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An analysis is made of a semiconductor in which impurity centers are resonant donors with an 
electron energy level lying ED above the bottom of the conduction band. At high impurity 
concentrations only a small proportion of the centers is ionized and the charge of these centers is 
compensated by degenerate electrons with the Fermi energy equal to ED. In view of the finite 
width of a resonant level the charge may be transferred from center to center and the positions of 
ionized impurities are correlated in space because of the Coulomb repulsion between them. The 
charges tend to form a Wigner lattice against the negative background of electrons. It is shown 
that at sufficiently high temperatures the mobility ofelectrons is limited by thermal vibrations of 
the Wigner lattice of charges, whereas at low temperatures it is limited by the nonideal nature of 
this lattice associated with the random distribution of impurities. Such a situation is encountered 
experimentally in HgFeSe solid solutions where iron impurity centers act as resonant donors. 

1. INTRODUCTION 
distinction from the latter case is that instead of randomly 

The scattering of electrons by ionized centers in semi- distributed point compensating acceptors the charge of the 
conductors is usually described assuming that the distribu- ionized donors becomes neutralized by electrons distributed 
tion of ionized impurities in space is random. This leads to in space. 
the Brooks-Herring expression for the mobility in a degen- It has been established experimentally that cooling in- 
erate electron gas': creases the mobility of an electron gas, governed by the scat- 

where 

m, and m are the masses of a free electron and of an electron 
in the conduction band, respectively; x is the permittivity; r, 
is the screening radius of a degenerate electron gas; kf is the 
Fermi momentum; n and N, are, respectively, the density of 
electrons and the concentration of the scattering centers. 

In some cases it is necessary to allow for correlation in 
the distribution of the centers. It can appear, for example, 
during growth or annealing of crystals.* Under these condi- 
tions Eq. ( 1 ) is generally invalid. 

However, even in the case of a random distribution of 
the impurity centers the spatial distribution of the charged 
impurities may be ~orrelated.~ This problem becomes par- 
ticularly important in the case of the Hg, - ,Fe,Se system.k9 
In this case the impurity centers of iron replacing the mer- 
cury atoms act as donors with an electron energy level locat- 
ed ED ~ 2 3 0  meV above the bottom of the conduction band. 
At low iron concentrations all the impurity centers give up 
electrons to the conduction band and become charged. How- 
ever, when the iron concentration is x = x* ,--3 X loT4, the 
Fermi level of electrons becomes comparable with the ener- 
gy of a resonant donor and then the density of electrons 
ceases to rise on increase in x and remains equal to 
n z 5 X 1018 ~ m - ~ .  Only some of the centers remain charged 
and the fraction of such centers is given by KN = n, where 
K = x*/x; N is the total concentration of the impurity 
centers; N = M x N =  1.77X 10'' cmP3 is the concentra- 
tion of the sites in the mercury ~ublattice.~ 

The quantity Kis analogous to the degree of compensa- 
tion in the case of an ordinary semiconductor. An important 

tering on ionized centers, and for some values ofx this mobil- 
ity is considerably higher than the theoretical value deduced 
using the Brooks-Herring expression. A qualitative expla- 
nation of this effect was given by Mycielski.' The finite width 
r of a resonant donor level means that electrons can be 
transferred from donor to donor right down to the lowest 
temperatures. The spatial distribution of charged donors 
then corresponds to a minimum of the energy of the electro- 
static interaction of charges with one another. If the level 
width r is very small and the electron mobility is high, we 
can assume that this mobility is governed by the static distri- 
bution of charged impurities. At T = 0 the positive charges 
tend to be located far from one another because of repulsion. 
In the range x)x* such charges form a Wigner lattice 
against a negative background of electrons. The lattice re- 
garded as an ordered structure does not scatter carriers, in 
agreement with the Bloch theorem, and this increases the 
mobility of electrons as temperature is lowered. 

However, to the best of our knowledge, a quantitative 
theory of the mobility in an electron gas has not yet been 
developed for the case of a strong correlation in the spatial 
distribution of charged centers. Our aim is to fill this gap. We 
shall show that at sufficiently high temperatures the mobil- 
ity is limited by thermal vibrations of the Wigner lattice of 
charges, whereas at low temperatures it is limited by the 
nonideal nature of this lattice associated with a random dis- 
tribution of the iron atoms. In the sections below we shall 
provide a qualitative analysis of this problem, obtain quanti- 
tative results, and compare these results with the experimen- 
tal data.5 

2. QUALITATIVE ANALYSIS 

There are three temperature ranges in which the tem- 
perature dependence of the mobility is due to physically dif- 
ferent types of ordering of ionized centers. When the tem- 
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perature T is much higher than the energy of the Coulomb 
interaction between charges separated by the average dis- 
tance, e2n113/x, the probability of filling all the donors with 
electrons is constant (it depends weakly on the environ- 
ment) and close to 1 - K. The charge correlation then re- 
sembles correlation in the case of a slightly nonideal plasma. 
The correlation (screening) radius r, is described by ' O  

The factor 1 - Kin the denominator of Eq. (2) reflects the 
fact that at low values ofK the concentration ofthe screening 
carriers is equal to n and in the limit K- 1 it is equal to 
( 1 - K)n. It should be noted that the electron screening ra- 
dius is greater than r, on condition that T < E F ,  which is 
assumed below. 

The charge correlation function can be calculated by 
analogy with Ref. 10, which will be done in the next section. 
The mobility calculated using this correlation function is 

In this temperature range the mobility rises logarithmically 
as a result of cooling, because of reductin in the correlation 
radius. The main terms in Eqs. ( 1 ) and ( 3 )  differ simply by 
the replacement of ro with r,. 

Equation (3) is valid if T< To. On the other hand, if 
T< To, the system of charged donors is a strongly correlated 
Wigner liquid. According to Ref. 11, this liquid does not 
crystallize at any temperature because the distribution of the 
donor centers is random. However, we are interested only in 
the short-range order in the distribution of the charged 
centers, which is assumed to differ little from the crystalline 
order even when T< To and x ) x * .  Thermal motion causes 
the charges to wander between impurity centers which are in 
the vicinity of a certain site fixed by the positions of the 
neighboring charges. If T< To, the amplitude of such ran- 
dom-walk motion is small compared with the average dis- 
tance between the charges. We can then assume that the 
scattering of electrons is by dipoles. The negative pole of 
each of them corresponds to a site in an ideal (at a given 
point) Wigner lattice, whereas a positive pole corresponds to 
a charged impurity center which wanders in the vicinity of a 
given site. In the next section we shall show that the mobility 
limited by a scattering system of dipoles with randomly ori- 
ented moments can be described by 

where f ( T )  is the average value of the square of the distance 
between the charges in the dipole and D as a numerical coef- 
ficient. It is assumed that the moments of the neighboring 
dipoles are uncorrelated. We shall consider this approxima- 
tion later. 

In the calculation of ?( T )  we have to consider two tem- 
perature ranges. At relatively high temperatures the quanti- 
ty (71"~ is considerably larger than the average distance 
between the impurity centers. In this case the discrete distri- 
bution of the positive charges between the donors can be 
ignored and we can assume that such charges form a Wigner 
lattice (without a short-range order) against the negative 
background. It should be mentioned that this lattice does not 

exhibit acoustic vibrations of frequency exceeding r/fi, 
since N r  is the time in which the charge is transferred from 
one impurity center to another. If r< T, as assumed below, 
then acoustic branches can be ignored completely and the 
value of ? ( T )  can be calculated assuming that the positive 
charge under consideration moves in a static potential of 
other charges forming a Wigner lattice. We then find that 

where 

U ( r )  =Cne2P/x (6)  

is the potential created at a distance r from a lattice site by 
the negative background of electrons and by the Wigner 
positive charge lattice. The constant C depends weakly on 
the nature of the Wigner lattice. We can determine it by 
replacing a Wigner-Seitz cells with spheres of appropriate 
volume. The sphere radius R is governed by +rrR 3n = 1. We 
shall assume that the charge is distributed uniformly inside a 
sphere. In calculating the potential near the center of the 
sphere we can ignore the charges of the neighboring spheres, 
because they are electrically neutral. Such calculations give 
Eq. ( 6 )  with C = 2 r / 3 .  Using Eqs. (6)  and ( 5 ) ,  we obtain 

whereas Eqs. (7 )  and (4)  yield the mobility in the investi- 
gated rang of temperatures. It should be noted that f = 9rs 
in the limit K- 0. 

An important feature of the above derivation is the ne- 
glect of correlation along the directions of the dipole mo- 
ments at neighboring lattice sites. Strictly speaking, this is 
invalid, because Eq. (7) can be readily used to demonstrate 
that the energy of the dipole-dipole interaction is also of the 
order of T. However, we shall assume that this simply alters 
the numerical value of C in Eq. (6) .  A calculation of the 
change in this value should in our opinion be carried out on a 
computer. 

It is clear from Eq. (7)  that the quantity (P)'l2 be- 
comes comparable with the average distance between the 
impurities given by N -'I2 when T -  T& ' I2=  T. At lower 
temperatures we have to allow for the fact that the spatial 
distribution of the charged centers corresponds to the energy 
minimum. At low K this distribution can be established as 
follows. Let us consider an ideal Wigner lattice and assume 
that only those impurity centers become charged which are 
closest to each of the sites in the ideal lattice. We then find 
that (3) ' I2  can be derived from the short-range order distri- 
bution. This gives the following expression: 

The substitution of Eq. (8 )  into Eq. (4)  gives the results for 
the mobility at temperatures T S  T *. We can see that in this 
temperature range the mobility is independent of tempera- 
ture and that it rises on increase in x as x''~. This is due to the 
fact that on increase in the impurity concentration the ran- 
dom nature of the distribution of impurity atoms in space 
becomes gradually less important. 
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3. QUANTITATIVE THEORY 

In this section we shall derive expressions for the mobil- 
ity valid in various temperature ranges. In the above expres- 
sions the electron spectrum is assumed to be parabolic. How- 
ever, in describing experiments we have to go beyond this 
approximation because, firstly, HgFeSe is a zero-gap semi- 
conductor with inverted bands (E, <0, E, = - 0.22 eV) 
and, secondly, the Fermi level Efz E, z 230 meV is compar- 
able with the separation A = 0.45 eV to the spin-orbit-split 
energy band. 5-6 The energy band structure of the compound 
is described by the Kane Hamiltonian and the mobility relat- 
ed to the scattering by the random potential with the impuri- 
ties can be described byI2 

where 1 kol = kF; m = fi2kF [ (dddk) .  = eF ] -' is the effec- 
tive mass of an electron at the Fermi level, which is indepen- 
dent of temperature in the range TG 100 K under discussion, 
where EF does not vary with T (Ref. 5); is the angle between 
k and ko; C! is the normalized volume; ( TI is the square of 
the modulus of the Fourier component of the random poten- 
tial of charged impurities and the bar above denotes averag- 
ing with respect to time. The time dependence of the random 
potential is related to slow wandering (random walk) of 
charges between the impurity atoms. The angular brackets 
denote averaging over the coordinates of all the impurity 
centers. The appearance of the last factor in the expression 
for 7- [Eq. (9) ] is related to the matrix nature of the Kane 
Hamiltonian. The constants A and B depend on the energies 
Ef, E,, and A; for our values of the parameters12 they are 
A = - 0.57 and B = 0.34. In the case of a simple band we 
haveA=B=O. 

a) Range where T 9  To 

In this temperature range the scattering is on Gaussian 
fluctuations of the charged impurity concentration. The size 
of these fluctuations is greater than the average distance 
between the charges. Therefore, the fluctuations are de- 
scribed by a smooth function g(r,t) ,  representing a local de- 
viation of the concentration of charged impurities from the 
average value at a moment t. We then find that 

ez E (r', t) - 1 4nea ' 
~ ( r ,  t ) = -  Jd3r1- , (1vqlz>=- - 

x 1 r-r' 1 ( ) LCs,. 
62 xq2 

where 

L (9) = I d3r exp [ iq (r-r') 1 ( E  (r, t) E (r', t) ) (11) 

is the correlation function of fluctuations of the charged cen- 
ter concentration. 

If we can ignore the correlation in the distribution of the 
charged impurities, i.e., if we assume that ({(r,t)g3r1,t) ) 
= N,G(r - r'), then Eq. (9)  readily yields the usual 

Brooks-Herring expression obtained allowing for the Kane 
nature of the spectrum." 

The correlation function of Eq. ( 1 1 ) is calculated in 

exactly the same way as in the case of an impurity energy 
band in a lightly doped and weakly compensated semicon- 
ductor, considered by Uzakov and ~f ros ."  We shall carry 
these calculations as follows. Fluctuations of the concentra- 
tion of the iron impurity centers are assumed to be frozen 
and fixed when a sample is prepared. The concentration of 
the charge centers, however, fluctuates at each point in time 
since electrons in thermal motion are transferred from one 
center to another. The averaging with respect to time can be 
replaced with the averaging over an ensemble and the time 
average of the quantity <(r,t)((rf,t) can be obtained for a 
fixed distribution of the impurity centers in the form of the 
functional integral 

where Rmin I&} is the minimum work that has to be done to 
produce a fluctuation of c ( r )  for a fixed configuration of 
impurities: Rmin = H - TAS, where the Hamiltonian Hand 
the change in the entropy ASare due to a fluctuation of ((r)  
are of the formL0 

I 1 
AS=- [Lj d3r g2 (r) -2 dar E (r) q (r) 

2N(1-K) K 

and it depends on the frozen fluctuations of the impurity 
concentration ~ ( r )  = N(r)  - N, where N( r )  is the local 
concentration of impurities and we have (N(r ) )  = N. 

A calculation of the average described by Eq. ( 12) with 
the aid of Eq. ( 13), which is fully analogous to that de- 
scribed in Ref. 10, shows that the result depends quadratical- 
ly on the fluctuations ~ ( r ) .  This is related to the validity of 
the Gaussian statistics in the case of the fluctuations g( r )  
and ~ ( r )  when T% To. Therefore, in calculating the average 
of Eq. ( 12) for a distribution of impurities it is necessary to 
specify the correlation properties of the function ~ ( r ) .  We 
shall assume that a distribution of the impurity centers in 
space is random: 

(q (r) q (r') )=N (I-x) 6 (r-r') . (14) 

The appearance of the factor 1 - x in Eq. ( 14) is due to the 
fact that the impurity centers are located solely at the lattice 
sites, i.e., that the distribution is fully ordered when x = 1. 
Substituting Eq. ( 13)  into Eq. (12), integrating, and then 
applying Eq. ( 14), we obtain 

where a correlation radius r, is described by Eq. (2).  Substi- 
tuting Eqs. ( 15), (1  I ) ,  and ( 10) into Eq. (9)  and integrat- 
ing, we find that the mobility is given by 
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where lS is defined earlier in Eq. ( 3 ) ,  po is defined in Eq. 
( 1 ), N, = n, and m is the effective mass at the Fermi level: 
m = 0.061m0 (Ref. 4). This gives p0 = 4.74X lo4 
cmZ-V-'as-', because x = 29.7 (Ref. 12). 

In the calculation of Eq. 15 no allowance is made for the 
screening by free electrons, which is justified if T < Ef. In the 
parabolic approximation, i.e., when A = B = 0, Eq. ( 16) 
leads to Eq. ( 3 ) .  It is important to point out that in the 
derivation of Eq. (15) we assume that fluctuations of 
charged l ( r )  and neutral ~ ( r )  centers are Gaussian and 
smooth functions of the coordinates. The range of validity of 
this approximation corresponds to the condition 1 - K( 1, 
i.e., to T) To. In the case when nr2 ) 1, this approximation 
is valid if the more stringent condition T) To( 1 - K)  - ' I 2 ,  is 
satisfied, as demonstrated in Ref. 10. The correlation func- 
tion of Eq. (10) differs from that obtained in Ref. 10 only 
because the charge of the centers is not compensated by ac- 
ceptors but by electrons. 

b) Range where T*QT-gT, and K g  1 

We shall assume that at these temperatures the short- 
range order in the distribution of charges corresponds to a 
Wigner crystal. The electron wavelength A -n-'I2 exceeds 
the characteristic deviation of a positive charge from a site in 
a Wigner crystal [Eq. (7)  1. Therefore, if we ignore the di- 
pole-dipole interaction, we find that the scattering is gov- 
erned by a system of randomly oriented and randomly dis- 
tributed dipoles with a concentration n. The mobility can be 
calculated using Eq. (9) and substituting there Eq. ( lo),  but 
we have to replace the Coulomb potential with the potential 
of the dipole averaged over the random orientationst3 when 
the characteristic distance between the charges in the dipole 
is given by Eq. (7),  and we have to assume that L ( q )  = n. 
Then, the square of the modulus of the matrix element of Eq. 
( l o )  is 

Substituting Eq. (17) into Eq. (9) and integrating, we find 
that the mobility described by Eq. (4), where f is given by 
Eq. (7) and 

We can see from Eqs. (16), (4),  (7), and (2)  that Eqs. 
( 16) and (4)  are matched parametrically at the boundary of 
validity of TZ - To. Moreover, Eq. ( 16), which is valid when 
T) To, in the limit when T 4  To and K-0 is identical (apart 
from a factor) with Eq. (4 )  valid when T< To. This can be 
demonstrated by comparing Eqs. ( lo), ( 15 ), and ( 17) for 
the squares of the modulus of the matrix element. It is clear 
from these equations that formally the dependences (4)  and 
( 16) are exactly identical if in the latter we replace 6, with 
3gs and assume that K = 0. 

c) Range where T< T*and K 6 1  

As pointed out already, when [ F ( T )  ] 'I2 of Eq. (7) 
becomes comparable with the average distance between the 
impurity centers at low temperatures, the mobility ceases to 
depend on temperature. We then obtain Eq. (4) where 7 
should be replaced by Eq. (8).  The coefficient D is still de- 
scribed by Eq. ( 18). 

We have thus been able to describe the scattering of 
electrons by an orderable system of ionized centers in all the 
parametrically different temperature ranges. We shall com- 
pare our results with the experimental data of Ref. 5 by de- 
riving an interpolation expression for the mobility which 
matches Eqs. (16) and (4) that are valid in different tem- 
perature ranges. 

4. COMPARISON WITH EXPERIMENTS 

The interpolation expression for the mobility, valid at 
all temperatures T( To, can be obtained from Eq. (5) for 7 
(T)  where the lower limit of integration with respect to r 
should be r,, of Eq. (8).  This means that Eq. (7)  is substi- 
tuted in Eq. (4) and the former should be multiplied by 

where 

~ m i n = ~ / 3 ~ r ~ i ~ e ~ n / ~ ~ =  (3/2n2) "'I' (5/3) TW/T 

and r ( a ,x )  is an incomplete gamma function. 
We now have to match the expressions for p ( T )  at 

T, To and T(To in the region of T- To. We can do this 
using Eq. ( 16), when instead of 6, we have to substitute 5,: 

(p is a fitting parameter). Therefore, for all temperatures 
T < E, we now have an interpolation expression for the mo- 
bility p (T,p) governed by the scattering on ionized centers. 

The scattering by ionized (charged) impurities com- 
petes with the temperature-independent scattering by neu- 
tral centers. The functional dependence of the scattering in 
the latter case on the composition isI4 

wherep* is regarded as a fitting parameter to be used in the 

FIG. 1. Theoretical (continuous curves) and experimental5 temperature 
dependences of the electron mobility in Hg, ,Fe,Se samples of the fol- 
lowing compositions: 1 ) x = lo-'; 2 )  5 x 3 )  3 x 4) 5 x lo-'; 
5 )  6 )  3  X 7)  5 X lo-*. Contribution of the phonon scattering 
was subtracted from the experimental values in accordance with Ref. 12. 
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FIG. 2. Dependence of the fitting parameterp* of Eq. (21 ) on the degree 
of compensation K = x*/x. 

theory. In a comparison with the experimental results, we 
shall use the following interpolation: 

introducing two fitting parameters f l  and p * .  Here, p ( T,p) 
is the mobility due to the scattering by a system of ionized 
iron center which becomes orderable when the temperature 
is varied. It is given by Eq. ( 16), where f ,  should be replaced 
by is of Eq. ( 2 0 ) .  

Figure 1 shows the experimental5 and theoretical [Eq. 
( 2 2 )  ] temperature dependences of the mobility for seven 
samples with compositions in the range 
5 x 10-4<x<5 x The experimental values are correct- 
ed for the phonon scattering, which is subtracted in accor- 
dance with Ref. 12. The best agreement between the theory 
in experiment corresponds to the fitting parameters 

p= 0.02 and p*; the dependence of the latter on the com- 
pensation parameter K = x* /x  is shown in Fig. 2. We can 
see that the theoretical curves describe satisfactorily the ex- 
perimental results. 

We are grateful to T. Dietl who drew our attention to 
this problem. 
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