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Antiferromagnetics with an asymmetric quasimomentum spectrum are examined. Spectral 
asymmetry occurs in all magnetics whose symmetry permits an energy invariant that is odd with 
respect to the quasimomentum components. A gauge-invariant scheme is developed for 
calculating the magnetic susceptibility of the inhomogeneous phase of a magnetic with an 
asymmetric spectrum and it is demonstrated that the inhomogeneity enhances the diamagnetism. 
The diamagnetic susceptibility can assume arbitrarily large absolute values. The ground state of a 
superconducting antiferromagnetic with an asymmetric spectrum is a state with a 
superconducting phase gradient, while in a closed superconducting ring the state has spontaneous 
current flow. 

1. INTRODUCTION 

The familiar theorem of band theory concerning the 
spectral symmetry of elementary excitations with respect to 
the quasimomentum k applies to crystals whose symmetry 
group contains an inversion of time t. In magnetics t-invar- 
iance is broken, and if magnetic ordering applies to the orbi- 
tal subsystem the spectrum may have quasimomentum 
asymmetry: E (k )  # E( - k).  From the microscopic view 
point such a symmetry requires a polar direction in the mag- 
netic given by the vector T which changes sign upon time 
inversion (the product Tk remains invariant in this case). 
The vector T is permitted in 31 of a total of 122 magnetic 
classes. lv2  The macroscopic physical meaning of the vector T 
is the toroidal moment d e n ~ i t y . ~  The toroidal moments rep- 
resent a third independent family of electromagnetic multi- 
poles (together with the electrical and magnetic multi- 
 pole^).^ The vector T characterizes antiferromagnetic 
ordering while the density of the magnetic moment may be 
strictly equal to zero for T#  0. The microscopic mechanism 
responsible for the quasimomentum spectral asymmetry of 
the charge carriers are discussed in Sec. 2 of the present 
study. Such asymmetry exists in spin antiferromagnetics 
with T # O  solely as a measure of the spin-orbital interaction, 
and the spectral asymmetry parameter has relativistic small- 
ness. The spectral asymmetry in orbital antiferromagnetics 
(OAF) is due to strong Coulomb interaction. 

The magnetic properties of OAF are of special interest. 
The paramagnetic component of the magnetic susceptibility 
in a toroidal OAF is suppressed due to the specific poloidal 
topology of the current  contour^.^ The possibility of a strong 
diamagnetic response of the inhomogeneous phase of OAF 
was discussed in Refs. 3,6. These studies also proposed phe- 
nomenological models of diamagnetism. The primary prob- 
lem in a microscopic analysis involved the difficulty of 
achieving gauge invariance of the calculations in the inho- 
mogeneous phase. A gauge-invariant scheme for calculating 
the magnetic susceptibility of an inhomogeneous OAF with- 
in the framework of perturbation theory in the spectral 
asymmetry parameter is developed in Sec. 3. It is demon- 
strated that asymmetric spectral deformation causes the sys- 
tem energy to rise in a magnetic field, i.e., it corresponds to a 
diamagnetic response. Diamagnetism grows with increasing 

inhomogeneity. However the problem of determining possi- 
ble limits of the range of the dimagnetic susceptibility makes 
it necessary to work outside the framework of perturbation 
theory. 

The vector T is analogous to the vector-potential of a 
magnetic field in its symmetry transformation properties. 
This analogy helps to achieve an exact calculation of the 
magnetic susceptiblity of an inhomogeneous OAF with an 
arbitrary asymmetry parameter value. An OAF model is 
formulated in Sec. 4; in this model the inhomogeneity of the 
spectral asymmetry parameter plays the role of the effective 
magnetic field. (A  similar situation exists in 3He-A where 
the analogy of the order parameter inhomogeneity in the 
texture and the magnetic field allows calculation of the exci- 
tation spectrum and identification of the nature of the anom- 
alous contribution to the current's8). The magnetic suscepti- 
bility of an inhomogeneous OAF with an asymmetric 
spectrum in a weak external magnetic field in the model pro- 
posed in Sec. 4 coincides with the differential magnetic sus- 
ceptibility of a system with a zero asymmetry parameter in a 
true magnetic field equal to the effective field which is relat- 
ed to the inhomogeneity of the asymmetry parameter. If the 
system satisfies the condition for the de Haas-van Alphen 
effect the differential diamagnetic susceptibility may, as we 
know,9 assume arbitrarily large absolute values. The results 
of Sec. 4 therefore strictly prove the possibility of an anoma- 
lously strong diamagnetism of the spatially-inhomogeneous 
phase of OAF. 

Another physical example in which the analogy of the 
toroidal vector T and the vector-potential of the magnetic 
field is manifested in the macroscopic effects is examined in 
Sec. 5. This section demonstrates that in a superconducting 
OAF whose symmetry allows a toroidal moment the expres- 
sion for the superconducting current contains an additive 
term. The ground state of such a superconductor is a state 
with a superconducting phase gradient (the phase genera- 
tion affect), while in a closed superconducting ring the 
ground state has spontaneous current flow. The total mag- 
netic moment of such a ring in zero magnetic field is at most 
one-half of the flux radiation. If the antiferromagnetic tran- 
sition occurs at a lower temperature than the superconduct- 
ing transition a singularity of the temperature derivative of 
the upper critical field will exist at this point. 
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2. MAGNETIC ORDERING AND QUASIMOMENTUM 
SPECTRAL ASYMMETRY 

The conditions for the development of an OAF and its 
properties have been investigated most thoroughly and con- 
sistently within the framework of the two-band exciton di- 
electric (ED) The Hamiltonian oJf the exciton 
dielectric model c o n t a i ~  a one-electron part Ho and the in- 
teraction Hamiltonian Hint : 

The one-electron part takes the form of an ordinary two- 
band Hamiltonian: 

Here (k)  is the dispersion law in band 1 and (2) F ( k )  
is the interband hybridization. The ED model examines 
bands with n~r-congruent dispersion laws E, -- - E,. The 
Hamiltonian Hint describes Coulomb interelectron interac- 
tions. 

Inihe mean field approximation the interaction Hamil- 
tonian Hi,, takes the form 

where 3 is the matrix of the self-consistent potential (SCP) 
in spin space. The SCP (the order parameter) is analogous 
to the ordinary crystal potential. However unlike the latter 
the SCP kas a complex spin and phase structure. In the gen- 
eral case A contains four components12: 

Here o is the vector consisting of the Pauli matrices, A;,, are 
the singlet real and imaginary components of the order pa- 
rameter, A;, are the triplet real and imaginary components. 
The singlet real order parameter A; describes charge order- 
ing (the charge density wave), the triplet real parameter A; 
describes the spin antiferromagnetic ordering of the band 
electrons (the spin density wave), and the singlet imaginary 
parameter A; corresponds to orbital antiferromagnetism, 
while the ordering chracterized by the triplet imaginary or- 
der parameter A: can be interpreted as relating to the onset 
of the local spin current density.I3 Each of the four types of 
ordering may arise given certain specific relations between 
the microscopic parameters of model ( 1 ), (2)  (see Ref. 14 
for a more detailed discussion). 

In addition to the order parameter symmetry the mac- 
roscopic symmetry of the ordered phase is also determined 
by the symmetry of the wave functions of electrons produc- 
ing the SCP. Information on the wave function symmetry is 
contained in the matrix hybridization element @(k) in the 
Hamiltonian (2).  

For hybridization we will limit the analysis to an ap- 
proximation that is 

W ( k )  =iPk/m, (5)  

where zP is the interband matrix element of the momentum, 
which is nonzero when the wave functions in bands 1 and 2 
have different parities. The spectrum of the homogeneous 

OAF (A; (r)  = A  (r)  = const) takes the form 

~ ( k )  =rt (r2 ( k )  + (Pk/m-tA)Z)'h 

(here we have set = - E~ = E ) .  The spectrum (6) has 
quasimomentum asymmetry E (k )  #E( - k )  due to the 
quasimomentum-linear term 2PkA/m under the radical in 
(6). The product PAVherefore functions as the polar t-odd 
vector T in the model (1)-(3). 

The magnetic ordering that produces quasimomentum 
spectral asymmetry in the ED model has an orbital nature 
and the asymmetry parameter A; is determined by strong 
Coulomb interaction. However a magnetic phase transition 
of a purely orbital nature evidently represents a rather exotic 
situation. Ordinarily the violation of t-invariance that ac- 
companies the magnetic transition results from ordering in 
the crystal spin subsystem. The quasimomenturn spectral 
asymmetry arises in this case as a measure of the spin-orbital 
interaction. Spin ordering of collectivized (band) electrons 
is described within the framework of the ED model by the 
triplet real order parameter AX. The spin-orbital interaction 
induces an imaginary parameter A",hich results in spectral 
asymmetry in a crystal without an inversion center and a 
nonzero AX, as noted in Ref. 12 and demonstrated in Ref. 15. 

We will consider the spectral asymmetry mechanism in 
a magnetic with localized spins. Without an inversion cen- 
ter, spin-orbital interaction eliminates the spin degeneracy 
of the energy for the prescribed quasimomentum direction 
(see, for example, Ref. 16) : 

The symmetry of the total spectrum with respect to inver- 
sion of the quasimomentum is conserved in this case: 

The action of the ordered localized spins of the band elec- 
trons is described by the exchange field. The exchange field 
shifts the spectral branches E, and E - , corresponding to the 
different spin projections in the opposite direction with re- 
spect to energy, which violates relation (8)  and results in 
quasimomentum spectral asymmetry E, (k)  #E -, ( - k). 
The spin separation and the related quasimomentum spec- 
tral symmetry breaking may be caused not only by the ex- 
change magnetic field but also by an ordinary magnetic field. 
Specifically such a situation occurs in Te, l7  where the asym- 
metric shift is 1.7 meV in a field of H = 40 kGauss. 

This analysis shows that in a system without an inver- 
sion center the quasi-momentum spectral asymmetry of the 
band electrons is the sole consequence of magnetic ordering. 
Photoemission of electrons with angular resolution can be 
used for direct experimental observation of spectral asym- 
metry. An experiment carried out using this technique on 
antiferromagnetic chromium revealed quasi-momentum 
spectral asymmetry in the Cr surface regionla which includ- 
ed an isolated polar direction normal to the surface and no 
inversion center. Chromium represents a typical band anti- 
ferromagnetic with a thin density wave described by the trip- 
let real order parameter.I9 Hence the observed1' spectral 
asymmetry is most naturally attributed to the induction of 
the imaginary singlet order parameter discussed above. It is 
important to remember that without an inversion center the 
triplet real order parameter will induce, as a measure of spin- 
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orbital interaction, both a singlet real SCP (the order param- 
eter) that is nondiagonal with respect to the band indices, 
together with a diagonal intrinsic energy part15 that has qua- 
simomentum asymmetry. The separation of these two con- 
tributions to spectral asymmetry is arbitrary in some sense 
and depends on the specific selection of the basis of the wave 
functions. 

3. GAUGE INVARIANCE AND THE MAGNETIC 
SUSCEPTIBILITY OF AN INHOMOGENEOUS OAF 

The exact expression for the free energy density of a 
system with Hamiltonian ( I ) ,  (2 )  in the mean-field approx- 
imation takes the form 

Here 63 is the temperature, Vis the system volume, the index 
a designates one of the four order parameter components 
(4), g, is the effective interaction constant for the order 
parameter A,. We will assume a fixed number of charge 
carriers n. We will assume that hybridization @and the 
imaginary singlet order parameter A>re both nonzero. The 
imaginary parameter A",O can form from a natural transi- 
tion to the OAF state or can be induced from spin-orbit in- 
teraction in the spin AF (Sec. 2).  In the latter case 

where A,, is the effective spin-orbital interaction constant, 
d' is the triplet spin parameter (the parameter Af, functions 
as such a parameter in the band spin AF, while the antiferro- 
magnetic vector L functions as such a parameter in localized 
electron antiferromagnetics) . 

An inhomogenous spectral asymmetry parameter 
A(r) #const is the most interesting case in the investigation 
of the magnetic properties of OAF.3,6 The following are 
among the primary reasons for inhomogeneity of the param- 
eter A(r):  

1) Formation of a superlattice of the inhomogeneous 
Larkin-Ovchinnikov-Fulde-Ferrel (L0FF)-state type20.21; 
such an order parameter inhomogeneity occurs in chromi- 

2)  proximity effects where the order parameter dimin- 
ishes near the interface of the ordered and disordered phases; 

3) a composition variation that will result in a spatial 
alteration of the microscopic parameters of the Hamiltonian 
(the bandgap, the effective masses and the effective interac- 
tion constant) on macroscopic scales; the order parameter 
will experience corresponding changes as a function of the 
model microparameters; 

4 )  the influence of defects that may induce the OAF 
state localized in the vicinity of the defect.23 

The primary technique that makes it possible to achieve 
gauge invariance of the calculations in model (1)-(3) in- 
volves reducing the sum of all nongauge terms in the expres- 
sions for the physical quantities to a total deri~ative.~." To- 
tal derivatives vanish when summed over the occupied states 
due to the periodicity of the dispersion law in the Brillouin 
zone. An exact expression for the dispersion law can be ob- 
tained in isolated cases only in an inhomogeneous system 
(A(r)  #const). The energy levels E ( k )  in (9)  in zero field 
are determined by eigenvalue equations: 

in which the potential for the wave functions U and Vis used 
as the order parameter. We have employed a purely imagi- 
nary expression W(k) = i W(k), W(k) = W * (k)  for the 
hybridization (11) consistent with (5) .  We transform the 
system to permit an exact solution in a class of reflectionless 
potentials. We consider the quasi-one-dimensional bare dis- 
persion law: 

where k is the quasimomentum from the Fermi surface cF in 
the direction x, k, is the transverse quasimomentum,p is the 
shift of the Fermi level due to doping. We also assume hybri- 
dization is dependent solely on the transverse quasimomen- 
tum: W(k) = W(k, ). Consistent with the selection of the 
choice direction'we assume that the spectral asymmetry pa- 
rameter is also dependent solely on the coordinate x :  
A(r) -A(x). 

We carry out a canonical transform in Eqs. ( 1 1 ) 

U, ( r )  , Vk ( r )  -+ Uh ( x )  , Vh ( x )  exp{i (vp-'f (kL) z - k ~ r ~ )  1, 

and go over to the functions 

Equations ( 11 ) in the new designations take the form 

and make it possible to express one wave function through 
another in local form. We first set the hybridization equal to 
zero ( W = 0) .  Equations ( 13) are thus reduced to a 
purely one-dimensional eigenvalue problem E(k)  
= E ( k )  + p - t(k, ) allowing an exact solution in the class 

of reflectionless finite-band potentials.24*25 We consider an 
order parameter A,(x )  of the type 

The spectrum of one-dimensional motion E ( k )  in po- 
tential (14) contains two forbidden bands ( - E,, - E-) 
and (E-, E+ ), while the wave functions and state density 
p (E )  take the 

us0 (x) = ' L ( ~ ( x )  h ( x ) f b ( E )  ) + b ( ~ )  ) " exp{&! h ( y ) + b ( E )  2R'1s 4 ' 

here L is the length of the system along x ,  
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h ( x )  =Ao2 ( 2 )  -v,VAo ( 2 )  , , b ( E )  =2E2-E+Z-E-2, 

R ( E )  =E2(EZ-E-2)  (E2-E+').  

The parameters A,  and x in ( 14) are expressed through the 
spectral boundaries: A,  = E+ - E-,  7t = ( E +  - E- )/ 
( E ,  + E - 1 .  

The quasimomentum k is determined in accordance 
with Ref. 24 as 

2R" ( E )  
k ( ~ ) = ( v F ( h ( x )  + b ( E ) )  

Unlike the Peierls casez5 the portions of spectrum ( 12) relat- 
ed by time inversion ( k  and - k )  belong to the same band 
ei . Hence compared to Ref. 25 all energy levels in two-band 
model ( 2 ) ,  ( 1 2 )  are doubly degenerate. Hybridization can 
be taken into acount in perturbation theory by selecting the 
basis ( 1 4 ) ,  ( 15) as a zeroth approximation. The expansion 
parameter here is the ratio 

which designates the existence of energy surfaces opening in 
the direction of k ,  , accounting for the quasi-one-dimension- 
a1 nature of the intraband component of the bare dispersion 
law ( 12) ( It I <E, ) . With these assumptions the quasimo- 
mentum linear approximation is not suitable for hybridiza- 
tion (5 )  since the energy denominator do not allow conver- 
gence of the expression for the physical quantities with large 
values of I k ,  1. It is therefore necessary to explicitly account 
for the periodicity of all parameters of the Hamiltonian in 
the direction k ,  with the reciprocal lattice period G, 

W (k,+G,) =W (k,)  , t (k,+G,) =t (k,) . ( 1 7 )  

We will now calculate the magnetic response of an inho- 
mogeneous OAF. The free energy functional of the model 
with quasi-one-dimensional spectrum ( 12) takes the form 

dk, P=-28  1 - 1 dEp ( E )  In 2 oh 
E+t(k,) -CL 

S 2 8  

here S is the cross-sectional area of the elementary cell. We 
will assume a weak magnetic field and applicability of per- 
turbation theory in the vector potential. We will select the 
following gauge for the vector potential 

A ( r )  = (0, A ( x )  , 0) , A ( x )  =A,eiqx + C.C. 

The equations for the wave functions of the system in a mag- 
netic field are obtained from ( 1 3 )  by the substitution 
k ,  - k ,  - e A / c .  The magnetic susceptibility is determined 
both by the shift of the one-particle energy levels E, Eq. 
( I S ) ,  and the change in the order parameter in the linear 
field appr~ximat ion .~~ The asymmetry parameter is strictly 
determined by the spin ordering structure in induced OAF, 
Eq. ( 10). The asymmetry parameter can be assumed to be 
independent of the field in the linear field approximation. 
We will show that it is also possible to ignore the change in 
the order parameter in a field in the case of intrinsic OAF 
ordering in the model with a quasi-one-dimensional spec- 
trum and open energy surfaces. The self-consistency equa- 
tion for the order parameter appears as 

Here G, , ( r , r l )  [G , , ( r , r )  = G , , ( x , x ) ]  is the interband 
anomalous Green's function of Eqs. ( 1 ), ( 13).  An equation 
equivalent to ( 19) is obtained by minimizing the functional 
( 18) in the order parameter A ( x )  . When expanding the self- 
consistency equation into a series in the vector potential it is 
important to account for both the nondiagonal perturbation 
component, 

and the diagonal component, 

d 
t"'=A - t (k,) . 

8 k,  

The self-consistency equation takes the following form to 
first order in the field and the transverse diversion compo- 
nents 

Here G  e A  @ G  = G ( x , x 1 ) A ( x ' )  G(xf ,x )dx ' .  The term con- 
taining t '"on the right side of ( 2 2 )  is dropped since it vanish- 
es by virtue of t "' ( k ,  ) = - t" ' (k ,  ). In ( 2 2 )  G i j O  is the 
Green's function of the zeroth approximation in the trans- 
verse dispersion formulated in the basis of functions U, ( x )  
and in V, ( x )  in Eq. ( 1 3 )  and independent of transverse 
motion. Hence the expression under the integral sign in Eq. 
( 2 2 ) ,  represents the total derivative and it vanishes upon 
integration with respect to the transverse momentum k, .  
The field source in the self-consistency equation in an arbi- 
trary order of perturbation theory in W(k, ) vanishes analo- 
gously when t ( k ,  ) is ignored. The first nonvanishing term in 
the field source is the cross term in Wand t .  It contains the 
diagrams 

and W and t obtained from the diagrams by substitution 
together with the indices of the Green's functions. When 
A  = const the sum of diagrams ( 2 3 )  reduces to the total 
derivative 

which ensures gauge invariance of the self-consistency equa- 
tion. However for A ( x )  +const 

G,,~G2,~A@G,,@PG,,o@A@Gz2@@G22, 

the sum of diagrams ( 2 3 )  no longer reduces to a total deriva- 
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tie and a source that is linear in the magnetic field appears in 
the self-consistency equation. Therefore the change in the 
order parameter in the linear magnetic field approximation 
is a second-order effect in the transverse dispersion compo- 
nents when t -  W. Moreover the energy level shift will occur 
as early a the first order in W. Hence it is possible to ignore 
the change in the order parameter in the field in the quasi- 
one-dimensional model with open Fermi surfaces. Perturba- 
tion theory in t ( k , )  is not suitable in the model with an 
isotropic spectrum and a closed Fermi It is 
therefore not possible to explicitly provide gauge invariance 
of the calculations in the inhomogeneous phase by isolation 
of the total derivatives in the model with an isotropic spec- 
t r ~ m . ' ~ . ~ ~  The contributions to the energy from the induced 
component A  and the energy level shift in the model from 
Ref. 26 are of the same order of magnitude,27 which substan- 
tially complicates the calculations but does not alter the 
qualitative physical picture of the diamagnetic response. 

Having determined the shift of energy levels E  in the 
magnetic field from equations ( 13) we can demonstrate that 
the contribution to the free energy F, Eq. (18) ,  that is a 
second-order contribution in the field is determined by 
terms containing solely the component W"' of the perturba- 
tion ( 2 0 ) .  The terms containing the component W"' reduce 
to a total derivative and vanish upon integration. As a result 
for the magnetic subsceptibility X' we have 

dE dE' p ( E )  p (E')  

The structure of the expression in parentheses in (24) is 
similar to the formula for the change in system energy in the 
second order of perturbation theory which, as we know,2" 
reduces the energy. However due to the multiplier 1/E 
which is negative for the occupied states the expression in 
braces in ( 2 4 )  is generally strictly nonnegative. Determina- 
tion of the sign of terms proportional to q2 in ( 2 4 )  requires 
additional study. 

We will consider the matrix element in ( 2 4 ) .  Due to the 
periodicity of Ao(x)  of ( 14) we have 

( E  1 lo ( x )  eiqxJ E f  )= P,, ( E ,  El ,  Go) 8 (k-k1-9-nGo) r 

where 

P,, (E,  E', Go) = [ P  (EI E', ( m - n )  '0) 

+ f"(E,  E', (m-n)  Go) +P ( E ,  E', (m+n)  G O )  1 A ( m )  , 

1 ( m )  =A ( r n ~ . )  = - J L ( x )  sin ( r n G p ) h .  
l o  

Here k is the quasimomentum of ( 1 6 )  ( E l - E ( k l ) ) ,  
Go = 2 ~ / l  is the reciprocal lattice period [for the finite band 

spectrum E ( k )  # E ( k  + Go),  as follows from ( 13) and 
( 14) 1. In ( 2 5 )  f s  and f a  are the symmetric and antisymme- 
tric components of the expansion of the product of the Bloch 
multipliers v, (x)e ikx and v,. * ( x ) e  - ik '" in the reciprocal 
lattice periods: 

f"(E, E1)=f"(E' ,  E ) ,  f ( E ,  E' )=-P(E' ,  E ) .  

Subject to ( 2 5 )  the expression for the magnetic suscep- 
tibility X' is represented as a sum over the reciprocal lattice 
periods: 

It is possible to limit the analysis to a term with n = 0 in the 
sum ( 2 6 )  accurate to A l / ( E ( k  + Go) - ~ ( k ) )  (1 in a 
highly inhomogeneous system where the period 1 is small 
while the reciprocal period Go is substantial 
( E ( k  + Go)  - E ( k )  9 A , ) .  Here the matrix element 
Po(E,E ' ,Go) of ( 2 5 )  contains solely the component asym- 
metric in E' - E, and its expansion in powers of q begins 
with the term linear in q. Hence, ignoring exhaustive search 
processes, we see that the expansion in powers of q of the 
expression in braces in ( 2 6 )  begins immediately with the 
term quadratic in q which also determines the susceptibility 
that is diamagnetic in this case. We note that the lack of a 
zeroth-order term in the expansion of the matrix element 
( 2 5 )  in powers of q (ignoring exhaustive search processes) 
is a direct consequence of the inhomogeneity of order param- 
eter ( 14) .  For A  = const the matrix element is weakly de- 
pendent on energy and on q, while the susceptibility ( 2 6 )  is 
determined by the expansion of the energy denominator in q 
and is paramagnetic, as we can show. 

This section has therefore employed a quasi-one-di- 
mensional exactly soluble model to demonstrate that the 
strongly-inhomofieneous phase of a system with an asym- 
metric spectrum is diamagnetic. The hybridization serves as 
a small parameter in this model. It is therefore not advisable 
to obtain specific estimates of the diamagnetic susceptibility 
( 2 6 )  which contains this same small parameter. 

4. PSEUDOMAGNETIC FIELD IN AN INHOMOGENEOUS OAF 

We consider the initial Hamiltonian ( 1 ) - ( 3 )  with an 
inhomogeneous spectral asymmetry parameter 

A; ( r )  = A  ( r )  +const. 

We employ linear approximation ( 5 )  for hybridization. 
The macroscopic symmetry of the system is characterizd by 
the polar t-odd vector T formed by the combination of mi- 
croscopic parameters T-P. From the symmetry viewpoint 
the vector T is entirely analogous to the vector-potential of 
the magnetic field, although the vector T does not directly 
enter into the Hamiltonian nor microscopic equations of 
motion ( 1 1  ). We will show that the Hamiltonian ( 1 ) - ( 3 )  
allows reduction to a model in which the spectral asymmetry 
parameter plays a role that is entirely analogous to the vec- 
tor-potential of the magnetic field. We consider the aniso- 
tropic intraband component of the dispersion law: 
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ci(k) =ei(k,, k,) +ei(k,), i=l, 2, (27) grows with increasing ldW(k, )/ak,, 1 consistent with the 

where the origin in the first is selected so that the aver- formula obtained in the preceding section for magnetic sus- 

age over the ~~.ll~~i~ zone (k, ) ) = 0. we a s  ceptibility (26). It is therefore likely that the portions of the 

sume that the intraband dispersion in they direction can be spectrum for which the approximation ( 5 is applicable will 

ignored compared to the hybridization dispersion: make the dominant contribution to the diamagnetism, while 
relation (28) corresponds to enhancement of the trend to- 

I~i(ku) I << IPkuIlm. (28) ward diamagnetism. We then obtain the reduced Hamilto- 
We note that diamagnetism of an inhomogeneous OAF nian: 

Here the intraband components E~ (k, ,k, ) may be random 
functions of the momenta k,, k, characterizing both the 
semiconductor and the semimetallic intrinsic dispersion 
law. We have included in (29) the potential A representing 
the components of the order parameter (4)  that differ from 
the imaginary singlet component for generality. The spe$ral 
asymmetry parameter A(r) enters into Hamiltonian H,,, 
(29) in the same manner as the vector potential of the mag- 
netic field running along they axis. Redesignating the asym- 
metry parameter: 

P e 
A (r) = -- 

m c AIff (r), (Aett= (0, Aett, 0) ) , 

we find that the Hamiltonian 

coincides with the Hamiltonian of a general two-band model 
in the effective magnetic (pseudomagnetic) field Be,: 

In order to determine the properties of an inhomogeneous 
OAF described by the reduced Hamiltonian (29) we can 
therefore use the well-developed methods of calculating the 
macroscopic characteristics of a homogeneous system in an 
external magnetic field. The true magnetic field B given by 
the vector-potential A (B  = curl A) enters into Hamiltonian 
(29) by the additive substitution A,, -+Ae, + A The mag- 
netic susceptibility here is determined by the joint action of 
the true and pseudomagnetic fields as though a single mag- 
netic field B, = Be, + B were present in the system. Since 
expression (30) for Be, contains the multiplier c in the nu- 
merator, the pseudomagnetic field value may be quite sub- 
stantial on the scale of the true magnetic field. The magnetic 
susceptibility of OAF (29) with an inhomogeneous spectral 
asymmetry parameter A(r) in a weak magnetic field coin- 
cides with the differential magnetic susceptibility of a homo- 
geneous system with A = 0 in an external magnetic field of 
Be,. 

An interesting situation occurs when the Fermi level EF 

is located in the energy range corresponding to the forbidden 
band of the Hamiltonian (29) with Be, = 0. Given the large 
value of Be, at sufficiently low temperatures O gp, Be, (pB 
is the Bohr magneton) the system will satisfy de Hass-van 

I 

Alphen effect conditions, while the diamagnetic differential 
susceptibility x', as we know,9 may assume arbitrarily large 
absolute values. Unlike the standard formulation of the de 
Haas-van Alphen effect which considers a homogeneous 
field, the pseudomagnetic field Be, (30) related to the spec- 
tral asymmetry parameter A(r) is fundamentally inhomo- 
geneous. Such a situation more closely corresponds to the de 
Haas-van Alphen effect in the presence of Schanberg do- 
m a i n ~ . ~  However, as demonstrated in Ref. 29, if the charac- 
teristic scale q-' of the inhomogeneity of the asymmetry 
parameter A(r) substantially exceeds the magnetic length 
A = ckF/eBe, (k, is the Fermi momentum), it is sufficient 
to limit the analysis to the zeroth order in the expansion of 
x l (q )  in powers of q, ~ ' ( 0 )  (x ' (q )=xt (0)  +q2xI + ... ), 
i.e., to calculate the differential susceptibility in a a homoge- 
neous field Be,. According to the general theory of the de 
Haas-van Alphen the magnetic susceptibility con- 
tains a continuous component and an oscillating compo- 
nent 2' in the magnetic field. The smooth component is 
smaller than the oscillating component by the factor 

The oscillating susceptibility  component^' consists of a sum 
of the field-periodic components with multiple periods. The 
term with the lowest period makes the primary contribution 
to the sum; for this term we havez9 

For identical values ofBe, correspondng to the positive half- 
period of the cosine in (3  1 ) the susceptibility ?' is paramag- 
netic while it is diamagnetic for the other values correspond- 
ing to the negative half-period. However the thermodynamic 
stability condition limits the paramagnetic susceptibility to 

< 1/4n-. (Refs. 9, 29). Assuming MgB,, holds we will 
write an expression for the induced moment corresponding 
to the susceptibility (3  1 ) : 

M=a' sin k(Hf4nM-BeJJ) (B=H+4nM), (32) 

where k = ~,/p, Be, *, a' = a/k. Figure 1 provides a plot of 
the function M(H)  of Eq. (32) for 47i-afk> 1 ( a >  1 / 4 ~ ) .  
The origin is given by the pseudomagnetic field Be, in the 
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FIG. 1. 

argument of the sine of (32). On the segment of negative 
slopex' > 1/4a holds. In the ambiguity range the change in 
the mean moment of the specimen M(H)  over the segment 
LN corresponds to the energy minimum; the boundaries of 
this segment (the points L and N) are determined by the 
thermodynamic area rule.9 The slope of the segment ap- 
proaches vertical as the demagnetization factor decreases. 
The system decomposes into two types of domains on the L N  
segment within which the magnetization assumes values 
corresponding to points L and N. In a weak field H the sus- 
ceptibility x = X I / (  1 - 477~') (X = dM /dH) is determined 
by the slope of the graph M(H)  at the origin. If the coordi- 
nate origin lies within the domainization range L N  the sus- 
ceptibility is paramagentic due to the change in the ratio of 
the specific volumes of the two types of domains occurring 
from the change in field H (for a > 1/8 the system decom- 
poses into domains across the entire positive half-period of 
function (3  1 ) . Here the local susceptibility of the domains 
corresponding to the slope of M(H)  at points L and N is 
diamagnetic. Hence measurements over times less than the 
domain relaxation time show a diamagnetic type of system 
response.) If Be, given by the spatial distribution of the 
asymmetry parameter A(r) is such that the coordinate ori- 
gin on the M(H)  graph lies outside the domainization range 
the susceptibility is diamagnetic. The susceptibility of the 
diamagnetic phase tends toward the susceptibility of an ideal 
diamagnetic, X' - - w (x+ - 1/4a), in the limit a - w 
(the actual existence of the diamagnetic domains proves that 
the coefficient a may attain large values.) It is important, 
however, to take into account that formula (3  1 ) was ob- 
tained ignoring charge carrier scattering by impurities and 
other defects and assuming a homogeneous pseudomagnetic 
field. Both the scattering and the inhomogeneity of the pseu- 
domagnetic field will blur the discrete levels of charge car- 
rier motion in the plane perpendicular to the pseudomagne- 
tic field and will diminish the susceptibility. The drop in 
susceptibility is described by the Dingle factor, exp( - r-  '/ 
p, Be, ), where T- ' is the characteristic energy scale of level 
broadening. 

5. THE PHASE GENERATION EFFECT IN A 
SUPERCONDUCTING OAF 

From the formal viewpoint the vector T characterizing 
the transformational properties of an OAF with an asym- 
metric spectrum is analogous to not only the vector-poten- 
tial but also the current density j. However the existence of 
current whose density is simply proportional to the vector 
parameter T ( j  -T) rather than its coordinate derivative is 
forbidden by the gauge invariance of the expressions for the 
energy and ~ u r r e n t . ~  The current density is related to the 
parameter T by the relation 

j (r) =C rot rot T (r) , (33) 

which determines the relation of the current to the density of 
the toroidal moment.4s" Gauge symmetry breaking occurs 
in superconductors. Specifically this is manifested as the 
combination Vp - 2eA/c ( p  is the phase of the supercon- 
ducting order parameter) functioning as the gauge-invar- 
iant quantity; this combination may appear explicitly in the 
macroscopic relations. An investigation of the properties of 
an orbital aniferromagnetic is of interest in this case. 

We can write the following expression for the supercon- 
ducting current in a magnetic3': 

Here 6 is the coefficient having the dimensions of the inverse 
velocity. The coefficient r ]  in (34) is proportional to the su- 
perconducting electron density ( r ]  -n, - (A, I*, A, is the su- 
perconducting order parameter). 

The magnetic symmetry allowing existence of a t-odd 
polar vector can be achieved by both spin and orbital order- 
ing. However it is possible to demonstrate even on the mac- 
roscopic level that the additive term in expression (34) for 
the current is related to magnetic ordering of an orbital na- 
ture. A term in the form of a Lifshitz invariant corresponds 
to the auxiliary contribution to the current in the expression 
for the free energy ( 34) near the superconducting transition 
temperature: 

The orbital nature of this contribution is obvious since all 
spin parameters enter into the interaction energy between 
the system and the electromagnetic field soley in combina- 
tion with the magnetic field and not the vector potential as is 
the case in (35). A specific calculation in two-band ED mod- 
el ( 1 )-(3) yields the following expression for the auxiliary 
contribution to the superconducting current (34) : 

where [(n) is the Riemann zeta function. 
We investigate the macroscopic consequences of the 

auxiliary contribution in the expression for the supercon- 
ducting current (34). We obtain an equation for the super- 
conducting phase from relation (34) and the continuity con- 
dition: 

V"(r) =eE div T(r), 

froiqwhich it follows that the auxiliary contribution to the 
superconducting current causes a phase multiplier depen- 
dent on the coordinate to appear in the order parameter 

Here TII  ( r )  represents the irrotational field component giv- 
en by the vector T ( r )  (curl TI,  ( r ) = 0; when T( r  ) = const it 
is necessary to set TII = T)  . We first consider the case where 
there is no rotational field component 
T, ( r )  = T( r )  - TII  ( r )  (more precisely, curl T, ( r )  = 0). 
Here the phase multiplier in (36) totally balances the auxil- 
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FIG. 2. 

iary contribution to the current, and the ordinary Meissner 
effect occurs in the system with magnetic field damping on 
the scale of the London depth of penetration A,. 

The appearance of the coordinate-dependent phase of 
the order parameter (36) can be observed in the following 
experiment. We terminate the ends of the superconductor 
(36) with an ordinary superconductor (Fig. 2). We consid- 
er a closed ring I in which j, = 0. Such a ring exists due to the 
Meisstler effect. Integrating expression (34) over the ring 1 
we find that the total magnetic flux @ through the ring at- 
tains values of 

here the flux quantum is @, = ?rc/e; n is an integer. The 
current I corresponds to the magnetic flux @: 

I=cP-'0, (38 

where 2 is the inductance of the ring. It follows from (37) 
and (38) that if the integral has a value other than 2rn in 
(37) the ground state of the superconducting ring (Fig. 2) is 
a state with spontaneous current flow. 

References 32, 33 have examined spontaneous current 
states attained in weak-link superconducting rings. Refer- 
ence 32 investigated a Josephson junction ring containing 
magnetic impurities and demonstrated that spontaneous 
current arises if the matrix element of the tunnel junction 
with spin inversion is greater than the matrix element of an 
ordinary junction without spin inversion and, more, the 
product of the critical Josephson current and the ring induc- 
tance exceeds a certain critical value. Reference 33 analyzed 
an S-F-S-junction formed by an interlayer of a normal fer- 
romagnetic metal. A current state will exist in such a system 
if the thickness of the interlayer assumes values lying within 
certain specific intervals, while the product I, 2, as in Ref. 
32, is sufficiently great. Spontaneous current vanishes in the 
transition to the multidomain interlayer. The current states 
of Ref. 32, 33 and therefore achieved in rather rigid condi- 
tions. 

The phase-generation effect in the superconducting an- 
tiferromagnetic (34), (36) manifests an essentially volu- 
metric nature. The spontaneous current (38) will arise, un- 
like Ref. 32, 33, with any ring dimensions (and any 
dimensions of the antiferromagnetic specimen) and also in- 
dependent of the structure of the magnetic superconductor/ 
vacuum boundary where screening currents are concentrat- 
ed. 

The value of the number n in (37) is determined from 
the minimum ring energy E = a2/204p. We then find from 
(37) that the magnetic flux flowing through the ring in the 

ground state is at most one-half of the flux quantum: 

max I Q 1 G112@o. (39) 

If the magnitude of vector T is sensitive to the value of 
any controlled system parameter such as temperature, the 
temperature dependence of the flux @ will oscillate. When 
the flux reaches +@, the value of n in (37) will change by 
unity and the flux magnitude will jump. The value of n char- 
acterizing the ground state is determined by the following 
relation: 

Q 

eE 
n= [ 2 ~ ]  - [r] , r = - j (r) dr, 

2n P 

where [ T I  is the integer part of T.  Figure 2,b, shows the 
magnetic flux plotted as a function of temperature for the 
case where the vector T appears from a second order phase 
transition at temperature @, . 

It is important to note that a reason independent of the 
phase-generation effect exists for spontaneous current to ap- 
pear in the ring shown in Fig. 2 even if the antiferromagnetic 
whose symmetry is characterized by the vector T is of a pure- 
ly spin nature. The problem is that in such an antiferromag- 
netic the jump of the tangential component of vector T at the 
surface facing inward on the ring will induce surface cur- 
rents according to Eq. (33) which relates the current to the 
density of the toroidal moment; these currents will produce a 
surface magnetic moment M, which will make a contribu- 
tion to the total flux @. The magnetic moment M, is deter- 
mined by Maxwell's equation and as a result will have rela- 
tivistic moments compared to the orbital contribution to 
(37). The electromagnetic formation mechanism of the sur- 
face contribution to the flux will be easily differentiable from 
the phase generation effect in experiment. The strict quanti- 
zation condition @ = n@, will hold for a flux of electromag- 
netic nature, while the flux level with changes in the system 
parameters will vary in jumps only and will remain constant 
in the range of parameters corresponding to the given opti- 
mum value of n (compare to Fig. 2,b). 

We will consider the rotational vector component of T: 
curl T l  (r)  #O. Applying the rotation operation to relation 
(34) we obtain the London equation 

rot A2j,=-~-iB-'/2E rot T. (40) 

Here hP2 = 2e77, AL = h c / ( 4 ~ ) " ~  is the London penetra- 
tion depth. If the coefficient 6 in (34), (40) is normalized so 
that the vector T coincides with toroidal moment (33), 
Maxwell's equation takes the form 

4n 
rot B = - j,+4n rot rot T. 

C 
(41 
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We obtain a relation for determining the density of the su- 
perconducting current from ( 4 0 )  and (41 ) : 

C c2f, 
V2jc-hL-2j, = 7 r 0 t  rot T + y r o t  rot T. 

h, h, 
( 4 2 )  

The rotational component of the vector T is therefore the 
source for the superconducting currents. The first term on 
the right side of equation ( 4 2 )  describes the contribution to 
the source of the magnetic induction associated with the 
macroscopic inhomogeneity of the density of toroidal mo- 
ment ( 3 3 ) .  This term has a purely electromagnetic nature, 
exist? in both orbital and spin magnets with a toroidal mo- 
meilt, and plays a role analogous to the term curl M in the 
equation 

V2j,-hL-2jc=~h-2 rot M, 

mechanism is different from the ordinary pattern of the on- 
set of superconductivity when H = H,, . We will use a differ- 
ent designation-HcT-for the magnetic field value at 
which the nucleus of the superconducting phase localized at 
the inhomogeneity T, ( r )  initially appears. The nucleus first 
forms in the vicinity of the point x, = x, ,,, which mini- 
mizes the integral ( 4 5 ) .  We will isolate the amplitude T and 
the coordinate multiplier t ( r )  in the parameter T, ( r ) :  

Since T- (0 ,  - 0 )  ' I 2 ,  we have for H,,: 

where f ( O  = 0, )  # O .  The radical term in ( 4 6 )  causes a 
singularity in the temperature dependence dHcT/dO:  

characterizing the distribution of the superconducting 
screening currents in an inhomogeneous ferr~magnetic.'~ 
The second term on the right side of ( 4 2 )  is due to direct 
interaction of the superconducting and toroidal order pa- 
rameters and has no analog in superconducting ferromagne- 
tics. Its contribution substantially exceeds that of a term of 
electromagnetic nature since c l - c / v ,  ) 1 .  

The interaction of the superconducting order param- 
eter and the rotational components of the orbital antiferro- 
magnetic order parameter results in a unique temperature 
dependence of the rotational critical magnetic field. Let the 
superconducting transition temperature 0, lie above and 
close to the antiferromagnetic transition temperature 0 ,  so 
that the Ginzburg-Landau expansion can be used. We write 
the linearized equation for the superconducting order pa- 
rameter 

where a = a ( @  - a,) ,  A ( r )  = (O,xH,O). Without antifer- 
romagnetic ordering ( T  = 0 )  and setting the minimum 
eigenvalue o, of the operator on the left side of equation 
( 4 3 )  equal to the coefficient a we obtain the usual expression 
for H,, : 

It is necessary to account for the shift of the eigenvalue o, to 
the extent of the parameter T below the antiferromagnetic 
transition temperature 0,. The longitudinal component of 
the vector T is eliminated from the eigenvalue equation ( 4 3 )  
by the gauge transformation ( 3 6 ) .  We can limit the analysis 
to a linear approximation in T ,  ( r )  = T ( r )  - Vp(r) in the 
vicinity of 0, where p ( r )  is the phase of order parameter 
( 3 6 ) .  The shift of the eigenvalue in this case is determined by 
the integral: 

x-xg 
60, = - EeH 5 XT,. c r )  a p { -  (h) 1 dr. 

mSch 
(45) 

Here /2 = ( c / eH) ' I2  is the magnetic length and S is the 
cross-sectional area of the sample in the plane x  = const. 
The integral ( 4 5 )  is a function of the position of the "orbital 
center" x, with the given coordinate relation T, ( r ) .  At var- 
ious points in space, nucleation will therefore occur at differ- 
ent magnetic field levels. Strictly speaking this nucleation 

Here we have ignored the derivatve df  / d 0  which enters into 
the expression for dHcT/dO with the small multiplier 
(0,  - 0 )  ' I 2  when 0 < a , .  When the direction of the mag- 
netic field is reversed, the position of x, ,, changes, al- 
though the sign of the singularity is conserved. 

6. CONCLUSION 

The results of the present study show that magnetics 
with an inversion center have a number of unusual magnetic 
properties attributable to the quasimomentum spectral 
asymmetry of the elementary excitations. The spectral 
asymmetry is due to violation of the invariance with respect 
to the time inversion in the orbital subsystem of the crystal 
and is most strongly expressed in magnetics of an orbital 
nature. In these magnetics the spectral asymmetry param- 
eter is determined by the Coulomb interaction and is quite 
large. In spin ma'gnetics the asymmetry parameter is due to 
spin-orbital interaction and is always nonzero if only the 
symmetry group of the crystal allows energy invariants to 
exist that are odd with respect to the quasimomentum com- 
ponents. The difference between the orbital and spin magne- 
tics in this respect is a purely quantitative difference. These 
effects will be observed in all magnetics with symmetry of 
this type. 

The interaction of the charge carriers producing the 
asymmetric spectrum with the external magnetic field in- 
classical physics corresponds to the diamagnetic precesion 
of the orbital current rings.'x6 The system inhomogeneity 
increases the rigidity of the rings and suppresses the para- 
magnetic component of the response, thereby enhancing the 
diamagnetism. In principle the diamagnetic susceptibility 
can attain arbitrarily large absolute values. A specific calcu- 
lation of the magnetic susceptibility in the range of large 
asymmetry parameter values which permits anomalous dia- 
magnetism was carried out in Sec. 4  for a model with a metal- 
lic-type spectrum. Moreover the diamagnetic response is a 
common property of inhomogeneous magnetics with an 
asymmetric spectrum as indicated by calculations employ- 
ing perturbation theory in the spectral asymmetry param- 
eter (Sec. 3 ) .  Hence the model from Sec. 4  should be consid- 
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ered one possible physical picture of strong diamagnetic 
response. 
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