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The behavior of electron wave functions of electrons as their energy increases, so that the interval 
between neighboring above-barrier bands decreases and the bands touch each other, is analyzed. 
The changes in the wave functions are determined by the relation between two parameters: the 
distance xd from the band edge and the deviation E - E, from the critical energy. The effects of 
these changes on the radiation spectrum and possibilities for experimentally observing effects of 
these changes are discussed. 

1. INTRODUCTION 

The motion of a fast charged particle along a crystallo- 
graphic plane in a crystal is governed primarily by the aver- 
age continuous potential V(x), i.e., by the lattice potential 
averaged over the coordinates in the (y, z )  plane, along 
which the motion occurs. The components of the momen- 
tum of a particle along the plane are conserved in such a 
field. The motion in the transverse direction is governed by 
the Schrodinger equation 

where the energy E of the particle plays the role of a mass. 
The potential V(x) is a periodic function of the coordinate x. 
The spectrum of allowed values of the transverse energy E is 
known to have a band structure in such a field. The structure 
of the above-barrier states is of particular interest, because as 
the total energy E of the particle changes, a substantial- 
even qualitative-restructuring ofthese states can take place 
(Fig. 1 1. 

This circumstance was pointed out in Refs. 3 and 4, 
where it was shown in particular that bands can touch each 
other as E increases. The effect can be described by saying 
that at a certain E = Ec the gap between two low-lying 
bands (specifically, the second and third) of above-carrier 
states in the spectrum of transverse values of E disappears. 
The coefficient of the reflection by an individual unit of this 
periodic potential vanishes. This effect could be treated5 as a 
one-dimensional analog of the Ramsauer effect (Ref. 6, for 
example). The physical reason for the appearance of a point 
at which the bands touch was described in Ref. 7, where it 
was shown that the sign of the parity of the wave functions 
changes discontinuously at this point. In their study of the 
effect, however, the author considered only the restructur- 
ing of the edgb of the touching bands. Analysis shows that 
for EWEc important changes occur in the interiors of the 
bands as well as at their edges. This phenomenon is the sub- 
ject of the present paper. We analyze in detail (Sec. 2)  the 
behavior of wave functions with an arbitrary quasimomen- 
tum K for electron energies both near and away from the 
band-touching point E = Ec.  We are particularly interested 
in the regions adjacent to the edges of the bands, with 
O<x & ~ / d .  We show (Sec. 4) that this restructuring of wave 
functions leads to anomalies in the photon emission spec- 
trum when an electron undergoes a transition between these 
bands. We also show that at E-E,  there are substantial 

structural changes in states with quasimomenta x up to 
x-0.2?r/d. 

We also examine the possibility (Sec. 3) that other 
bands can touch as the electron energy increases. We show 
that for the actual potential of the crystal planes (in contrast 
with the Kronig-Penney potential) a series of band touch at 
their edges with x = 0 as E increases in the above-barrier 
region. For the Kronig-Penney potential the picture is con- 
siderably more complicated. All of the specific calculations 
are carried out for the ( 110) plane of a silicon crystal at a 
temperature T = 293 K. In the calculations we use a Molitre 
potentials averaged over the thermal displacements of the 
atoms (the Debye temperature is T, = 495 K; Ref. 9).  We 
are using a system of units with f i  = c = 1. 

2. DYNAMICS OFTHE RESTRUCTURING OFTHE WAVE 
FUNCTIONS 

The wave functions $(x), which describes the trans- 
verse motion of an electron, can always be written in the 
form 

where $,5 ( x )  and (x)  are respectively even and odd func- 
tions. If we place the origin of coordinates at the center of a 
unit of the periodic potential, which is symmetric with re- 
spect to this center, 

FIG. 1 .  Band structure of the electron spectrum at low energies. Solid 
lines-Edges of bands ( x  = 0 and x = d / r r ) ;  dashed lines-middle of 
bands (x = 0.5d / T ) ;  circles-band-touchingpoints; arrows-transitions 
at quasimomenta x = 0.1 d /rr, x = 0.5 d /rr, and x = 0. 
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V ( - x >  = V ( x > ,  (3  

the functions $, (x)  and $, ( x )  separately satisfy the differ- 
ential equation ( 1 ) with a given eigenvalue of the energy of 
the transverse motion, E. The wave function in the periodic 
potential must of course satisfy the Bloch theorem, 

9 ( x + d )  =eixd$ ( x )  , (4) 

where d is the period of the potential (the distance between 
neighboring crystallographic planes). Applying the Bloch 
theorem to the outermost points of the unit, x = + d /2 and 
x = - d /2 (which are separated by a period), we find 

c,$. (d12) +ca$a (dI2)  =elxd (c.91 (d/2)-ca$a (dI2)  ) , 
(5 

c1gI1 ( d / 2 )  +caQl ( 4 2 )  =ei"'(-c,g,' ( 4 2 )  -kcalp,' ( 4 2 )  ) . 
These relations are essentially boundary conditions 

which make it possible to reduce the problem to an analysis 
ofthe interval - d /2<x<d /2 alone in constructing the peri- 
odic solution of Schrodinger equation ( l ) in which we are 
interested. 

The requirement that Eqs. (5)  be compatible deter- 
mines the spectrum of allowed eigenvalues of the energy E, 

and the equations themselves (which are in this case equiva- 
lent) establish the relationship between the coefficient c, 
and c, . 

At the edge of the band with x = 0, Eqs. (5 )  for the 
coefficients c, and c, splits up into the independent equa- 
tions 

and allows solutions of two types: even solutions, c, = 1, 
c, = 0, at energies E = E, for which the condition 

lp; (a12) 1 .-s,=o. ( 7 )  

holds; and odd solutions, c, = 0, c, = i, at energies E = E, 

for which the condition 

holds. 
At a certain value E = E, of the electron energy we can 

have a situation in which conditions (7)  and ( 8)  are satisfied 
simultaneously, i.e., at the same value E = E, > 0. The phys- 
ical meaning of this degeneracy E, = E, = E, is that allowed 
energy bands touch each other. In this case Eqs. (5)  impose 
no restrictions on the coefficients c, and c, . 

With 0 < ?rd<n- and E, #E, system (5)  takes the form 
(to within terms which are quadratic in the small parameter 
xd /n-)  

In this case, both of the coefficients c, and c, are non- 
vanishing, and the wave function (2)  does not have a definite 
parity. The admixture of the state of opposite parity is pro- 
portional to the small parameter xd /T, however, and for 
EZE, the wave function is approximately of even parity: 

C F ~ ,  c,+-i { $ s ( d / 2 )  I$a(d/2) }8-a,xd/2.  (10) 

For E=:E, the wave function is approximately of odd parity: 

It can be seen from ( 10) and ( 11 ) that the admixtures of the 
"foreign" parity are indeed small if the electron energy E is 
substantially different from the critical value Ec and if the 
values of $, ( d  /2) on the even branch E ZE, and of $J ( d  /2) 
on the odd branch EZE, are nonzero. As the energy of the 
electron changes and approaches the band-touching point, 
however, the rdots E, and E, move closer together, so the 
denominators in ( 10) and ( 11 ) decrease, and the relative 
importance of the state of foreign parity increases sharply. In 
this case the admixtures are no longer small, and the situa- 
tion requires further analysis. 

Let us analyze the solutions of Eqs. (6 )  with E = E,. 
Writing the functions $, ( d  /2) and $f ( d  /2) at energies E 

close to E, in the form 

we can rewrite Eqs. (6)  as 

c.d$.ld~ I e = e R A ~ = - i ~ . $ C 1 ,  I e = s R L ~ d / 2 ,  
(13) 

c,d$,'lde1,=,, A ~ = i c . $ , ' I ~ = ~ ~ x d / 2 .  

We thus see that there exist two solutions for these equa- 
tions, which differ in the sign of the quantity AE, 

and thus in the sign of the imaginary part, 

The wave functions in the upper zone, $, , and the lower 
zone, $, , are therefore complex conjugates (to within terms 
quadratic in xd / T )  , 

i.e., the states which they describe are time-reversed copies 
of each other. The functions $, and $, depend only weakly 
on the quasimomentum" x. It is of course meaningless to 
speak in terms of the parity of such states, since even in the 
limit x -+ 0 we have 

Let us examine the behavior of the solutions of Eqs. (9)  
as we move away from the band-touching point. We first 
write the functions E, ( E )  and E, (E )  in the form 

E ,  ( E )  =cR+a  (E-E , )  , u - - d ~ , / d E l ~ ~ ,  
(16) 

en ( E )  = E R + P  ( E - E , ) ,  P--d~,ldElE,. 

Analysis shows that for the Molitre potential we have 

The quantities $, and $f in (9)  depend on both the trans- 
verse energy E and the total energy E, which is playing the 
role of a mass parameter, so we can write 
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From the definition of the function E, (E)  we find 

Expressing a$, /aE in terms of d$, /a& on the basis of this 
equation (and expressing d$:/aE in terms of d$;/dE/d& 
analogously 1, we find a generalization of Eqs. ( 13) for 
E #Ec: 

Hence 

a+B (a-BY xd A& = - 2 (E-E.) * [T ( E - E . ) ' + ( ~ )  

and 
xd  

e.=-ic. 
,, 2(Ae-B (E-E.)) ' 

Near the critical point, 

E-E, xd 
I T I " R  

relations (20) and (21 ) reduce to ( 14) and ( 15). Far from 
the point E, , 

in contrast, the situation changes. For example, on the lower 
branch we have, in the leading approximation, 

We thus see that at E < Ec the ratio c, /c, on the lower 
branch is proportional to xd /(a - @) (E - Ec ) and is 
therefore small. For E > E,, on the other hand, the leading 
terms cancel out when (24) is substituted into (21), so in 
order to determine the ratio c, /c, we need to incorporate in 
(AE), the next term of the expansion in xd. As a result, the 
denominator in (21 ) turns out to be quadratic, and the ratio 
c, /c, to be inversely proportional to this small parameter. 
As the electron energy E varies from E < Ec to E > E, , the 
wave function in the lower band thus undergoes a smooth 
conversion from a nearly even parity to a nearly odd parity. 
In the upper band, the wave function undergoes a conversion 
in the opposite direction. As we see, this process occurs in a 
certain neighborhood AE of the critical point Ec ,  whose 
magnitude is determined by the proximity to the edge of the 
band: 

The ratio of the contributions of the even and odd wave 
functions, c,/c, , is thus determined by the ratio of the small 
parameters (E - Ec )/Ec and xd /a,  which characterize the 
distance from the band-touching point in terms of the elec- 
tron energy E and the quasimomentum x. At E = Ec this 
ratio vanishes and thereby becomes independent of the qua- 
simomentum [see ( 15) ]. It follows that the wave functions 
$, and $, change only slightly with distance from the edge 
of the band at E = Ec (see Fig. 4, in Sec. 4 below). 

In the limit x-0 the restructuring region becomes 
smaller, AE-0, and shrinks to the critical point Ec. The 
relation becomes c, and c, depends in this case on the order 
in which the limits in terms of x and AE are taken. This order 
is evidently determined by the relation between the diver- 
gence and the energy spread of the electron beam. 

3. BAND-TOUCHING POINTS 

The anomaly in the wave functions near the point at 
which the second and third bands touch, which we discussed 
above, is not unique. A direct numerical calculation shows 
that a similar situation arises at, for example, an electron 
energy E = 7 MeV, where the fourth and fifth bands touch 
(Fig. 1 ) . On the other hand, the opposite edges of the bands, 
with quasimomentum x = a/d, i.e., the third and the fourth, 
the fifth and the sixth, etc.-do not touch in motion in a 
Molihe potential. 

To analyze the possible existence of band-touching 
points Ec it is convenient to first consider the limiting case 
E-0 (as in Ref. 7).  Although values E < m lie in a nonphysi- 
cal region, the limit E d 0  is formally equivalent to the limit 
V(x) -0, since the potential appears in Schrodinger equa- 
tion ( l ) only in the combination 2EV(x). For the case of 
free motion in a periodic potential the wave functions are 
obviously 

y,=cos (kx) , y,=sin (kx)  (26) 

(here and below, we are for simplicity omitting some norma- 
lization coefficients of the wave functions, which are of no 
importance for the question under discussion here). The 
permissible values of the wave number k are determined by 
the Bloch theorem. With x = 0 we find the boundaries of the 
bands from ( 6 )  : 

It is obvious that the value n = 0 corresponds exclusively to 
the even-parity function y, = 1, the ground state. The other 
values k ,  are doubly degenerate; i.e., the boundaries of 
neighboring bands coincide. We find a corresponding situa- 
tion at xd = a ,  where the coincident boundaries are found 
from Eq. (5) :  

By increasing the energy Eslightly, we can now deal with the 
potential 2EV(x) by perturbation theory. In first-order per- 
turbation theory the shift of the energy level is of course 
determined by the diagonal element of the potential, so the 
lifting of the degeneracy-the splitting of the energies of the 
even and odd states-can easily be expressed in terms of the 
Fourier coefficients of the potential V(x): 
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E.-Ea=2VCzn), x=O, 
E8-Ea=2V(zn-i), x=n/d, 

WZ 

~ , , , = i / d  J V ( r )  cos (lg 2) dx. 
-dl2 

For a Molihe potential averaged over the thermal vibrations, all of the Fourier coefficients are negative: 

The splitting thus occurs in such a way that in all cases the 
lower states are even, and the upper states odd. The boun- 
daries of all of the bands except the lowest differ in parity 
(Fig. 2). 

If, on the other hand, E is quite large, and a given band 
is pulled below the barrier, its boundaries must be of identi- 
cal parity. In the above-barrier region there must therefore 
exist critical points E = Ec '"' at which the levels of an n-pair 
from ( 27 ) trade places.' 

It is important to note two circumstances here. First, 
the points E, could in principle lie in the nonphysical region 
Ec < m. Second the levels E, '"' (E) and E, '"' (E) can evi- 
dently cross where the effect of the potential has become 
important but where these energies are still positive: 

the above-barrier region (in contrast with that below the 
barrier) depends strongly on the properties of the potenial, 
as we will now demonstrate. If we are to have the situation 
shown in Fig. 2, all of the Fourier coefficients must be nega- 
tive. It is easy to see that a screened Coulomb potential has 
these properties (and therefore a superposition of such po- 
tentials-the Molikre potential-also has these properties). 
The Kronig-Penney potential, on the other hand, and even a 
smeared square well-a Fermi potential (in nuclear phyiscs, 
a Woods-Saxon potential)-have Fourier coefficients of al- 
ternating sign. For example, the Kronig-Penney potential 
which was analyzed in Ref. 4 (in which the ratio of the width 
of the well to the distance between planes was 2a/d = 1/3) 
leads to 

OG~.':' (E) GV (30) AE(")l,,, - --sin-, V ,  2nn x=O, n a l ,  
nn 3 . -( ,  (33 

(vcharacterizes the depth of the potential well). 
Using (27), we find from (30) an estimate of the nth A ~ ' n l l ~ , ~ =  - VO sin (2n-1) n n 

3 
, x = -  

critical energy Ec '"I : (n- i /2)  n d 
(34) 

nZg2/4V<E,'n)<nZg2/2V. (31) The order of the levels in this potential in the limit E-0 
differs from that which characterizes a realistic potential. As 

Substituting half the maximum depth Vo into this estimate in a result, the entire picture is vastly more complicated (Fig. 
the role of 7 ,  we find for the first critical point, discussed 
above, 

3 1. 

1 MeV9EC(')<2 MeV. 4. ANOMALIES IN THE RADIATION SPECTRUM NEAR A 
( 32) BAND-TOUCHING POINT 

This estimate corresponds to the actual value, EC"'z 1.73 The behavior of the electron wave functions as a func- 
MeV. It can be seen from inequalities (3  1 ) that the condition tion of the electron energy near the point E, which we de- 
g2/2F> m must hold if this picture is to prevail. In the oppo- scribed above should be manifested in the spectrum radiated 
site case, one or several of the critical points will lie in a by electrons as they undergo transitions between these 
nonphysical region during motion in the field of planes for touching bands. In the dipole approximation this process is 
which the relation g2/27< m holds. determined by the momentum operatorj,, so transitions are 

Note that the qualitative structure of the spectrum in possible only between states which have the same quasimo- 

Yrn  
n=O L!~' E. MeV 

FIG. 2. Changes in the band structure in a real potential. The band edges FIG. 3. The same as in Fig. 2, for the Kronig-Penney potential.' For the 
corresponding to even-parity states are shown by solid lines, and those state x = d/n, n = 2, the degeneracy for E-0 is lifted only in second 
corresponding to odd-parity states are shown by dashed lines. order in 2EF(x) .  
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FIG. 4. Square of the matrix element ( 1 M 1 ') for the 3 - 2 dipole transition 
versus the energy of the electron. The meaning of the curves is explained in 
the text. 

mentum x but opposite parities. Far from the point E = Ec 
[see (23) 1 the states $, and $, which we were discussing 
above have specifically these properties. Near the critical 
point, however, where condition (22) holds, the wave func- 
tions!re approximately time-reversed copies of each other, 
$, -, T$, , so the matrix element for the process vanishes: 

Figure 4 shows the square of this matrix element for a 
transition from the third band to the second for energies E 
near the point (Ec ) at which the second and third bands 
touch. Curves 1-6 correspond to quasimomenta xd /n = 0, 
0.01,0.02,0.03,0.04, and 0.05. We see that IM 1' does indeed 
have a sharp dip near E z  Ec at all of these quasimomenta x. 
This dip is a consequence of the behavior of the wave func- 
tions which we described above. 

Figure 5 represents the emission of photons with an en- 
ergy E, in the forward direction from I = 1 p m  of the thick- 
ness of the crystal during the transition of interest here. This 
emission can be calculated from the well-known expres- 
sions2 

where d f l  is an element of solid angle, ni (0)  is the popula- 
tion coefficient of the initial state, and 0 = (g + x)/p, is the 2a 
1 

C 
1.0 1.Y Ec 1.8 2.2 E, MeV 

FIG. 5. Emission of photons in 3-2 transitions. The meaning of the 
curves is explained in the text. 

0 q E 8 2.2 E, MeV 

FIG. 6.  Energy of the photons emitted in 3 -2 transitions. Thenotation is 
the same as in Fig. 4. 

angle of incidence of the electrons. [The curves correspond 
to various divergences in the beam: curves 1 and 2 to A(xd / 
n )  = 0.01, and 3 and 4 to A(xd/a)  = 0.1. Curves 1 and 3 
correspond to a Gaussian distribution, and 2 and 4 to the 
equivalent square distribution.] 

To within a Doppler factor, the energy of the emitted 
photons, E,, is determined by the difference between the 
transverse energies E ,  and E ,  : 

Near the critical point, this energy depends strongly on the 
proximity to the band edge (see Fig. 6, where curves 1-6 
correspond to those in Fig. 4).  

These results show that as the electron energy is in- 
creased from E = 1 MeV the peak in the low-energy part of 
the emission spectrum shifts to the left, shrinks, and essen- 
tially disappears by E = Ec = 1.73 MeV. As E increases 
further, the peak reappears, grows rapidly, and shifts to the 
right. This effect could be observed experimentally; it would 
be noticeable even at beam divergences A0 5 1 mrad. 

Another interesting aspect is that behavior of the ma- 
trix elements M,, and M,, (corresponding to transitions 
from the third and second bands to the first; Fig. 7) which is 
caused by the effect which we pointed out above: that the 
functions $, and $, are independent of the quasimomentum 
x at E = E,.  The energies E, of the photons emitted in the 
3-  1 and 2-+ 1 transitions are fairly close together (at 
E-  E, ), so these transitions would be rather difficult to sep- 
arate experimentally. However, even in the total yield of 

FIG. 7. The same as in Fig. 4, for ( a )  the 3 - 1 and (b) the 2-  1 transi- 
tions. 
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1.5 l 6  E c l . 8  2~ 
E. MeV 

FIG. 8. Total emission of photons in the 3- 1 and 2- 1 transitions. The 
meaning of the curves is explained in the text. 

photons one could observe anomalies near E = Ec ; such ob- 
servations would require beams with a small divergence 
(Fig. 8, where curves 1-4 correspond to divergences 
A 6  = 0.02 mrad, 0.1 mrad, 0.2 mrad, and 1 mrad. ) 

Babakhanyan et have predicted a value Ec = 1.47 
MeV (on the basis of a Kronig-Penney potential). Tulupov7 
has mentioned that a parity-change effect should occur at 
1.3 MeV<Ec < 1.4 MeV. The value which we found, 
Ec = 1.73 MeV, agrees with a value recently found experi- 
men tall^,^ Ec = 1.8 + 0.05 MeV. 

When an electron beam is incident on a crystal at a zero 
angle, 6 = 0, far from the critical point E,, the parity at the 
band edges is definite. In this case the levels of negative par- 
ity (the third level for E < Ec and the second for E > E, ) are 
not populated, and a dipole transition from levels of positive 

parity to the ground state (which has a positive parity) is not 
allowed. Consequently, there should be no radiation accom- 
panying the 2 - 1 or 3 - 1 transition. 

As the critical point is approached, both levels can be 
filled and also transitions from these levels to the ground 
level become possible by virtue of the restructuring of states 
which we discussed above. As a result, radiation (E, ~ 4 0 0  
eV) can be &served at E z  Ec . 

We wish to thank N. N. Nasonov for useful discussions. 
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