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We investigate theoretically the nonequilibrium fluctuations in a semiconductor electron gas 
under conditions such that the main energy relaxation mechanism for charge carriers is 
instantaneous spontaneous emission of optical phonons with energy &,, while the carrier 
momentum is scattered by ionized impurities or by acoustic phonons. We discuss the low- 
temperaturecase ( k T  <&,, where Tis thelattice temperature), for which we obtain the 
fluctuation spectrum and investigate its field dependence. We calculate the linear response of the 
nonequilibrium electron system to an external probe, and identify certain nonequilibrium 
fluctuation-dissipation relations. We show that in the low-frequency limit the spectral density of 
current fluctuations saturates with increasing electric field in pure semiconductors, while in 
doped semiconductors it passes through a maximum and then decreases. For practical electric 
fields, the convective contribution to the fluctuations vanishes in pure semiconductors and the 
fluctuations become isotropic, whereas in doped semiconductors the fluctuations are 
substantially anisotropic. The small-signal conductivity in the first case also approaches 
saturation and becomes isotropic, while in the second case the conductivity anisotropy changes 
sign with increasing electric field. In the high-frequency limit the intensity spectrum of 
fluctuations and the small-signal conductivity are different for doped semiconductors, and have a 
non-Lorentzian form, which leads to an explicit dependence of the noise temperature on 
frequency. 

1. INTRODUCTION 

A kinetic theory of current fluctuations in semiconduc- 
tors under strong electric fields in which electron-electron 
interactions were neglected was constructed in Refs. 1-3. 

The authors of Refs. 1, 2 investigated fluctuations in an 
electron-phonon system in which the nonequilibrium 
steady-state distribution was quasi-isotropic in momentum 
space, and the symmetric part of the distribution function 
was a Davydov-Dryuvestein function. The primary relaxa- 
tion mechanisms for electronic energy E and momentum p in 
this case are interactions with accustic phonons. The sym- 
metric part of the distribution function Fa(&) is character- 
ized, apart from the heat-bath temperature T, by the single 
parameter 

Eo=[3/2mkoTl[e2~,(koT)~,(koT) I l'", (1.1) 

which has the sense of a characteristic field for electron-gas 
heating (i.e., the electrons are strongly heated for E> E,). 
Here rp (koT) and rE (k,T) are the equilibrium electron re- 
laxation times for momentum p and energy &. Even though 
no fluctuation-dissipation relations of Callen-Welton type 
are satisfied for nonequilibrium systems, for the situation 
investigated in Refs. 1. 2 they retain an order-of-magnitude 
validity if we simply replace the lattice temperature T in 
them by 2T/3k0, whereEis the average electron energy. As 
remarked in Ref. 3, the reason for this is the fact that the 
symmetric part of the electron distribution function coin- 
cides with the equilibrium distribution function exp ( - &/ 

k,T) if in the latter we carry out the substitution described 
above. However, in the nonequilibrium state, in addition to a 
growth of the fluctuation power due to increase of the aver- 
age electron energy, there also appears an anisotropy in the 
fluctuations caused by the mutual influence of the electron 
current and energy fluctuations (i.e., the convective contri- 

bution to the fluctuations4). In energy and momentum scat- 
tering of electrons by acoustic phonons, the convective con- 
tribution is negative and the fluctuation intensity along the 
current j is found to be smaller than the intensity of trans- 
verse fluctuations. This implies that the fluctuations in ener- 
gy partially suppress the current fluctuations. Consequent- 
ly, the anisotropy of the fluctuations is an effect which is 
characteristic of the nonequilibrium state. 

In Ref. 3, the current fluctuations were studied in a situ- 
ation where the primary mechanism for scattering both the 
energy and momentum of the electrons was spontaneous 
emission of optical phonons of energy h,; in contrast to 
Refs. 1, 2, these authors found the electron distribution 
function has a strong anisotropy (i.e., the streaming effect5). 
This regime is realized at low lattice temperatures 
(k,T<&,) in the electric field interval 

E-<E<E+, (1.2) 

where the characteristic fields E - and E + are determined by 
the relations 

~ E - T ~ = P ~ ,  eE+.to=POl P0=(2mfioo)'", (1.3) 

in which 7, is the momentum relaxation time for an electron 
in the passive energy region ( E  <&,), while ro is the time 
for emission of an optical phonon. In this case, relations of 
Callen-Welton type are violated in a substantial fashion. To 
lowest order in the scattering, the spectral density of current 
fluctuations (SjiSjk ), in the passive energy region is differ- 
ent from zero only in the resonance regions at frequencies 
which are multiples of the time-of-flight frequency 
o, = 2n-/rE (rE = Po/eE is the time of flight of an electron 
to the boundary of the passive region), while the small-sig- 
nal conductivity a,, (o) is zero. 

Noting that the inelastic scattering is weak in the pas- 
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sive region and that few electrons penetrate into the active 
region of energies, as was done in Ref. 6, leads to a finite 
value of the longitudinal component of the small-signal con- 
ductivity a,, ( a )  in the same resonance regions; the reso- 
nance line shapes both for (GjSj) and for all (w ) are Lorent- 
zian in this case. The finiteness of all (w) allows us to 
maintain the Callen-Welton relation in the neighborhood of 
each resonance if we correctly choose the coefficient of pro- 
portionality between (Gj, Gj, ), and a,, (w ); this coefficient 
is usually interpreted as a noise temperature T .4 We em- 
phasize that T will not coincide with 27/3k0 even in order 
of magnitude for the case of streaming, i.e., in this respect the 
differences between this situation and the situations dis- 
cussed in Refs. 1, 2, 3, 6 are substantial. 

In this paper we will investigate the nonequilibrium 
spatially-inhomogeneous current fluctuations in a semicon- 
ductor electron gas under conditions which are intermediate 
between those investigated in Refs. 1-3. We will assume that 
the electron distribution remains quasi-isotropic, which is 
ensured by efficient scattering of the electron momentum by 
acoustic phonons or by ionized impurities. The basic energy 
loss mechanism for electrons is emission of optical phonons 
with energy h,. We investigate the low-temperature case 
(k,T&h,) .  The concentration of electrons is low enough 
that the electron-electron interactions can be neglected, so 
that we cannot introduce an electron temperature. The cou- 
pling constant with optical phonons is assumed to be large, 
and the distribution of electrons is different from zero only in 
the passive energy region E < h , ;  few electrons penetrate 
into the active energy region E > h , ,  and the distribution 
function there is close to zero. In other words, an electron in 
the passive region, as in Refs. 1, 2, moves diffusively in mo- 
mentum space; however, the energy loss due to quasielastic 
scattering mechanisms is small in this case and, as in Ref. 3, 
is determined basically by the emission of optical phonons. 
The kinetic equation for this case was solved in Refs. 7, 8; the 
realism of the model used there is confirmed, e.g., by recent 
experimental data.9 A new characteristic electric field Ec 
emerges as a consequence of the theory presented here (Ref. 
5) ,  at which energy scattering of electrons by optical phon- 
ons becomes significant; the range of relevant electric fields 
is determined by the conditions 

E.<E<E-. (1.4) 

Depending on the specific mechanism of electron mo- 
mentum scattering, the solution to the kinetic problem leads 
to two qualitative results which are fundamentally If 
the dominant momentum scattering is by acoustic phonons, 
then the symmetric part of the electron distribution function 
does not depend on electric field, and correspondingly the 
field dependence of all the kinetic coefficients saturate. In 
particular, there appears a second "ohmic" region in the 
current-voltage characteristics. If, however, momentum 
scattering by ionized impurities dominates, then the current- 
voltage characteristics saturate, while the mean electron en- 
ergy decreases with increasing electric field E (i.e., the car- 
rier-cooling effect). The physical reason for this behavior of 
the field dependence of the average energy lies in the 
"matched" effects of impurity scattering of the electron mo- 
mentum and emission of optical phonons: after emission of 
an optical phonon, the electron falls into the region of low 
energies E-0, where the probability is large for scattering by 

the ionized impurities, and this hinders the departure of the 
electron from this region under the action of an electric field. 
As a result, electrons accumulate in the low-energy regime, 
and consequently their average energy decreases as the elec- 
tric field increases, since there is also an increase in the elec- 
tron flux into the low-energy region in this case. 

2. THE FLUCTUATION SPECTRUM 

In order to calculate the fluctuation spectrum we will 
use the method developed in Refs. 1, 2, 4. Let us introduce 
the auxiliary correlation function 

for a stationary random process which, according to the 
Wiener-Khintchin theorem, is related to its spectral density 
y, (p, w) by the relation 

ea 

where GF(p, 7) is a fluctuation in the distribution function at 
the point p in momentum space and the time T,  and Sj, (0)  is 
the fluctuation of the k th component of the current density 
at the time T = 0. The angular brackets denote averaging 
with the total density matrix of the electron subsystem. The 
spectral density of current fluctuations is expressed through 
y, (P, w): 

Let us write the equation for the quantity y, (p, w): 

where V, and v, (p)  are the k th components of the drift 
velocity of an electron and the velocity of an electron with 
momentum p, I is the collision operator, F(p)  is the total 
single-particle electron distribution function, and V is the 
volume of the region of the crystal under study. The operator 
iincludes the interaction with acoustic and optical phonons 
and the scattering with ionized impurities. 

The method of solving Eq. (2.4) is similar to that dis- 
cussed in Ref. 8 for solving the kinetic equation. Represent- 
ing y, (p, o) in the form of a sum of symmetric and antisym- 
metric parts 

we obtain equations for these parts: 

'yk' (P, 0) = - I - ~ O T ~ ( E )  e T p ( E )  [l V uk ( p ) ~ ,  (e) 
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Here g ( ~ )  is the density of electron states, and the electric 
field is assumed to lie along the z-axis (E ,  = E ) .  The first 
term of the right side of (2.7) describes relaxation to 
y, '(E, w) by way of spontaneous emission of optical phon- 
ons; No is the equilibrium Planck distribution for the optical 
phonons, and ro, ( E )  is the time for scattering of an electron 
with energy E by optical phonons. The terms which include 
absorption of optical phonons can be neglected in the present 
p r ~ b l e m . ~  

The symmetric part Fo(&) of the distribution function 
which appears in (2.6) was derived in Eq. (8). It has the 
form 

Fo(x)=C expI--Z(x) I j exp[Z(u) - I (xo )  I 
r u 2 [ 0 ( u ) + 1 ]  du, (2.8) 

where Cis a normalization constant, 

In (2.9), pa and p, are electron mobilities in weak electric 
fields associated with scattering by acoustic phonons and 
ionized impurities, respectively. The parameter B deter- 
mines the relative contribution of each of these scattering 
mechanisms to the function O(u), which is a characteristic 
of the carrier heating. When the two scattering mechanisms 
(i.e., scattering by acoustic phonons and by ionized impuri- 
ties) are included, the momentum relaxation time T,, ( E )  

which enters into (2.6) and (2.7) equals 

For low-frequency fluctuations, i.e., those which satisfy 
the condition 

we can neglect the first term on the left side by Eq. (2.7). [In 
what follows, we will discuss criterion (2.11), along with 
what it means to introduce this characteristic relaxation 
time .r,* for the charge carrier energy.] After this, Eq. (2.7) 
can be integrated once, and after a few transformations it 
takes the form 

where the notations 

~ , u ' ~ F ~  (u)  ] du, (2.13 
0 

du 

." 

2 2 
'I.. = I i 0  ( u )  =du, N = - jutl*F0 ( Z Z )  dZ, 

n N ,  du 'A 

G ( x )  = 
Go 

x2 [0  ( 5 )  +I] ' 

have been introduced. Because of the weak penetration of 
the electrons into the active region of energies, the function 
yk '(u + x0, w) rapidly decreases as u increases in this re- 
gion, and therefore the integral in (2.15), and correspond- 
ingly Go, are practically independent of x. The constant Go, 
and also the constant associated with the final integration of 
Eq. (2.12), are found from the conditions 

The first of these follows from the requirement that the elec- 
tron concentration equal the constant n, while the second 
follows from the requirement that few electrons penetrate 
into the active energy region (an analogous condition was 
used in Ref. 8 in solving the kinetic equation). We note that 
the assumption that Go is independent of x, together with 
condition (2.17), leads to a distortion of ykO(u + x,, w) in 
small neighborhoods of the points x = 0 and x = x,. How- 
ever, in view of the smallness of the electron penetration into 
the active region of energies, this distortion also turns out to 
be small. An exact analytic solution to this problem, where 
in place of Eq. (2.17) we use the condition that the solutions 
match at x = x,, would require that we know the function 
yk '(u + x", w) in the active energy region as well, which is 
possible only in certain special cases. This question was in- 
vestigated in detail for the kinetic equation in Ref. 10. 

The solution to Eq. (2.12) including conditions (2.16) 
and (2.17) has the form 

while the constant Go equals 
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obtain for the spectral density 

j ru exp [ -Z ( x )  1 

We now calculate the special density of current fluctu- 
ations. From (2 .3) ,  (2 .6) ,  and (2 .12) ,  taking into account 
the fact that iurp ( E )  can be neglected in (2 .6 )  when condi- 
tion (2.19) is fulfilled, we find that 

where 
4 

x%, (2.21) Po= j 0 ( x )  Fo ( x )  dx,  0 ( x )  = - 
0 z.(koT) 

Xo 

91= 1 h ( x )  e x p [ z ( x )  I [ ~ ( x )  +0 ( x )  e x p [ - Z ( X )  ] ] d x  
0 

e x p [ z ( x )  , [ X ( x )  +0 ( x )  exp[ -Z(x)  ] Idx, (2.22) 
-GO! r [ e ( x ) + i ]  

(") - R.u'*] du, (2.23) 

D 

Here a, = enp,. The second term in (2 .20)  determines the 
convective contribution to the  fluctuation^.^ The resulting 
expressions (2.20)-(2.24) give a solution to the fluctuation 
problem in the low-frequency region for the nonequilibrium 
system under discussion here. 

In the intermediate-frequency region, when the condi- 
tion 

(z. .)  -'<OK (z,') -', (2.25) 

is fulfilled, the first term on the left side of Eq. (2 .7 )  is the 
important one. Then, according to Ref. 1, 

are correspondingly the second term of (2 .6 )  and (2.20) in 
the angular brackets can be neglected: 

For the high-frequency fluctuations, when the condi- 
tion 

if fulfilled, the solution (2.26) remains valid, as previously; 
now, however, we cannot neglect the term iwr, ( x )  in the 
denominator of (2 .6 ) .  Then in this range of frequencies we 

where 

Fo ( x )  dx .  
I + & ~ T , ~ ( X )  

The high-frequency region is bounded from above by the 
condition w < Z / f i  (Ref. 1 ), i.e., the region where the classi- 
cal equation (2 .4 )  is applicable. 

Let us now investigate the field and frequency depen- 
dence of the spectral density of the current fluctuations, 
(Sj, Sjj ), , based on the expressions obtained above. As we 
already noted in the Introduction, the kinetic behavior of the 
system depends significantly on which momentum-scatter- 
ing mechanism dominates. Therefore when investigating 
fluctuations it is reasonable to discuss the cases of acoustic 
and impurity scattering separately. 

3. MOMENTUM SCATTERING BY ACOUSTIC PHONONS 

In this case B< 1 in Eq. ( 2 . 9 ) ,  and 

If the range of electric fields is such that the condition 

is fulfilled, then it follows from (2 .8 )  that the distribution 
function has the form of the Davydov-Druyvestein function: 

Fo ( x )  =C' e x p ( - x )  [ x + 8 , ]  ", (3 .2 )  

where C ' is a normalization constant which is redefined in 
comparison to (2 .8 ) .  This implies that the interaction with 
optical phonons in these electric fields is not yet able to sig- 
nificantly affect the behavior of the electron subsystem. Cor- 
respondingly, we can neglect the contribution of optical- 
phonon scattering in all the expressions for the spectral 
density of fluctuations. Then from (2 .22) - (2 .24) ,  including 
(3 .2 ) ,  we obtain 

3' ( x )  -xFo ( I )  
pi=-&0 [X' ( x )  +xFo ( x )  I dx, ( 3.3 

Fo(x)  [ z o f  X I  

where we have used the fact that when B< 1 we have 
cP(x) = x .  All the remaining expressions retain their pre- 
vious form; however, Fo(x)  in these expressions is now de- 
termined by Eq. (3 .2 ) .  Hence, in the region of electric fields 
for which conditions (3 .1 )  is satisfied, all the results ob- 
tained here coincide with the results obtained in Refs. 2  and 
4. The characteristic energy relaxation time T : ( E )  in (2.11 ) 
in this case approximately equals rE ( k , ~ ~ , " ~ ) ,  i.e., - 
E=; k0T8,"*.  Because the problem here is to obtain the field 
and frequency dependences for the spectral density of fluctu- 
ations, in order to complete the picture and to make possible 
a comparison of the results obtained here with the results 
derived in Refs. 2  and 4, we will briefly summarize the re- 
sults of these references. 
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In the "warm electron" region (i.e., for go( 1 ), the 
transverse (I) and longitudinal ( 1) ) components of the ten- 
sor (Sji Sjk ), equal 

Correspondingly, for "hot electrons" (i.e., for go % 1 ), 

20. 2"r('I,) 
(6ji6jd = - ~ o T  [ 

n.,, v , (3.7) 

(tij,6j.) ."=0,49 5 koZ' [ 231'r1::) 8.1 . v (3.8) 

In the range of electric fields which satisfy the condition 
opposite to (3.1 ), i.e., for 

Z ( ~ o ) ~ l ,  (3.9) 

according to (2.8) the distribution function has the form 
+a 

The criterion (3.9) determines the electric field region in 
which inelastic interactions with optical phonons play a fun- 
damental role in the energy relaxation. The condition 
I(xo) = 1 determines a new characteristic field which enters 
into (1.4). When (3.9) is fulfilled it is necessary to use the 
following limiting forms in Eqs. (2.22)-(2.24): 

which gives 

Ro=Ol 2 ( x )  =0. 

From (2.19), using the first expression in (3.11 ), we obtain 

From this it follows that in the limit defined by (3.11) the 
expression for 9 ,, which determines the convective contri- 
bution to the fluctuations, has the form 

In the approximation (3.9) for A(x), from (2.13)-(2.18) 
and (3.10) and B g  1 we obtain 

Then from (3.13) and (3.15) we find for Go the value 

If we now calculate 9, from (3.14)-(3.16), we find that in 
the range of electric fields which satisfy condition (3.9), for 
the case of momentum scattering of an electron by acousltic 
lattice vibrations the convective contribution to the fluctu- 

ations disappears: 

We emphasize that this result is numerical, i.e., it follows 
only after we evaluate the integrals entering into (3.14). 
However, the difference in the integrands in (3.14) or in the 
values of the indefinite integrals is not zero. Calculations 
show that the first nonvanishing terms, which determine the 
relative convective contributions to the current fluctuations 
9 ,/Yo in (2.20), are on the order of 10-3xo/8'o (as a com- 
parison, the criterion (3.9) in explicit form gives xo2/ 
2g0 (  1). The fact that the convective term reduces to zero 
implies, according to (2.20), that the fluctuation properties 
of the sample under study are isotropic when the conditions 
described above are fulfilled. Apparently, this is the first 
time that the existence of such a situation in a nonequilibri- 
um system has been demonstrated. 

Let us now calculate the contribution to the spectral 
density connected with fluctuations of the antisymmetric 
part of the distribution function, which is determined by Eq. 
(2.21). Using (3. lo), we obtain for 9, and N 

where we have used the criterion (3.9) and carried out a 
series expansion of the corresponding expressions in the 
small parameter xo/gO( 1. The spectral density of current 
fluctuations in this case equals 

Hence, the field dependence of (Sj, Sj, ), in the range of 
electric fields (3.9), which is manifested by an intense gener- 
ation of optical phonons, approaches saturation. 

In the preceding discussion, we have carried out an in- 
vestigation of the spectral density of current fluctuations in 
the low-frequency region of the spectrum, as defined by the 
condition (2.11). However, by virtue of the result (3.17), 
and as is also clear from (2.27), Eq. (3.19) also remains 
valid in the intermediate frequency range determined by 
conditions (2.25 ) . This implies that at frequencies w - (T:) 

-' there is no dispersion in the longitudinal component of 
the spectral density of the current fluctuations in the electric 
field range (3.9), whereas such dispersion is present4 in the 
field range defined by condition (3.1 ) : for example, accord- 
ing to (3.7), (3.8), the intensity of longitudinal fluctuations 
increases by approximately a factor of two in the region of 
strong heating. 

It should also be noted that in the electric field interval 
(3.9) the characteristic relaxation time TT is determined by 
inelastic interactions of the electrons with optical phonons, 
and therefore it differs from the T,* for the range of fields 
(3.1), where, as we have already pointed out, r,* is deter- 
mined by quasielastic scattering by acoustic phonons. The 
r: of interest to us can be estimated by using the kinetic 
equation for Fo(&). It follows from this equation that the 
constant Cin (2.8) is connected with the flux of electrons in 
energy space J,, caused by emission of optical phonons 
through the following relation: 
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whereg(koT) is the density ofstates at E = koT. The flux Jop 
determines the rate of energy loss by all the electrons because 
of optical phonon emission, and we can assume that 
Jop = n / e .  Then, using (3.20), we obtain from the norma- 
lization condition 

7; a 3 j x81*Po ( x )  &. 
C o  

For Fo(x), we find from (3.10) and 8(u)  = g0/u that the 
time i: decreases as the electric field increases 

In the high-frequency region, when condition (2.28) is 
fulfilled, the current-fluctuation spectral density according 
to (2.29), (2.30), equals 

For comparison, in the range of electric fields (3.1 ) we have 
according to Ref. 4 that 

The physical reason for the saturation in the field depen- 
dence of the current-fluctuation spectral density (3.19), 
( 3.23) over the entire range of frequencies is the same as that 
which operates when the second "ohmic" region appears. 
When (3.9) is fulfilled, Fa(€) practically ceases to depend 
on electric field (if B 4  1, then in (3.10) we can neglect the 
one in the denominator for the energy values of interest, and 
hence the electric field can be included in the normalization 
constant; in this way, we remove the explicit dependence of 
the distribution function Fa(&) on the electric field E). 

4. MOMENTUM SCATTERING BY IONIZED IMPURITIES 

The general scheme for investigating fluctuations in 
this case is analogous to that used in the previous section. 
For B ) x t ,  we find from (2.9) that 

in which we introduce a new characteristic electric field 

In the range of electric fields (3.1 ), from (2.8) we obtain for 
the distribution function 

This function is normalized only for 8; < 2/3, since scatter- 
ing by ionized impurities is a nonconfining mechanism, and 

as the electric field increases electrons runaway into the 
high-energy region. 

Let us discuss the low-frequency region (2.1 1 ) . For 8; 
4 1 we can discard the second term in (2.22), and obtain 
from (2.20)-(2.24) and (4.2): 

where ui = enpi.  Here, in contrast to the previous case, the 
convective contribution to the current fluctuations is posi- 
tive and 

The interaction with optical phonons is a confining 
mechanism, which limits the electron runaway, and its in- 
clusion makes possible an investigation of the region of 
strong electric fields satisfying condition (3.9). In this case, 
from (2.14), (2.12), (3. lo),  and (3.14), after uncomplicat- 
ed but tedious calculations we obtain for the quantities en- 
tering into (2.20), 

Substituting (4.5) into (2.20), we find the spectral density 
of current fluctuations 

where 

is the anisotropy coefficient for the current-fluctuation spec- 
tral density (or the diffusion coefficient for hot electrons4). 

FromEqs. (4.3), (4.4), (4.61,and (4.7), it follow sthat 
the low-frequency current-fluctuation spectral density has a 
nonmonotonic field dependence with a maximum, and in the 
region of electric fields satisfying condition (3.9) it de- 
creases with increasing electric field ( (Sji Sj, ), - l /E) .  
Apparently this is a result obtained analytically for the first 
time also. The current fluctuations in this case are character- 
ized by significant anisotropy ( K D  =: 5 ). The physical reason 
for the decrease in (Sji Sj, ), with increasing field is the 
accumulation of electrons in the low-energy region, whose 
mechanism was discussed in detail in the Introduction. 

In the intermediate-frequency range (2.25), we obtain 
from (2.27) and (4.5) 

From a comparison of (4.5) and (4.9) it follows that for 
W- ( r : )  significant dispersion is found in the longitudi- 
nal component (Sj, Sj, ), . As the frequency increases, (Sj, 
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Sj, ), decreases by approximately a factor of 5. In this fre- 
quency region, however, for 8; 4 1 the longitudinal and 
transverse components of (Sji Sj, ), are determined by the 
expressions (4.3 ) . 

Let us estiamte the characteristic time 7: for Z(x0) 4 1 
for impurity momentum scattering. From (3.21 ) and (3.10) 
with 9(u)  = 8;u we find that 

Let us now investigate the high-frequency region 
(2.28). In weak electric fields, we find ibr g; 4 1 from 
(2.29), (2.30), and (4.2) that 

In the region of strong electric fields, when the condition 
(3.9) is fulfilled the spectrum of fluctuations has a non-lor- 
entzian form. This is caused by the fact that the main contri- 
bution to the integral (2.30) is given by the small-energy 
region, and in this region we cannot neglect the 1 in the 
denominator compared to 0'7, (x) even for arbitrarily high 

, as x-0, frequencies (since Q(x)  -x3, rp (x) -x3/" 
Fo(x) - l/x, so that in this case the integral (2.30) diverges 
logarithmically at its lower limit). For frequencies satisfying 
the condition 

uZt?( k0T)>8o", (4.12) 

the expression for q, is considerably simplified, and for the 
current-fluctuation spectral density (2.29) we obtain 

We note that when (4.12) holds the fluctuation spectral den- 
sity does not depend on the optical phonon energy. 

The integral (2.30) does not depend on frequency if the 
following condition holds; 

Consequently, the order of magnitude of the characteristic 
time entering into the right side of condition (2.25) is given 
by T ~ * = T ~  (kO~)~: /2 .  

5. SMALL-SIGNAL CONDUCTIVITY AND FLUCTUATION- 
DISSIPATION RELATIONS 

In the previous section we obtained the field and fre- 
quency dependences of the current-fluctuation spectral den- 
sity for two different electron momentum scattering mecha- 
nisms. It is interesting to compare the fluctuations in the 
nonequilibrium system under discussion here with its re- 
sponse to excitation by a weak AC electric field 
$, = $:exp( - iwt). The kinetic equaiton which deter- 
mines the correction fk (p,w)exp( - iot) to the stationary 
nonequilibrium distribution function differs from Eq. (2.4) 
only in the right-hand side, which now equals 

The procedure used to solve it is analogous to that used to 

solve Eq. (2.4); therefore we obtain for the small-signal con- 
ductivity tensor, including (5.1 ), 

where f O(x,w) is determined from the equation 

The constant go and the constant of integration in Eq. (5.3) 
are found from conditions analogous to (2.16) and (2.17). 

For nonequilibrium systems it is well-known that no 
universal relation exists between (SjiSjk ), and a, ( 0 )  simi- 
lar to the Callen-Welton fluctuation-dissipation relation for 
a system in thermodynamic equilibrium. However, a gener- 
alization of this relation to nonequilibrium systems serves as 
a definition of the noise temperature T " : 

koTn 
(6ji6jh) a = T [ ~ i k ( @ )  +uk<* ( a )  1. (5.4) 

In equilibrium it is obvious that T" = T. In order to deter- 
mine T " under nonequilibrium conditions it is necessary to 
calculate the spectral and field dependences of the small- 
signal conductivity. Here, too, we will investigate the two 
scattering mechanisms for electron momentum separately. 
All calculations for this case are analogous to those we car- 
ried out to determine the spectrum of fluctuations; therefore 
here we present immediately the final results obtained from 
(5.2) and (5.3). 

Momentum scattering by acoustic phonon 

In the low-frequency range (2.1 1 ) we obtain the follow- 
ing field dependences for the small-signal conductivity. If 
Z(xo) ) 1, then 

0, ( 0 )  =a, [1-0,6180], (5.5) 

a,, (a) =o,[1-1,83eP0] (5.6) 

for 8,<1, and 

a l ( u )  =0,,.2"I' ( 5 / ~ ) 8 0 - ' 1 ' ,  

a,, ( 0 )  =1/2~..2'141' (5/,)80-' 

for 8,) 1. The expressions (5.5)-(5.8) coincide with those 
obtained in Refs. 2 and 4, and are presented here for the same 
reason as expressions (3.5)-( 3.8) were presented. Using 
(5.4), we calculate the longitudinal and transverse noise 
temperatures: 

TLn=T [1+8,], T,,"=T [1+1,480] ( for ZO<l ) ,  (5.9) 

If Z(xo) 4 1, then the convective contribution to (5.2) 
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reduces to zero, and longitudinal components all ( a ) :  as pointed out in the Ap- 
pendix, in the electron-cooling regime [i.e., when condition 
(3.9) is fulfilled] the current-voltage characteristics have a 
saturation portion; because in the high-frequency region the 
small-signal conductivity coincides with the differential 
(DC) conductivity, the longitudinal component all (a) van- 
ishes in this case. In order to obtain a finite value of uIl (w), it 
is necessary to include the small deviation of the current- 
voltage relation from saturation. The calculations show that 
before the onset of saturation the current-voltage character- 
istics pass through a maximum, and consequently a region 
with negative differential conductivity (NDC) (all (w)  < 0) 
can occur: 

Hence, the small-signal conductivity, as with the spectral 
density of current fluctuations, is isotropic. In addition, 
since here a second "ohmic" region occurs, the small-signal 
conductivity in the region of electric fields under discussion 
coincides with its static value. In this case the noise tempera- 
ture is also isotropic and equals 

In the intermediate-frequency region (2.25 ) , the longi- 
tudinal and transverse components of the small-signal con- 
ductivity are equal and are determined as a function of the 
range of electric fields by Eqs. (5.5), (5.7) and (5.11), re- 
spectively, while the noise temperature here coincides with 
the transverse components in (5.9), (5.10) and (5.12). 

In the high-frequency region (2.28) we obtain the fol- 
lowing for uik ( a )  and T n  : if I(xo) % 1, then 

The presence of a region with NDC can lead to unstable 
regimes; therefore to observe the effects discussed here it is 
necessary to take measures to suppress the development of 
this instability. In experiments this kind of NDC is not ob- 
s e r ~ e d . ~  Obviously, this is related first of all to the smallness 
of the differential conductivty compared to the static con- 
ductivity (lull  (w) I <al ( w )  ); and secondly to the fact that 
inclusion of, e.g., the penetration of electrons into the active 
region of energies E > fiOo causes the NDC to disappear. If 
this penetration is small ( AE <&ao), the all (0 ) can be calcu- 
lated within the same approximations as were used to solve 
the kinetic equation in Ref. 8. Using the distribution func- 
tion (38) from Ref. 8, we obtain 

for go 4 1, and 

20, 23/~r y/,) 
Re o, ( a )  =Re o,, (o )  = - 80'k, 

02~02 ( k o T )  nIh 

for go$ 1; if I (xo)  < 1, then 

where 
m 

Momentum scattering by ionzied impurities 

In the low-frequency region and for weak electric field 
( $6 < 1, I(x,) % 1) we have for uik (0) and T n  

Here K ,  ( u )  is the modified Bessel function of the second 
kind. The function B($h) is positive both for ro$l and 
ro< 1. Therefore, inclusion of the penetration of electrons 
into the active region of energies decreases the NDC, and 
starting with electric fields which satisfy the condition 
ro < l/zO1/*, the differential conductivity becomes positive; 
to within a numerical factor of order unity it is determined 
by the expression 

In strong electric fields, when the condition I(xo)  < 1 is satis- 
fied, the transverse components of the tensor uik (w and the 
noise temperature T n  equal 

4 T," = - T. 
8 Consequently, in this case a,, (w) - E 215.  The condition that 

few electrons penetrate into the active region of energies is It is necessary to note the following with regard to the 
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determined by the inequality z< 1, while the departure from 
the electron-cooling regime occurs in electric fields at which 
ro< 1. 

In the range of intermediate frequencies both the longi- 
tudinal and transverse conductivities a,, (a) and T n  are 
determined by Eqs. (5.16), (5.17), (5.20), and (5.21). In 
the high-frequency region (4.12) both components of the 
tensor a, (w) and T " are respectively equal to 

for '8'; 4 1, I ( x , )  % 1, and 

( n I O f )  '" 1 
Re al ( a )  =Re a,, (o )  =or (5.28) 

1 2  [02zrZ(koT)  1" 

for I ( x J  4 1. 
It follows from (4.13) and f(5.28) that the current- 

fluctuations spectral density and the small-signal conductiv- 
ity in the case under discussion have different frequency de- 
pendences. In light of (5.4), this leads to a situation in which 
the high-frequency noise temperature depends explicitly on 
frequency; 

In addition, T n  decreases with increasing electric fiel'd in 
this case. 

6. CONCLUSION 

The analysis carried out in this paper of the effect of 
interactions between electrons and optical phonons on non- 
equilibrium current fluctuations in a semiconductor in 
strong electric fields shows that inclusion of this interaction 
substantially influences the spectral and field characteristics 
of these fluctuations. In Figs. 1 and 2, we present the depen- 
dences of ( A )  the current fluctuation spectral density [here 
? ( w , ~ )  = (6j,6jk ), (E1/(6j,6jk ), (0) 1, (B)  the small-sig- 
nal conductivity [here Z(w,E) = a,, (w,E)/a,, (w,O) 1 and 
(C) the noise temperature T n  as a function of electric field 
in the low-frequency limit (2.1 1 ) . 

In pure semiconductors (Fig. 1) the field dependences 
of all the above-mentioned quantities approach saturation, 
while their longitudinal ( 11 ) and transverse (I) components 
become equal to each other, which is explained by the vani- 
shign of the convective portion in these quantities. This also 
leads to the disappearance of the dispersion of the longitudi- 
nal components SII (WE),  ZI1 (w,E) and T i  at frequencies 
w- (T:)-', Another interesting circumstance is the fact 
that the Wannier-Robson relation, which asserts that 

is fulfilled to good accuracy in this case4." (despite the fact 
that it was proposed for quasielastic scattering); (in prac- 
tice, this is an assertion that the noise temperature is isotrop- 
ic). In the present case E = 9/25 ho (see Ref. 8) and 

FIG. 1. 

are nonmonotonic functions of electric field, and in the 
range of interest to us they decrease with increasing E. In 
addition, a change of sign occurs in the anisotropic small- 
signal conductivity. Here the Wannier-Robson relation is 

In doped semiconductors (Fig. 2),  S(o,E) and Z (w,E) FIG. 2. 
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violated in a cardinal way; its right and left sides have differ- 
ent field dependences. In the high-frequency limit the spec- 
tra of (SjiSjk ), and a,, (a) are different and have a non- 
Lorentzian form, while the noise temperature depends 
explicitly on frequency and decreases with increasing E. 

In conclusion, we note that the distinctive features of 
the fluctuation phenomena discussed here should be experi- 
mentally observable under the same conditions as those in 
which the kinetic effects are investigated, e.g., in Ref. 9 for 
various semiconductors (p-Ge, n-InSb, n-GaAs, and n- 
InP), whose parameters make possible the attainment of the 
required values of field. In addition, semiconductors of the 
type AgBr, AgCl, which possess strong coupling to optical 
phonons, may turn out to be appropriate. In the paper by 
Bareikis et al., reprinted in Ref. 12, both experimental and 
numerical (Monte Carlo) results are presented for noise 
studies inp-Ge and n-InSb under streaming conditions. The 
good agreement of these results with models3 allow us at 
least to postulate that even in electric fields weaker that 
those investigated in Ref. 12 and determined by the condi- 
tion ( 1.4), the required regime will be realized for which the 
basic role in the energy relaxation of electrons is played by 
the interaction with optical phonons. 

The authors are grateful to A. Yu. Matulis and the par- 
ticipants in the seminar under his direction, and also to Z. S. 

Gribnikov, I. B. Levinson, and S. S. Rozhkov for discussions 
of the work. 

'V. L. Gurevich, Zh. Eksp. Teor. Fiz. 43,1771 (1962) [Sov. Phys. JETP 
16, 1252 (1962)l. 

'V. L. Gurevich and P. Katulius, Zh. Eksp. Teor. Fiz. 49, 1145 (1965) 
[Sov. Phys. JETP 22,796 ( 1965) 1. 

31. B. Levinson and A. Yu. Matulis, Zh. Eksp. Teor. Fiz. 54, 1466 ( 1968) 
[Sov. Phys. JETP 27,786 (1968) 1. 

4S. V. Gantsevich, V. L. Gurevich, and R. Katilius, Rev. Nuovo Cim. 2, 1 
(1979). 

'I. I. Vosilius and I. B. Levinson, Zh. Eksp. Teor. Fiz. 50, 1660 (1966) 
[Sov. Phys. JETP 23, 1104 (1966)l. 

6A. Yu. Matulis and A. Chenis, Zh. Eksp. Teor. Fiz. 77, 1134 (1979) 
[Sov. Phys. JETP 50,572 (1972)l. 

'R. I. Rabinovich, Fiz. Tekh. Poluprovodn. 3, 996 (1969) [Sov. Phys. 
Semicond. 3,839 ( 1969) 1. 

"2. S. Gribnikov and V. A. Kochelap, Zh. Eksp. Teor. Fiz. 58, 1046 
( 1970) [Sov. Phys. JETP 31,562 ( 1970) 1. 

'E. M. Gershenzon, L. B. Litvak-Gorskaya, R. I. Rabinovich, and E. Z. 
Shapiro, Zh. Eksp. Teor. Fiz. 90,248 ( 1986) [Sov. Phys. JETP 63, 142 
(1966)l. 

'OM. Ashe, Z. S. Gribnikov, V. V. Mitin, and 0. G. Sarbei, Goryachie 
Elektrony v Mnogodolinnykh Poluprovodnikov (Hot Electrons in Many- 
Valley Semiconductors). Nauk. Dumka, Kiev 1982, ch. 1. 

"R. E. Robson, Phys. Rev. Lett. 31, 825 ( 1973). 
"Goryachie Elektrony v Poluprovodnikov: Striming i Anisotropnye Ras- 

predeleniya v Skreshchennykh Polyakh (Hot Electrons in Semiconduc- 
tors: Streaming and Anisotropic Distributions in Crossed Fields); Con- 
ference Proc., Gor'kii, 1983, p. 66. 

Translated by Frank J. Crowne 

872 Sov. Phys. JETP 68 (4), April 1989 Zakhlenyuk eta/ 872 


