoid solving 
the corresponding integral equation, and it reduces to ana- 
lyzing two transcendental equations, ( lo ) ,  for I and a. The 
results of a solution of these equations for a plane boundary 
agree qualitatively with the results found previously by Vol- 
kov and Mikhail~v.~.' the arguments which led to Eqs. ( 10) 
can easily be generalized to the case of cylindrical geometry. 
As a result, relations analogous to ( 10) are found for (for 
example) the minimum dipole frequency of edge magneto- 
plasmons on a disk: 

1 , G(X)=~IK(X)-E(X)]. z=- 
i o x  

Here R is the radius of the disk, K(x)  and E(x)  are elliptic 
integrals of the first and second kinds, and R * = R - 1. 

A deformation f (y) of the free boundary of a 2 0  system 
has an important effect on the properties of edge magneto- 
plasmons, as we have seen. There is the anomaly that the 
parameter E = {,qaoxv/uXx [see expression (25a) for E] 

arises at a perturbed boundary. In principle, this parameter 
is not small even under the condition fog, 4 1, since in strong 
magnetic fields, and at low frequencies w &w,, the inequality 
oxy/ox, s 1 holds. We have derived Eq. (23), which deter- 
mines the properties of edge magnetoplasmons at a de- 
formed boundary. From the approximate solution of this 
equation we can draw conclusions about the behavior of the 
spectrum of edge magnetoplasmons for arbitrary values of 
the parameter E. The final results for the spectrum of edge 
magnetoplasmons [see (28) and (28a)l provide evidence 
that a deformation of the boundary has a significant effect on 
the properties of edge magnetoplasnions. In addition, this 
equation can be used to study the localization of edge magne- 
toplasmons at an isolated local perturbation of the boundary 
of a 2 0  system. 

APPENDIX 

We assume that the equilibrium electron density n (x) 
vanishes at the boundary x = 0. We are then faced with the 
question of the role played by the boundary condition 
j, 1, = 0, which occupies a prominent position in the argu- 
ments above but which becomes unimportant in the case 
n (x)  l o  - 0 (since the requirement jx 1, -. 0 hold automatical- 
ly in this case). To answer our question, we write a general 
linearized continuity equation with n' (x)  +O: 
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In all cases of practical interest the derivative nl(x) has 
a power-law singularity as x-0. Accordingly, it is not al- 
ways legitimate to linearize the general continuity equation 
near the boundary of a 2 0  system. One can, however, require 

thereby arranging conditions for linearization of the conti- 
nuity equation even at the "most dangerous" point, x = 0. In 
the limit n ( x )  (,+O, condition (A2), which is formally the 
same as requirement (6) of the main text, is thus the condi- 
tion for the existence of a linearized theory of edge magneto- 
plasmons. With regard to Eq. (A l ) ,  on the other hand, we 
note that in the limit in which n(x) varies rapidly over a 
distance lo < I  this equation can be approximated by Eq. (5) 
of the main text. 

"From Refs. 4 and 7 we have 

Expressions ( 10a) and (lob) forw(q) are essentially identical. Expres- 
sion (10) for I ,  however, contains an extra logarithm, In(l/ql), not 

found in expression (lob) for 1. For this reason, in discussing Eqs. ( 10) 
and ( 10a) we claim no more than a qualitative agreement with the theo- 
ry of Refs. 4 and 7. In particular, expression ( 10a) for o (q )  is an exactly 
linear function of q, while expression ( lob) for o (q )  also has a q inside a 
logarithm. 
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