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We investigate the characteristics of diffusive transfer of singlet and triplet centers along broken 
bonds in semiconductors. We show that this transfer takes place because of spin-correlated 
adiabatic small-polaron hopping. Using the kinetic equation for electron transfer in narrow 
bands, we calculate the probability of spin-correlated hopping in isotropic and anisotropic 
systems of broken bonds. We obtain an exact solution for the probability of variable-range 
hopping which goes beyond the framework of the "Mott logarithm." We show that 
thermalization of carries in a narrow band stimulates a change in the effective dimensionality of 
the system of broken bonds. The diffusion coefficient for polarized triplet centers is significantly 
dependent on the magentic states of the broken bond system. These results are used to interpret 
experimental data obtained in the course of this work on the optical polarization of nuclear 
moments (OPNM) in plastically-deformed silicon. We demonstrate the important role of the 
spin correlation length and the effective residence time of a triplet center on a broken bond in 
OPNM processes. Magnetic ordering of dislocations is observed in the broken bond system when 
conditions are fulfilled for spin-correlated transfer of polarized triplet centers. 

INTRODUCTION 

Dislocation-induced broken bonds (DBB) in plastical- 
ly-deformed single-crystal semiconductors are anisotropic 
defects with positive correlation energies.'" Because of this, 
the electronic energy spectrum of a DBB is that of a Mott- 
Hubbard narrow-band in~ula tor~ '~"  (Fig. 1 ) . In addition to 
the singlet one-electron excitation band (S-centers), the 
triplet-excitation band ( T-centers) of the DBB system also 
plays a significant role in the dislocation-mediated recombi- 
nation of non-equilibrium The presence of these 
bands gives rise to the following spin-dependent effects: ( 1 ) 
the dependence of the polaron tunneling factor, which corre- 
sponds to a structural rearrangement of the broken bonds, 
on the charge and spin state of the DBB6; (2)  selective trap- 
ping of nonequilibrium carriers at the magnetic sublevels of 
the T-center which are characterized by different projec- 
tions of the total spin, leading to the appearance of a non- 
equilibrium spin polarization associated with excited triplet 
states of the DBB5.6*9; (3)  spin-correlated transfer of the 
polarized T-centers along the dislocation chain, which in- 
duces a nonequilibrium polarization of the background elec- 
trons of the DBB (the D-center band; see Ref. 6); this polar- 
ization is reflected in spin-dependent recombination (SDR) 
and optical polarization of nuclear moments (OPNM) in 
the host semiconductors.5*6~8~'00" 

The nonequilibrium polarization of DBB significantly 
exceeds the corresponding Boltzmann value even in the case 
of strong magnetic fields, and influences the rate at which 
the states of S and T centers on the dislocation chains are 
populated. A consequence of this is the observed giant values 
of SDR and OPNM.6,8.9 

The goal of this paper is to investigate the distinctive 
features of spin correlated transfer of S and T centers in a 
DBB system, which is an intermediate step in the process of 

SDR and OPNM in a significant way. The interval of char- 
acteristic times over which transfer of S and T centers in the 
DBB system is important is bounded from below by the aver- 
age lifetime of a band charge carrier relative to trapping by 
the DBB, and from above by the average time for annihila- 
tion reactions of the S and T centers with nonequilibrium 
holes trapped by the dislocations (see Ref. 6) which com- 
plete the recombination process. 

In Sec. 2 we show that the mutual coupling of the multi- 
plet spin correlations and the electron-phonon interaction 
(EPI) at each DBB leads to spin-correlated tunneling of 
electrons between broken bonds, and that this coupling is the 
reason for spin-correlated thermally-activated transfer in 
semiconductor dislocation systems. In Sec. 3 we give a deri- 
vation of the kinetic equation for electron transfer in a nar- 
row band due to spin-corrleated adiabatic small-polaron 
hopping, taking into account thermalization effects. In Sec. 
4 we present results of calculations of the probability for 
thermally-activated small-polaron hopping in isotropic and 
anisotropic DBB systems; we obtain an exact expression for 
the variable-range hopping probability, which improves on 
the "Mott logarithm" approximation. We show that ther- 
malization of carriers in a narrow band stimulates a change 

recombination of nonequilibrium charge carriers-mediated I \ 
by chains' -because of effects associated with FIG I. Sketch of narrow bands formed by the various DBB states in the 
magnetization of the background DBB electrons, this pro- forbidden gap of silicon as a function of the Cartesian coordinates and the 
cess influences the temperature and field dependences of the corresponding density of states v(E) . '  
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in the effective dimensionality of the thermally-activated 
diffusive transport. In Sec. 5 we present the results of our 
investigation of the effects of magnetization of the DBB 
background electrons under conditions of spin-correlated 
transfer of polarized T-centers, which is used in interpreting 
the DBB experimental data. 

2. MULTIPLET SPIN CORRELATION AND ELECTRON- 
PHONON INTERACTION IN SEMICONDUCTOR DBB 
SYSTEMS 

Because electron states at the DBB are strongly local- 
ized due to disordered strain and polaron effects, spin-corre- 
lated electron transfer in the narrow bands (Fig. 1) is ther- 
mally a~t iva ted .~  S- and T-centers are small polarons, 
because the polaronic and bipolaronic shifts for carriers 
trapped on DBB significantly exceed the width of the Mott- 
Hubbard insulator bands (Fig. 1 ), which is of the same or- 
der of magnitude as the mean-square fluctuations associated 
with the strain disorder (B,). Therefore, thermally-activat- 
ed electron transfer in the DBB system takes place because of 
intercenter adiabatic hopping of small polarons (SP) . 

In order to describe the spin-correlated transfer we 
must take into account the mutual coupling of the multiplet 
spin correlations and the EPI at each separate broken bond. 
The Hamiltonian of the DBB system1' is conveniently repre- 
sented by using the projection operators P,, = Pja of its 
various charge and spin states ( a  and j are indices for the 
state and bond number of the DBB) : 

where 

P, and Q, are the canonical momentum and coordinate of 
the DBB with index j; M, and x are the effective mass and 
coupling constant of the bond; nj = 1,2 denotes the total 
number of electrons on the center; E,, and E,, are the ran- 
dom bare single-electron energies of the D-centers, which 
are distributed uniformly along the dislocation chains in the 
energy interval B, due to the strong strain disorder (see, e.g., 
Refs. 12, 13); Eja and Fa are the electronic part of the DBB 
energy and the EPI constant for the state a ;  and M is the 
triplet spin projection. The DBB correlation energies U, U, 
and U,, which depend on the total charge and spin of the 
DBB, and the EPI constants at the DBB F,, F,, and F,, were 
introduced in Ref. 6. It should be noted that the difference in 
the values of the EPI constants F, and F, [see (2) ] for the 
singlet and triplet states of the DBB is connected with the 
fact that by virtue of the Pauli principle the spatial parts of 
the electronic wave functions are different in these two 
states. 

The electron and phonon variables in the Hamiltonian 
&Po are decoupled by the following polaron canonical trans- 
formation, which also includes a bipolaron transformation 
for the two-electron states (nj = 2): 

where cj+ and c, are creation and annihilation operators for 
the local phonon mode of the jth DBB with characteristic 
frequency o,. The result has the form 

Here Q, and W, are the polaron (n, = 1) and bipolaron 
(n, = 2) coordinate and energy shifts, respectively; 3, is 
the Huang-Rhys factor for the state a ;  gJa as opposed to E, 
in (2)  denotes the ground-state energy of a polaron (n, = 1 ) 
and a bipolaron (n, = 2) at a DBB, which equal the corre- 
sponding thermoionization potentials with opposite sign. 

In studying the transfer of correlated electrons (n, = 2, 
a = Sor  T) in the DBB system it is also necessary to investi- 
gate a decoupling procedure analogous for (4); however, 
this procedure will involve variables only of the correlated 
electrons of the DBB, while the variables of the background 
electrons are excluded. To implement this procedure, we 
change from the bipolaronic canonical transformation to the 
usual polaronic one, which corresponds to relaxation of a 
two-electron center which is being singly ionized. The re- 
duced polaronic canonical transformation we seek has the 
form 

where the index "0" refers to the background electrons 
(n, = 1, a = D); Pj, andPp are projection operators for the 
t~o~elec t ron  and one-electron states of the DBB, respective- 
ly: ?& is a product of factors of the form (see, e.g., Ref. 14) 

i 
exp [-, ( ~ j a ~ a - ~ ~ ~ ~ ~ ) ]  

which correspond to spin-dependent translation operators 
for the jth oscillator at the value of the polaron shifts. 

According to Ref. 6, the correlated electrons of the 
DBB are described by one-electron wave functions which 
take into account the multiplet spin correlations. The spin 
partsofthelatterx, ( a = S )  andx, (M=O, t_ 1 ; a =  T ) ,  
which depend on the electron spin projection a and on the 
spin variables 6, of the background electrons of thejth DBB, 
are determined by the relations 

where u, are the usual spinors. The spin projection 0; of 
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background electron is related to the parameter 
5, = (1 + uj')/2 = 0,l. 

Based on (5)-(7), it is easy to show that the usual hop- 
ping term &", in the original Hamiltonian for the DBB elec- 
trons (for simplicity we will neglect the contribution from 
two-electron hopping) can be written in the form ( a  = S o r  
T )  

(8)  
where 

'/Z[eib+ (I-Ei) (1-gj) 1, a=S or (T, M=O), 
i a= (T,M=l) 
( 1 -  a= (T, M=-I). (10) 

Here I F )  is the bare resonance integral, which depends on 
the radius vector R,, connecting DBB with indices i a n d j  
6,: and b,, are creation and annihilation operators for a 
correlated electron on a DBB in state a.6 

The energy (h,) of local phonons associated with the 
defect vibrational modes of the DBB can exceed the Debye 
energy fiw, which determines the maximum of the spectrum 
of the three-dimensional acoustic phonons near a semicon- 
ductor dislocation (h, > fiw, > k, T )  .6 Therefore the spin- 
correlated thermally-activated hopping of SP along the dis- 
location chains has an adiabatic character, i.e., it proceeds 
by weak inelastic tunneling between equilibrium positions in 
the lattice without exciting local phonons of the defect 
modes. In practice, the amplitude of such hops is propor- 
tional to the effective hopping integral, which is obtained 
from (8) after averaging over the thermal distribution of 
local phonon modes of the DBB. Using obvious relations for 
thermal averages for arbitrary i and j: 

(via-'v,,>= exp [-Rae (2(N)+1)] xKo(Qo-Q.), 
(11) 

(N>= [exp (tioolkBT) -11 - ' e l 7  

we obtain 

where KO is the spin-dependent tunneling factor KN intro- 
duced in Ref. 6 evaluated at zero phonon number for the 
mode of the final DBB state ( N  = 0).  

In agreement with the results of Hol~te in , '~ . '~  the effec- 
tive spin-dependent hopping integral ( 12) for a narrow band 
of small polarons and bipolarons is proportional to the tun- 
neling factor. Consequently, the probability of spin-correlat- 
ed adiabatic hopping of SP between DBB, as in the problem 
without spin correlation (see, e.g., Refs. 16, 171, depends 
quadratically on the tunneling factor. Physically, this depen- 
dence reflects the fact that the inter-site hopping of a charge 
carrier is accompanied by simultaneous tunneling-induced 

structural rearrangements of the original and final centers. 
It must be emphasized that according to ( lo),  (12) 

both intercenter tunneling hops and thermally-activated 
hopping of electrons between the DBB (Sec. 3) are spin- 
correlated: as a consequence of the local spin correlation 
( 1 ), (2)  there arises a dependence of the hopping probabili- 
ty on the spin state of the DBB system. The following condi- 
tion serves as a criterion for existence of such correlation: 
spin correlation exists when the probability of intercenter 
hopping, taking into account (12) (Sec. 3), exceeds the 
probability of spin relaxation at the DBB, as occurs in sili- 
~ o n . ~ . ~  The advantage of using the single-electron wave func- 
tions introduced in Ref. 6, which include local spin correla- 
tion at the DBB (7), lies in the possibility of reducing a 
three-body problem, i.e., the intercenter hopping of a corre- 
lated electron when a background electron is present at both 
the initial and final centers to interact with it, to the single- 
electron problem (7 ) ,  ( 12) with subsequent averaging over 
the spin states (CJ ) of the background electron system at the 
core of the edge dislocation. 

The overlap integral (12) depends on distance in an 
essentially exponential fashion. Therefore the spin-correlat- 
ed transfer is characterized by the final-state correlation 
length-the diffusion length for charge carriers in the DBB 
system, which corresponds to the spin-lattice relaxation 
time of the background electrons (Sec. 5.2). 

3. KINETIC EQUATION FOR ELECTRON TRANSFER IN A 
NARROW BAND 

A fundamental consequence of the spin correlation at 
broken bonds is the fact that for an S- or T-center with fixed 
spin projection certain sites in the DBB system are forbidden 
on the basis of spin: 7, = 0 in ( lo) ,  ( 12). Calculations of the 
probability of spin-correlated adiabatic hopping of SP 
between states of the DBB a = Sor  Tare based on the use of 
the pairing appro~imation '~-~ '  for single-electron wave 
functions of correlated electrons of the DBB.6 In order to 
simplify the notation, in what follows we omit the state index 
a and the spin variables {lJ } [see ( 12) 1, although it is neces- 
sary to average over these variables at the end of the calcula- 
tion. In the limit of weak overlap [Eq. ( 12) ] the wave func- 
tions of a correlated electron in the spin-dependent pairing 
approximation have the form 

where the energy difference Aq of antibound and bound 
states in a pair takes into account quantum-mechanical level 
repulsion; the probability distribution function for the dif- 
ference Xii = gi - gj of random deformation potentials at 
the centers is expressed by the quantity Bo introduced above 
(Sec. 2), and has a triangular form 

6(X) is the Heaviside function. 
Let n, (E) be the distribution of correlated electrons at 

the ith DBB, where the carrier energy E varies within a nar- 
row band of width B. Then the arrival (upper sign) and 
departure (lower sign) probabilities for adiabatic hopping of 
an SP referred to a state with indices (i, E) have the form 
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where 1 Cq l 2  = Z2q/2 Vpvsfi is the square of the matrix ele- 
ment for the deformation-acoustic (DA) electron-phonon 
interaction, E is the deformation potential constant, 
wq = us q and SJ, are the frequency and occupation number 
of phonons with quasimomentum q, v, is the longitudinal 
sound velocity, p is the density, and V is the normalization 
volume. It should be emphasized that the interaction of elec- 
trons with local modes of the DBB in ( 15) is included exact- 
ly through the reduction transformation (5), and in this 
sense the intercenter transitions are single-phonon. 

Within the pairing approximation ( 13), the square of 
the total matrix element averaged over angle in ( 15) coin- 
cides in form with the same quantity where spin correlations 
are absent" (p  is the cosine of the polar angle) : 

4 

Here we have used bounds on the energy transfer during an 
intercenter hop in the form 

o o ~ a  
f io , -~ i j<hwD,  qa m >a < - < 1, Rijba, qRii>l, 

U s  us 

where a is the localization radius of the basis states of the 
DBB. We cast (15) in the form of an integral over energy 
transfer: 

where w; is the differential probability of arrival and depar- 
ture for a given site i. The averaging over the deformation 
disorder ( 14), which we denote with an overline, reduces to 
replacing the probability in (18) by corresponding quanti- 
ties of the form 

E21elJ 
wu+ (e) = wij+ (8, X )  = - 

2npvs5A4 d i j ( e )  [ @ ( & ) f i ( e )  

It  is important to explain the bounds on the energy transfer E 

which arise in the course of obtaining (20) : they are a conse- 
quence of the properties of the distribution ( 14), and have 
the form 

According to ( 18)-(20), the kinetic equation which 
describes spin-correlated diffusive transfer of adiabatic SP in 
narrow bands of S- and T-centers on broken bonds has the 
form 

where the effective arrival probability summed over sites 
and the differential (in energy transfer) diffusion coefficient 
are 

d is the dimension of the space. The limits of integration in 
(22) are determined not only by the boundaries of the Bril- 
louin zone, but also by the energy E of carriers in the narrow 
band, i.e., 

Emin=max(-hwo, E - B ) ,  e,,=min(fioo, E ) .  (24) 

It is obvious that the sum of the first two terms on the 
right side of Eq. (22) is the usual DA phonon collision inte- 
gral, which describes the local thermalization of the corre- 
lated electrons. The structure of the diffusion term in (22), 
taking into account (24), allows us to draw the conclusion 
that the effective diffusion velocity along the broken bonds 
in semiconductors depends significantly on the average en- 
ergy of the electron distribution in the narrow band, i.e., the 
effective diffusion coefficient changes in the process of ther- 
malization; this fact is very important from the point of view 
of applications (Sec. 5). Equation (22) for d = 1 coincides 
in form with the diffusion equation for spinless hopping 
transport in the absence of polaron effects obtained in Ref. 
22 within the framework of the one-dimensional theory of 
electron localization at nonzero temperatures. 

4. SPIN-DEPENDENT ADIABATIC HOPPING OF SMALL 
POLARONS 

4.1 Isotropic DBB systems 

In order to describe the spin-correlated transport of 
adiabatic SP along broken bonds, it is necessary to evaluate 
sums of the form (23). The calculations reduce to determin- 
ing the energy-dependent probability for variable-range 

Such sums are calculated approximately to 
logarithmic accuracy; to leading order, the resulting trans- 
port quantities contain the "Mott logarithm" to a power 
which equals d - 1 for W(E) and d + 1 for D ( E ) .  For our 
purposes, this approximation is insufficient, because the 
transferred energy E can vary over wide limits; it is especially 
important to take this into account in studying the thermali- 
zation which accompanies transport along the broken 
bonds. 

The summation over sites in (23) can be treated like an 
averaging over distances between bonds of the DBB. In 
transforming the sum over sites into an integral over bond 
distance R it is necessary to cut off a certain region in the 
vicinity of the origin whose size and shape is determined on 
one hand by the geometric characteristics of the overlap in- 
tegral, and on the other hand by the ratio of atomic lattice 
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constants. In the case of a spherically-symmetric overlap in- 
tegral 

Iu+I(R) = I 0  exp (-RIG), Io<O, (25) 

the cut-off region is a sphere with radius R, on the order of 
the distance between broken bonds a,. The quantity (23) 
can be cast in the form 

1 
W ( E ) = ~ ( E )  Jd-l(~), D(e)= -S(e)ld+l(e), 

2d 

where r ( x )  is the gamma function. As a result, the problem 
reduces to calculating the integral 

1. (8) = 8% 5 Rn dR I' (R) {I ez-4P (R) 1 -'I2 - Bo-'1. (27) 

The limits of integration are determined by the region of 
variation of s; in agreement with (2 1 ) we have three signifi- 
cant regions: 

(I) O<le16el, R.<R<w, 

(11) <Bo, Ro6R<o0, (28) 

(111) BOG) el<B, Ro6R<R,', 

where the following notation is introduced: 

e,=max 2111 =21101 exp (-Ro/a), B=maxlel =(B,'f eIP)'", 

is the energy corresponding to the maximum overlap at 
the dislocation chain; R, is the Mott 10garithm.~' 

After the substitution z = exp[ - 2(R - Re )/a], the 
integral (27) is calculated exactly and is expressed in terms 
of derivatives of Euler's incomplete beta-function. Using a 
representation of these derivatives in terms of the hypergeo- 
metric function in the form of an infinite series, we have 

1 
In (e) = - e4IO2 ak~;, 

4 k-0 

According to (28), (291, the parameter z,,, equals 1 in 
region I and in regiohs (11)' (III),  while z,,, equals 
0 in regions I, 11, and ~-(B,,/E)' in region (111). The repre- 
sentation (30) is the expansion of the integral (27) in the 
Mott logarithm, and for very small E (region I )  the leading 
order of this logarithm gives the basic contribution; this co- 

incides with the basic result of the theory of impurity-band 
conduction due to variable-range h ~ p p i n g . ' ~ . ~ ~  In the theory 
of phononless hopping conductivity2' the integration over E 

is absent: E = 3 0 ,  where 0 is the frequency of the AC elec- 
tric field. 

As a consequence of ( 12 ) , the tunneling-induced small- 
ness of the quantity I I,[ in (25) limits the applicability of the 
Mott-logarithm approximation to the very narrow region I, 
because E, is much smaller than keT and ho. Herein lies the 
principal difference between the spin-correlated transport of 
SP in a narrow band ( B  2 B,>E] ) under discussion here and 
the well-known theory of hopping conductivity. So as to 
clarify the character of the behavior of J,  (E) in the most 
important region (11) of variation of the transferred energy, 
it is sufficient to investigate (27) in the limit J E  1 BE ,. AS a 
result, we obtain 

Taking into account (26), the behavior of w (E) and D(E) in 
region (11) for arbitrary n is described by the inverted pa- 
rabola ( I E I  - e2/B0). The approximation agrees well with 
the result of evaluating the integral (27) numerically (Sec. 
2), excluding the very narrow boundary regions (11) and 
(111). 

4.2. Anisotropic DBB systems 

The real wave functions and overlap integrals on a DBB 
chain are anisotropic.22 In addition, a system of semiconduc- 
tor dislocations can be treated approximately as an aniso- 
tropic lattice of allowed sites. Each of these types of anisotro- 
py can be taken into account in a common fashion if we 
generalize the results of the previous section after applying a 
scaling transformation to the lattice. 

Let the overlap integral depend on the radius vector 
connecting any two DBB and not just on its absolute value: 

Let us also assume that the dislocations form a regular lattice 
on the average with a constant b, along the dislocation axis 
and a constant b2 in the plane perpendicular to this axis. 
Obviously, there is no dependence on azimuthal angle in 
such a system; therefore, in passing from the summation 
over sites in (23) to an integration over bond lengths, we 
obtain in place of (27) an integral of the form 

Here we have already performed the scale transformation 
R + R' ( Y /Yf  = Z /Z ' = a2/a, ), whichtransformstheover- 
lap integral ( 32) to the isotropic form (25 ) with a = a,. The 
transformed lattice constant in the plane perpendicular to 
the dislocation axis also changes: b2 + b ; = (a,/a2)b2. The 
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problem of calculating the integral over R ' in ( 33 ) reduces to whose explicit form will depend on the specific region deter- 
the problem (27) with the difference that the region of inte- mined by (35). Here all the remarks in Sec. 4.1 are applica- 
gration now depends on the polar angle (p = cos 0).  This is ble concerning the relations (27), (30), (3  1 ) (Fig. 2) .  
related to the fact that in an anisotropic lattice it is necessary 
to cut off not a spherical but rather an ellipsoidal region in 4.3. Change in effective dimensionality of the spin-correlated 

the vicinity of the origin, e.g., transport caused by thermalization of carriers in a narrow 
band 

~ , ( p )  = R ~  IP2+ (1-p2)/y2] -"', y=bzl/bl> 1, Ro-~ , .  (34) The importance of the 1 E 1 -dependent angular bounds 

It is easy to see that the angular dependence (34) leads to 
anisotropic spin-correlated transport of SP in the DBB sys- 
tem, i.e., to a dependence of the probability on the direction 
of hopping. 

Analysis of the limits of integration in (33) based on 
relations (2 1 ) and (34) shows that the range of variation ofe 
in the present case is divided into five principal regions, and 
at the band edges there are two characteristic angular scales 
(pl andp,): 

(35) 
where the definition (29) is used for a = a,: 

The bounds (35) have a purely geometric nature: they are 
angles which characterize the intersection of the ellipsoid 
(34) with spheres of radii RE or R : . The quantitiesp, andp, 
depend on the transferred energy E, and on the boundary 
regions they reduce to zero or one. For example, according 
to (291, (30) ,p2 reduces to 1 as I E /  - B  (region V'). This is 
important for the reason that in region V' the intercenter 
hopping of SP at large polar angles relative to the dislocation 
axis does not contribute to (33), because for Ip 1 < p 2  the 
region of integration over R ' disappears. 

Each region of transferred energy corresponds to a re- 
gion of hopping lengths; therefore, by calculating the inte- 
gral over r' in (33) we obtain the exact expression (30), 

FIG. 2. Results of computer calculations of the integral (27) as a function 
of the energy E transferred during hopping: I-n = 0,2-n = 2. The ar- 
row indicates the upper limit on the transferred energy (fwio,). In an aniso- 
tropic DBB system the boundaries between regions (I)-(111) are smeared 
out [see (35) 1, forming the transition regions (11')-(IV') from the three- 
dimensional regime to the one-dimensional regime of correlated DBB 
electron diffusion. 

which appear in (35) clearly manifests itself as a change in 
the dimensionality of the thermally-activated transport of 
SP in the narrow-band DBB system during thermalization. 
In practice, as we showed in our discussion of the kinetic 
equation (22), in addition to the bounds on the value of the 
energy transferred during hopping, there exist the overall 
bounds (24), according to which the energy E of a carrier in 
a narrow band for E < h, is an upper bound on the trans- 
ferred energy. Hence, in agreement with (35), the character- 
istic length for adiabatic hopping and its angular depen- 
dence are determined by one of the regions (I1)-(V') as a 
function of the magnitude of the carrier energy E. In the case 
investigated in Sec. 4.2 of a system of oriented dislocations, 
regions (1') and (11') correspond to the regime of three- 
dimensional diffusion, while regions (IV'), (V') correspond 
to one-dimensional diffusion; region (111') is a transitional 
region from one-dimensional to three-dimensional diffusion 
as \ E \  (or E) decreases. Drawing this conclusion allows us to 
analyze the integral (33) in the most important and broadest 
region (111'), which overlaps region (11); see (28) and Fig. 
2. The effective dimension of the diffusion is determined by 
the size of the angular integration region giving the principal 
contribution to the integral ( 33 ) . In region (111') we can use 
relation (3  1 ) for the radial integral, if in the latter we replace 
the radius Ro by R,(,u) from (34). Then the integral of inter- 
est is proportional to the following expression: 

1 

In the case of an anisotropic system ( y > 1 ) , the main angu- 
lar dependence is introduced into the integral (37) by the 
exponential factor, compared to which the powers of Ro(p)  
can be treated as slowly-varying functions. Then (37) can be 
written schematically in the form ( a  = ( y2 - 1 ) - ' < 1 ) : 

1 

It is easy to see that the required region of polar angles giving 
the main contribution to the integral (38) is determined by 
the inequality 

i.e., the interior of a cone in which the hopping occurs princi- 
pally in region (111'); the larger A, the narrower this cone. 
Thus, one-dimensional diffusion will dominate in the transi- 
tion region (111'), because the angles with I p l ~  1 corre- 
spond to motion along the polar axis in the anisotropic sys- 
tem. 

The tendency for the effective dimensionality to change 
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is clearly apparent in Fig. 2, if we take into account the 
bounds (24): the total range of variation of the average ener- 
gy (E) of carriers in a narrow band is divided into three 
subregions with different effective diffusion dimensions. The 
assertion that this change in dimensionality takes place is 
quite general, and is applicable not only to three-dimension- 
al but also to two-dimensional systems. In the latter case, 
relations (35), (36) preserve their form, while the only 
change in the integral (33) is in the power n, which has no 
effect on the results (38), (39). 

Let us estimate the characteristics of the spin-correlat- 
ed transport of S- and T-centers along the broken bonds. For 
an anisotropic system of parallel dislocations with a surface 
density A = lo9 cm-2 generated in plastically deformed sili- 
con, we have the following numerical parameters: 
a ,  = a 2  = a  = 1 , Ro=bl = a  = 5 , b2= A-"' 
= 3.10V5 cm, y = 600, a1I2y = 1, A  = 10, and p* = 0.9. 

Hence, according to (39), the diffusion is quasi-one-dimen- 
sional for almost all IEI, with the exception of the region of 
very low temperatures (k,  T (E,). For the case of a one- 
dimensional chain ( d  = 1 ), when the Debye energy is small 
enough that ko (B, in the neighborhood of the disloca- 
t i ~ n , ~ ~  the mean hopping time T can be cast in the form 

If the Huang-Rhys factor ( 1 1 ) (i.e., the optimum number of 
phonons for the multiphonon transition) for spin-correlated 
hopping SP, e.g., for a T-center, is taken to be 8 = 6, then 
the corresponding tunneling factor in (12) is found to be 
KO = 2.5. 10W3, E ,  = 21101exp( - A  /2) = 5-10-4 eV. For 
values of the parameters typical of silicon ( E  = 10 eV, 
p = 2.42 g m . ~ m - ~ ,  v, = 3.77. lo5 cm/sec, B , zB  = 0.06 
eV, k, = 50 K, T = 77 K) ,  Eq. (40) yields for r a n  estimat- 
ed value of 5 . 1 0 ' '  sec, which is in good agreement with the 
observed value.5 

The diffusion coefficient of thermalized carriers located 
at the bottom of the narrow band decreases by roughly two 
orders of magnitude compared to the estimated 
D, = 5. cm2/sec which follows from the data present- 
ed above. The decrease is proportional to the band energy E 
of a carrier [ E  < k, (24) 1. The average energy lost by a T- 
center in one intercenter hop amounts to roughtly k , ;  
therefore a T-center emits on the average about ten DA- 
phonons in the course of thermalization. Consequently, the 
thermalization time is two orders of magnitude smaller than 
the spin relaxation time for the unpaired background DBB 
electrons, i.e., .r = loV5 ~ e c . ~  

Depending on the temperature and physical conditions, 
the initial state of the DBB chain can include magnetic or- 
dering~ of para-, ferro-, and antiferromagnetic type.5s25 Then 
either the lj are realizations of a random quantity with val- 
ues 0 and 1, or all l, = 1, or the values 0 and 1 alternate along 
the chain [see ( 12) 1. The latter case is equivalent to dou- 
bling the period of the chain of spin-allowed sites. The de- 
pendence of the diffusion coefficient for polarized T-centers 
with M = f 1 on the spin state of the DBB system for the 
above three types of magnetic ordering, respectively, can be 
schematically represented in the form of the ratio 

where Pis the spin polarization of the DBB background elec- 
trons in the paramagnetic phase. For P = 0 the coefficient 
D, for the paramagnetic chain is four orders of magnitude 
smaller than for the ferromagnetic chain. Because exp 
( - A )  = 4.5. loV5, the diffusion coefficient of a polarized 
T-center decreases by the same amount in the antiferromag- 
netic chain as compared to the ferromagnetic chain. The 
latter estimate'demonstrates the important role of magneti- 
zation of the background DBB electrons in the transport of 
polarized T-centers (Sec. 5.2). 

5. EFFECT OF MAGNETIZATION OF THE DBB ON THE 
DIFFUSION OF POLARIZED T-CENTERS AND THE OPTICAL 
POLARIZATION OF NUCLEAR MOMENTS 

5.1. Effective residence time of a T-center on a given DBB 

There are effects associated with populating the dislo- 
catin chains not included in the kinetic equation (22) which 
can hinder the change in diffusion dimensionality in the 
course of thermalization. For example, the electrostatic 
fields of the S-centers on the chains block the diffusion of T- 
centers at the ends of segments of finite length, which 
hinders the transition to the three-dimensional diffusion re- 
gime. Such processes increase the effective residence time t,, 
of a diffusing polarized T-center at a given DBB, thereby 
enhancing the effect of magnetization of the background 
electrons of the DBB. 

In order to calculate t,, as a function of the average 
length L, of a segment of dislocation chain on which diffu- 
sion is blocked, we introduce the auxiliary quantity 
(x, =x+a , /2)  .. =. 

which is the residence time of a T-center on a site located at a 
distance x from the coordinate origin of the one-dimensional 
DBB chain when the T-center "starts off' from this origin at 
t = 0; D, is the average diffusion coefficient of a T-center 
(Sec. 4.3), and rT is the mean lifetime of a T-center. I t  is 
obvious that the summation (42) over all sites of the chain 
gives r,. The double integral (42) can be cast in the form 

where r( - 4, u )  is the incomplete gamma-function. Using 
the asymptotic properties of the latter26 and taking into ac- 
count that the characteristic scale of variation of the (42) is 
the diffusion length of a T-center I, = (DTrT ) i  %a,, we ob- 
tain for (43) the following estimate: 

where T = ao2/DT, (40). 
Now, along with (44) it is necessary to include the fi- 

nite length of the segments L, . It is obvious that for L, > IT 
the character of the diffusion does not change, and the re- 
quired effective residence time t,, for a T-center on a given 
DBB averaged over sites of the segment equals ( r , ~ ) ' ,  i.e., 
(44). In the opposite limit I, > L, the time t,, increases in 
proportion to the number of returns I,/L, because of the 
"walls" which bound the segment; therefore we eventually 
find that 
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FIG. 3. Dependence of the effective residence time t,, of a diffusing non- 
equilibrium T-center at a given DBB on the mean length L, of a segment 
of a dislocation chain. 

The function (45) shown in Fig. 3 was observed by the 
OPNM method in plastically deformed silicon, taking the 
form of a dependence of the degree of occupation of the DBB 
by equilibrium electrons from shallow  donor^.^ 

We can show that the balance of spin polarization P of 
the background electrons of the DBB interacting with polar- 
ized T-centers according to the Van Vleck mechanism has 
the form 

where Po is the equilibrium polarization of the background 
electrons, P, and No are the spin polarization and relative 
occupation of the M = 0 state of the T-centers, wf and w, are 
the spin-flip probabilities of a background electron due to 
interaction with a T-center and due to other spin-spin inter- 
actions in the system respectively (wf ) w, ). The case 
No = 0, T, # O  corresponds to completely polarized T- 
centers, while the case No = 1 (P, = O) corresponds to 
completely unpolarized T-centers. For No = 1, the T- 
centers are found to have no magnetizing effect on the back- 
ground electrons of the DBB, because the occupation of 
their polarized states (M = _+ 1 ) equals zero. For No = 0, 
P, = 0, the polarization of the background electrons re- 
duces to a value smaller than the equilibrium polarization 
Po. Hence, the factor 1 - No in (46) describes a weakening 
of the polarizing effect of the T-centers with increasing No. 
In view of (45 ), the solution of Eq. (46) averaged over mo- 
tion of the T-centers at the ends of a dislocation segment of 
given length L, has the form 

where T~ is the effective spin-spin relaxation time of an indi- 
vidual DBB, and P, is the maximum attainable value of 
polarization of the background electrons. 

5.2. Optical polarization of nuclear moments under 
conditions of polarization and magnetic ordering of broken 
bonds 

In silicon with edge dislocations OPNM arises because 
of hyperfine interaction of the 29Si with polarized T-centers 
formed by trapping of photoexcited electrons at a DBB.5*6 In 
weak magnetic fields the background electrons of the DBB 
which are polarized as a result of spin-correlated transport 
of T-centers along the broken  bond^^.'^." give a contribution 

to OPNM and to the nuclear spin-lattice relaxation (Sec. 
5.1 ). In order to investigate the influence of the effective 
correlation length (see the end of Sec. 2) and the magnetical- 
ly-ordered broken bonds on the process of spin-correlated 
transport, in this paper we have studied the OPNM in plasti- 
cally-deformedp-type silicon [N(B) = lOI3 cmP3]. The de- 
gree of deformation of the samples under uniaxial compres- 
sion ( T =  700 "C) comes  to^ = 5.1% ( A  = 1.2.109 ~ m - ~ ) ,  
the concentration of broken bonds N,,, = 5.2. 1016 ~ m - ~ .  
The presence of quasi-one-dimensional chains is monitored 
by the EPR m e t h ~ d . ~ . ~ ~  

The OPNM experimental method is described in detail 
in Refs. 5.17,28. We will dwell only briefly on the basic 
aspects: samples of plastically-deformed silicon are illumi- 
nated in a magnetic field with unpolarized light from a 200 
W filament lamp. In the course of our investigation we var- 
ied the light pump intensity, the value of the external mag- 
netic field (0.5 Oe-5 kOe) and the sample temperature (8- 
77 K) .  In order to measure the degree of OPNM Pn, the 
samples were transferred after illumination to a NMR radio- 
spectrometer magnet, where the magnetization of 29Si nuclei 
induced by the optical pumping was recorded. The magni- 
tude of P, is determined by measuring the amplitude of the 
NMR signal from the 29Si nuclei; the direction of the nuclear 
magnetization relative to the external magnetic field is fixed 
by the phase of the NMR signal. 

In the process of optical pumping the samples of plasti- 
cally-deformed silicon, photoexcited electrons from the con- 
duction band are selectively trapped on the magnetic sublev- 
els of the triplet DBB states, as a result of which polarized 
T-centers are formed which interact with nearby 29Si.5,27,28 
The nuclear magnetism which arises as a result of the hyper- 
fine interaction is propagated throughout the entire volume 
of the crystal by means of nuclear spin diffusion, which is 
reflected in the kinetic dependences of P, . The polarized T- 
centers, because of Hund's- rule interactions, can also orient 
the electrons of the dislocation chains in the course of spin- 
correlated hopping, which in turn induces a polarization of 
the 29Si with subsequent spin diffusion in weak magnetic 

From the experimental kinetic dependences 
P, = Pnm [ 1 - exp( - t /T I )  12',*" where P,, is the limit- 
ing degree of polarization established in the volume of the 
crystal, and TI is the nuclear spin-lattice relaxation time tak- 
ing into account spin diffusion, the characteristics of OPNM 
are determined as functions of pump light intensity, magni- 
tude of the external magnetic field, and temperature (Figs. 
4-6). 

FIG. 4. Dependence of the degree of OPNM on the magnitude of the 
magnetic field in unannealed single-crystal p-type silicon plastically-de- 
formed at 700 K by using uniaxial compression; E = 5.1 %. 
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T, , hrs P, , "/, 

FIG. 5. Dependence of the nuclear spin-lattice relaxation time T, (curves 
I and 2 )  and the degree of OPNM (curves I' and 2') on the pump light 
intensity I,,,,, in pl~stically-deformed p-type silicon: I, 1'-H, = 5 k0e; 
2.2'-1 Oe. 

Our investigations showed that the contact interaction 
dominates in the hyperfine interaction of a T-center with 29Si 
nuclei, while the polarized segments of DBB chains induce 
OPNM in weak magnetic fields because of dipole-dipole in- 
teractions (Fig. 4).  The behavior of Pn is described by well- 
known  function^^*^^.^': 

(a)  In the region of strong magnetic fields, 

where 6 is an indicator of the relative contribution to the 
OPNM of the contact and dipole-dipole hyperfine interac- 
tions (6 < 0 in the case where the contact interaction domi- 
nate~~' .~ ' ) ;  P,,, is the maximum degree of polarization corre- 
sponding to the region of forbidden crossing of the magnetic 
sublevels of the triplet centery; T,, is the spin-lattice relaxa- 
tion time of T-centers. 

(b)  In the region of strong magnetic fields 

werep, isdefinedinEq. (47) (N,zO, P,$-P,),l>O. 
The degree of OPNM does not depend on the pump 

light intensity I,,,,, (Fig. 5), because P, is practically con- 
stant as a function of the distance L, between nonequilibri- 
um S-centers, which is limited by the motion of T-centers 
along the DBB  chain^.^.^ At the same time, TI  increases as 
the pump light intensity decreases (Fig. 5),  because under 

these conditions the concentration of T-centers correspond- 
ing to the OPNM is decreasing: 1/T, a N,. In weak magnet- 
ic fields T, is practically independent of Ilight (Fig. 5), be- 
cause in this case the OPNM and nuclear spin-lattice 
relaxation are determined by the DBB concentration: 1/ 
TI cc NDBB. The decrease in Pn as I,,,, falls off in weak mag- 
netic fields (Fig. 5, curve 2') atteststo the important role of 
t,, in the process of polarization of DBB during the spin- 
correlated transport [see (47) ]. Under these conditions, the 
distance L, between S-centers decreasees, i.e., the mean 
length of a segment of the DBB chain which is polarized 
during spin-correlated transport of T-centers increases; as a 
consequence, t,, decreases (Fig. 3 ) ,  which gives rise to a 
decrease in PD , (45), (47). Some of the increase of Pn as the 
temperature decreases is caused by the increase in T,, [Fig. 
6; see (48) 1. However, since the samples under study had 
significant dislocation densities' ( A  =: 10' cmp2, T, a A- ' ) 
and were close to optimal from the standpoint of obtaining a 
high degree of OPNM (T,, zr, = lo-' sec at T = 77 K ) ,  
the growth in T,, as the temperature is lowered is only weak- 
ly reflected in the value of Pn . 

Let us examine the effect of decreasing TI as the tem- 
perature decreases (Fig. 6b) under conditions where the de- 
cisive contribution to the nuclear spin-lattice relaxation is 
from the DBB chains. The rate of nuclear relaxation in this 
case is described by the expression - 

where S is the diffusion radius of a nuclear  pin^^,^'; S is 
determined from the following relation: 1/T, = (6)  Ds/a2 
(D, = 2.4. lO-I4 cm2 sec-' is the spin diffusion coefficient 
for a 29Si nucleus in silicon; a = 6.5 A is the mean distance 
between 2ySi nuclei). The rate of local nuclear spin-lattice 
relaxation 1/T, ( r )  is proportional to the square of the total 
spin of the dislocation segment /II2 (Refs. 5,10), which 
grows as the temperature decreases because of magnetic or- 
dering of the DBB through T-center motion along the chain. 
The quantity 111 depends on the effective correlation length 
R, (see the end ofSec. 2) :  /I1 = (R,/a,)P,; R, = (DTr1):  
[D, = 5. lo-' cm2 sec-' is the diffusion coefficient of a T- 
center5; see also the estimate based on Eq. (40) I .  The spin- 
lattice relaxation time for DBB electrons (7,) grows as the 
temperature decreases,233 which leads to a growth of 111 and 
correspondingly of the probability (50). The calculated de- 
pendence of TI on T, (50), taking into account the param- 
eters of the samples under study, are in good agreement with 
the experimental results [Fig. 6(b) 1. It should be noted that 
the indirect exchange depends weakly on the distance 

FIG. 6 .  Dependence of the degree of OPNM ( a )  and time 
T, ( b )  on temperature for plastically-deformedp-type si- 
licon. The continuous curves are the calculated depen- 
dences. 
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between DBB in an ordered region of size R, by virtue of the 
diffusive character of the T-center motion, from which fol- 
lows the estimate of 111 presented above. An estimate of the 
DBB energy in the magnetically-ordered region, based on 
the self-consistent field approximation and the competition 
between indirect exchange via nonequilibrium T-centers and 
spin-Peierls dimerization, shows that the system under 
study becomes stable for T <  50-70 K. Hence, the decrease 
in T, as the temperature decreases [Fig. 6(b)]  is a direct 
proof of the appearance of magnetic ordering in the DBB 
system via motion of T-centers within it. 
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