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A quantum theory of the electromagnetic emission by relativistic particles incorporating 
channeling and the thermal vibrations of the crystal nuclei is derived. A general expression for the 
emission probability is found after an average over the initial polarizations of the particles and a 
summation over the final polarizations of the particles and over the polarizations of the photons. 
An average is carried out over the crystal states of the nuclei in the cases with and without 
excitation of phonons. The total emission is made up of channeling emission and bremsstrahlung, 
which are related to each other. During scattering by thermal vibrations, incoherent 
bremsstrahlung is produced. Some particular cases which determine the properties of the 
emission in the case of channeling are derived from the general expression and analyzed. 

1. INTRODUCTION 

The passage of relativistic particles with velocities 
v < c / n  ( c  is the phase velocity of light in vacuum, and n is 
the refractive index of the medium) through crystals results 
in the emission of electromagnetic radiation which is distinct 
from ordinary bremsstrahlung in an amorphous target. The- 
ories for channeling radiation1 and for coherent and inco- 
herent bremsstrahlung2 have been derived independently. 
Each type of radiation has been treated as a process unrelat- 
ed to the radiation of other types in these theories. In the case 
of the bremsstrahlung the problem has been solved in the 
Born appr~ximation.~.~ The interaction of a particle with the 
crystal over the "coherence length" results in the appear- 
ance of coherence and interference effects in bremsstrah- 

A more general radiation problem has recently been 
solved5 by methods of classical electrodynamics. The inter- 
action of a beam of relativistic particles with a crystal was 
analyzed there. The particles were assumed to be incident at 
small angles with respect to a crystallographic axis or plane. 
This assumption corresponds to a transitional type of chan- 
neling, in which channeling radiation and coherent brems- 
strahlung are manifested simultaneously. An important 
property was established in Ref. 5: The coherent brems- 
strahlung and the channeling radiation are interrelated and 
determine the resultant emission by the particle. In deriving 
a general theory it is necessary to consider the interplay 
among all radiation mechanisms (channeling radiation and 
coherent and incoherent bremsstrahlung) as the particle in- 
teracts with atomic planes and rows, the discrete nature of 
the crystal lattice, the thermal vibrations of the nuclei, and 
electronic excitations. 

The radiation emitted during spontaneous transitions 
of the channeled particles-the channeling radiation-is 
dominant in only part of the ~pectrum.~.' The coherent 
bremsstrahlung is dominant at disorientation angles greater 
than the critical angle for channeling. The theory derived for 
this radition by Ter-Mikailyan2 is applicable only under 
those conditions. Since it is important for interpreting ex- 
perimental data to have a theory for the entire bremsstrah- 
lung spectrum during the motion of particles in a channeling 
regime, it is necessary to derive a theory which would de- 
scribe the entire bremsstrahlung spectrum during channel- 
ing. 

We derive such a theory in the present paper. This theo- 
ry predicts the probability for electromagnetic emission, tak- 
ing into account the recoil and the spin polarization during 
inelastic scattering, under channeling conditions. This radi- 
ation dominates the hard part of the bremsstrahlung spec- 
trum, at electron or position energies from - 1 MeV to 10 
GeV; it is important far from the resonances of the channel- 
ing radiation in the soft part of the spectrum, at low energies - 1-10 MeV. 

2. FORMULATION OF THE PROBLEM 

A beam of relativistic charged particles in incident on a 
crystal at a small angle with respect to a crystallographic 
axis or plane. The thermal vibrations of the nuclei are of 
small amplitude, so the probability density P for a certain 
configuration of lattice nuclei can be written 

= [det (A , , )  1-!A ( 2 r ~ ) - ~ ~ "  exp ( - +z A,,u~u,), ( 1 ) 

where u,, u, (k, I = 1, 2 ,..., 3N) are the coordinates of the 
thermal displacements of the nuclei, and N is the number of 
lattice sites in the crystal. The multidimensional distribution 
( 1 ) is valid for both classical and quantum statistics because 
of its Gaussian form; the Gaussian form for the quantum- 
mechanical probability for the coordinate of an oscillator 
follows from the Bloch t h e ~ r e m . ~  It is not difficult to genera- 
lize this theorem to our case of a multidimensional distribu- 
tion which is determined by a quadratic form with coeffi- 
cient A,, . 

The interaction of a particle of energy E and spin 1/2 
with a scalar field V is described in the Dirac picture by the 
system of equations 

where we are using a system of units with c = fi  = mo = 1, 
the momentum operator is p = - iV, the interaction opera- 
tor is 

V= V,+A V ,  where A v=Vdf  Vth+V,, 

Vo is the average potential of an atomic row, and V,, V , ,  , 
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and V,,  respectively, are perturbations resulting from the 
discrete nature of the crystal lattice, the thermal vibrations 
of the nuclei, and the excitation of atomic electrons. 

A solution of Eqs. (2) is a bispinor of the type 

The meaning of the interaction operator can be understood 
from the expressions 

where 

V,=V,.( Ir-Rn()+(Ve,( Ir-R,-R,,() >, 
Ven=elZel(~-Rn 1, VeV,,=ele/lr-R,-R,, 1 ,  

r, R,, and R,, , respectively, are the radius vectors of the 
particle, the nucleus at site n, and the sth electron in atom n; 
s = 1,2, ..., z; e, and Ze are the charges of the particle and the 
nucleus, respectively; and (...),,, is an average over the ther- 
mal vibrations of the lattice nuclei. The radius vector of the 
nucleus in site n can be written in the form R, = R; + u, , 
where RE is the equilibrium position of the nucleus, and 
U, = (u,, - , , u,, - , , u,, ) is the thermal displacement of 
the nucleus from its equilibrium position. The configuration 
of the crystal is determined by the multidimensional ther- 
mal-displacement vector u = (u,, u,, ..., u,, ). We will as- 
sume below that the distribution function of the electrons in 
atom n, i.e., p(R,, ) is identical for each lattice site. If the 
particle beam is incident at a small angle from the z axis, the 
integration variable satisfies d r  = dz, and the coordinate de- 
pendence of expressions (3)-(6) can be described by 

If the particle beam is incident nearly in a plane, e.g., the xz 
plane, then we have dp = dp, a = (x,z), and an interaction 
v, = V,(Y).  

We will solve the problem in a coordinate system whose 
polar axis is parallel to the longitudinal projection of the 
initial momentum of the particle onto the channeling plane 
or axis. A distinctive structural feature of the interaction 
operator is an integration over the variable dr,  which is al- 
ways the same as the variables which run along the crystallo- 
graphic axis or plane. 

We transform the Dirac equation (2)  into an equation 

with a single unknown spinor: 

Since the energy of the particle satisfies ES V, the problem 
reduces in this case to one of solving the Schrodinger equa- 
tion 

where @(r)  is the coordinate part of the spinor Y. 
Using the solution of Eqs. (8) and (2),  we can calculate 

the radiation in first-order perturbation theory from the 
known9 expression for the probability for a spontaneous 
transition from state to state i :  

where the operator a is given by 

a are the Pauli matrices, x is the wave number of the photon, 
A is a polarization index, and 0, is the polarization unit 
vector. 

3. SOLUTION OF THE PROBLEM IN FIRST-ORDER 
PERTURBATION THEORY 

The state of the system consisting of the particle and the 
crystal can be described by 

Y (r ,u)  =- LVZ ( (up) v/ ( E + i )  

where v is the two-dimensional spin polarization vector of 
the particle, which satisfies the normalization condition 
v+v = 1; ~ ( u )  is a wave function which describes the crys- 
tal; A, = [ (E + 1 )/2E] ' I 2 ;  and we have I = 1 and 2 for axial 
and planar channeling, respectively. 

Using perturbation theory, we find a general solution in 
the form 

where the bispinor Yo is found from the equation 

H, is the Hamiltonian of the crystal, 

A0 Y --( 
O - L'IZ (up) V/ ( E f  1) 

and the four-dimensional matrix P is 

For simplicity we will discuss the excitation of phonons 
here; the excitation of electrons can be treated in a complete- 
ly analogous way. Using ( 12) and the notation introduced in 
Ref. 7, we can write the matrix elements of transition current 
( 1 1 ) as the series 
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a .  =a.  ( 0 )  (1)  ( 2 )  

,t ~r +aif +aif + . . . , 
whose terms are 

(1)  - C ( ~ . l A ( ~ ) + i [ o B ' " ]  I u.) 
sit - En(0)-E ( 0 )  I 

n f f  f 
( 1 4 )  

where 

B ( ~ ) = E ~ ( ~ ) ~ ~ - ~ I ~ ' - E ~ ( I ) ~ , I ~ ( ~ ) ,  s=O, 1,2, 

A ( ~ ) = E ~ ( ' ) ~ ~ I ~ ( ~ ) + E ~ )  u ~ - ~ I ~ ( ' ) ,  s=O, 1, 2, 

E:~*~~=E,, E:' =E,, E:") = E ~ .  ~ 1 ' )  =E,, 

a ,=[( l+Ei) / ( l+El)] ' " ,  a i=[( l+Ei) / ( l+Em)] '" ,  

a,=[ ( I+E,) / ( l+Ef)]  '". 

Here are the explicit expressions for the first three terms 
of the series ( 13)-( 15) ,  which we will be using below: 

1 
IJ')=-~ j e-'nr@$' (r)p,Of ( r )  d3r, 

ElL 
( 1 6 )  

( 0 )  I~ =-- I 1 e-inrO ( r )  p,@; ( r )  d3r, 
EiL1 

( 1 7 )  

E , I ~ ~ ) - E ~ I ~ ( ~ ) = x I ~ ~ )  , I,(')= Lj e-inr@i' ( r )  Dl ( r )  d3r, 
L' 

J ( 1 8 )  

I:" = 4 1 e-ixr@i' ( r )  AVnfp,@, ( r )  d3r, 
EnL 

( 1 9 )  

( i )  1  
I ,  = - -j eciXrOn ( r )  p,A Vnf@i  ( r )  d3r, 

EiL1 
( 2 0 )  

1 - 1 e-ixrAV,;@,' ( r )pLQf  ( r )  d3r, 
EIL1 ( 2 3 )  

1 
I:" = - J e-ixr@m'(r) avmi.mf ( r )  d3r. 

L ' ( 2 6 )  

The matrix elements of the perturbation operator are 

and the indices on the wave functions @, and xi, have the 
following meaning: i is the quantum-mechanical state of the 
particle, and i' is the state of the crystal. 

We will be using ( 16)- (26)  to find the probability 

Summing this expression over the final polarizations of the 
particle, averaging it over the initial  polarization^,'^ and 

summing over the photon polarizations DAB,, we find 

(.) + (p.2~.2-a,Z) I I 2  n, 1 '+G, I I!') 1 2 - 2 ~ ,  ( ~ e  (I:" n,) I:" ' ) ] 

(1) (1) o-'6 (%-xi,) h x +  (En"-;) -'(Emo-E,") -' j [ F ,  ( I 2  1, 

+F2 ( I , " ' I ~ ~ '  ') -2F3 (Re  (I:" n,) 1i2' * )  

- 2 ~ ~  (Fie (1:" n,) I:') *) ] ~ - ' 6  (%-xu)  d 3 x ) ,  ( 2 8 )  

where 

n is a unit vector in the emission direction, and 

a0='/2(EfIEi)"~(ao~+1) la,, 

al(z,='/z (En(f)lEicm))'h (a:+ l ) la , ,  s=l, 2, 

!0=~/2(Ei/Ef)" (1-aO2) la,, 

Pi(z)=11z(En(f)lEi(n))'h(l-a,2)la8, s=l, 2, 

6,= ( 2 ~ ~ ) - ' ( E i / E f )  'Iz, s=O, 1, 2 ;  o,=E,-E,, 

The first term (s = 0 ,  i.e., the zeroth approximation) in 
( 2 8 )  obviously corresponds to the known emission which 
accompanies spontaneous transitions of a channeled particle 
(Ref. 7, for example) and is of no particular interest here. 

At large angles of incidence the tranverse energy is 
large, El ) V,, so the channeling can be treated in the Born 
approximation: 

V"j 
Q j  ( r )  = erp (ipjr) + z-- exp ( i pnr ) ,  j=i, f 

~ Z I  Ej-En 

In addition, we can replace the wave functions by plane 
waves in the integrals in (19 ) - (26 ) .  The zeroth and first 
approximations in ( 2 8 )  also give us the known probability 
for coherent bremsstrahlung with a discrete transfer of 
transverse and longitudinal momenta, respectively, and for 
incoherent bremsstrahlung.' 

We turn now to the total emission probability ( 2 8 ) ,  for 
small angles of incidence, at which the channeling causes the 
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substantial change in the wave function of the particle. For 
soft radiation-the region where we find the peaks of chan- 
neling radiation-i.e., under the condition w ( E ,  with 
Ei ~ E , , I ; z I i , a n d I ;  z O  (s= 0,1,2),thegeneralexpres- 
sion (28) takes the following form when we take the thermal 
vibrations of the nuclei (and also the polarization) into ac- 
count: 

Following Ref. 1 1, we expand expressions (4) and ( 5 ) 
for the perturbation in a Fourier integral 

eIZe z { J exp[iq(r-R.) I 
V t h  = 7 

q2 
d39 

2n n 

and we write these expressions in a form convenient for the 
calculations below: 

[ z exP(--i¶~.) - (z e r p  (-iqR.) ) 1, (36) 
n n th 

where c, = eiZe/2d. 
From the conservation laws we can find the momentum 

q transferred to the crystal along the plane or axis, 

and that in the transverse direction, 

PI, t=ql+xl+p*. ~ + B I  

(here g is a reciprocal-lattice vector). Since the scattering 
probability decays rapidly for q > 2r/d (d is the lattice con- 
stant), we can ignore the Umklapp process. 

To separate the coherent and incoherent parts of (34), 
we sum and average over all of the crystal atoms an expres- 
sion of the type 

where ( 1 Q 1 ) = (il exp (iqu, ) [f ) is a generalized dipole mo- 
ment, and R, = R: + u, . This procedure is legitimate since 

the energy of the phonon is significantly smaller than the 
change in the transverse energy of the particle. 

In the dipole approximation in the scattering (q0u( 1 ), 
the right side of expression (37) can be written as 

After division by N -  a, the latter expression takes the form 

6 (q-g) exp (-qZu2) + [ 1-exp (-q2u?j-]. (38) 

It is worthwhile to take a detailed look at the case of 
emission accompanying elastic scattering (without a trans- 
fer of energy to the crystal) and the case of emission accom- 
panying inelastic scattering (in which the crystal is excited). 

4. ELASTIC SCATTERING 

In this case the emission results exclusively from a per- 
turbation which has nonvanishing diagonal matrix elements 
between states of the crystal. Using the results of the average 
over the thermal displacements of the nuclei found above, 
(37) and (38), we can write the probability for a nonphonon 
emission in first-order perturbation theory as follows: 

In, for example, the case in which the particles are incident 
along an axis, the integrals I i" and I i2' here are given by 

It follows from the form of the perturbations (3)-(6) 
that there is no interference between the different orders of 
perturbation theory. We see from (39) that there is coherent 
emission only in the case of scattering by an ideal crystal 
( U  = 0). In principle, incoherent scattering can also arise in 
the case u = 0, if the crystal lattice consists of different iso- 
topes. In this case the longitudinal momentum transferred 
by the particle is nonzero. In the general case with qll #0, the 
conservation laws for the nonphonon emission can be writ- 
ten 

In the case of ultrarelativistic particles, for radiation in 
the forward direction ( x  = x ,  ), we find from (42) 

During channeling, the left side of this expression is signifi- 
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cantly smaller than the reciprocal-lattice vector, so for 
qll - 27r/d hard photons with an energy w -2E '/d are emit- 
ted (in the case E < d /Ac, where A, is the Compton wave- 
length). These photons are formed over a single lattice peri- 
od, and no amplification occurs in this region. If, on the 
other hand, there is strong scattering, with AE, - l/d, soft 
photons can be emitted in the case qll #O with a large forma- 
tion length. In this case, however, the probability for the 
process is low, because the momentum transfer is large. If 
the momentum transfer q is nearly perpendicular to the mo- 
mentum p of the particle the longitudinal momentum qll can 
be a small quantity, on the left side of expression (43 ) . The 
family of reciprocal-lattice vectors g determines a crystallo- 
graphic axis which is nearly paralled to p. This case of a so- 
called transitional channeling was originally analyzed by the 
methods of classical mechanics and electrodynamics in Ref. 
5. 

5. INELASTIC SCATTERING 

It follows from expression (28) for the probability that 
when phonons are excited we need to sum over the final 
states of the crystal in expressions of the type 

(i 1 exp (-ixr) Vql n) Vq(n ( exp (iqr) If) I z n+ f A E , ~ ~ ~ + A E , , ~ ~ - c ~ ~ ~  

where V, = c,/q2, If) and li) are the final and initial states of 
the particle, If') and lit) are the corresponding states of the 
crystal nuclei, j is the index of a nucleus, and I m) and In) are 
intermediate states of the particle. 

Since we have AEIJn, AEIJ,,, ) AEiY, we can ignore the 
phonon energy AErY and sum over the final states of the 
crystal in expressions of the type 

v 

After summation, expression (48) can be put in the form 

N(1-1 <i'I exp (iqu) (i') 1'). (49) 

The superior bar in (49) means an average over the initial 
states. In the dipole approximation (qu ( 1 ), expression 
(49) take the following form after averaging: 

It  follows from the analysis above [see (44)-(50) 1 that 
when phonons are excited there will be only incoherent elec- 
tromagnetic emission. 

In the soft-photon approximation, the emission accom- 
panied by the excitation of phonons can be put in the form 
[see (28), (341, and (50)l 

(1) co j expr-i (x1pt-q,p) 1 J2 =- 
L'E, q2 

x @,(pl) mi* (p') @"&'(P)P ,@~(P)~P dp'. (53) 

In certain particular cases, it is straightforward to sum 
over the intermediate states of the particle in expressions 
(44)-(47). To detkrmine this possibility, we write the ener- 
gy conservation law: 

We consider the case in which a particle is moving along a 
crystallographic axis or plane under the condition v =. 1. Us- 
ing (54), we can write equations for the resonant frequency 
@ 0 7  

o0=(AEL, ~f+AEi*f~) / ( l -~ l l  cos 0) , (55) 

and for the frequency deviation, 

We thus see that for a large frequency deviation, qll ) AE,,,-, 
we can ignore AEl,,- and AErY in the denominators of ex- 
pressions of the type in (44)-(47). We can thus sum over 
intermediate states; for example 

(iJexp(-ixr)p,In>Vq(nlexp(iqr)If) I n + t  ' i 
x ( (i ( exp (-ixr) p, exp (iqr) I f )  1 ', (56) 

( i  1 exp (-ixr)pl 1 n) V,(nl exp (iqr) 1 f )  
((i 1 exp (iqr) I m )  

z(AE.,fr+AEL,jn-qll) *,n (AEi,j,+AE,,f.-qli) 

x V,<mJ exp(-ixr) 1 f ) ) '  

v," 
=- I (ilq,ex~[-i(x,-q,)r,l If) 1 2 .  (57) 

qllZ 
The coherent term contains a factor S(q-g), so we find 
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fixed frequencies for a given direction of x .  This term corre- 
sponds to coherent bremsstrahlung with channeling, and for 
it we can write an energy conservation law, with the help of 
(54): 

A combinational term AELSv, which was derived in Ref. 5 by 
a classical approach, has appeared in dispersion relation 
(58). The expressions for the coherent and incoherent 
bremsstrahlung contain matrix elements of the type 

I(il exp (-ixr)p, exp (iqr) / f) 1 2 ,  
[(ilexp(--ixr)p, exp(iqr) If)] ((ilexp [-i(x-q)r] I f ) ) ' ,  
which describe the effect of channeling on these types of 
radiation. 

The probability Wf can be then written in the following 
form, where we are taking account of the intermediate sum- 
mation, under the condition cqll ) A E ~ :  

The summation over the final states in the second term can 
be carried out approximately under the condition qll ) 2?r/d, 
in which case we can ignore the dependence of V, on the 
quasimomentum of the particle. As a result we find 

d3x 
x [ I  - exp (-q2uZ) I-. 

X 

In accordance with the assumption above, expression (59) is 
applicable in the part of the bremsstrahlung spectrum which 
lies in the frequency interval 2E ' I 2  V,,, /dp 4 w (E, where V,,, 
is the depth of the potential well, and d, is its width. Both of 
these conditions hold-i.e., the interval is nonzero-if 
E 'I2 <dp /2 V,,, 'I2. The value ofd, V ;  is - lo4, so we find 
the condition E<0.5.10%eV. The region of applicability 
of (60) is vastly narrower: 2n-E '/d & w <E. These conditions 
lead to the energy restriction E<dp/2?r- 10' (i.e., about 50 
MeV). 

6. DISCUSSION OF RESULTS 

Several general conclusions can be drawn from this the- 
ory for the motion of particles at a small angle with respect to 
an axis or plane. The dispersion relations which follow from 
the energy and momentum conservation laws found above 
show that transitions of different types are important in dif- 
ferent ranges of the radiation frequency and in different 
ranges of the disorientation angle. At a momentum transfer 
q = g there is a coherent bremsstrahlung, because of the dis- 
crete nature of the lattice. During channeling, i.e., at disori- 
entation angles below the critical channeling angle, this co- 

herent bremsstrahlung is generally suppressed dynamically, 
except in the case of transitional channeling, in which the 
orientation of the crystal is something between the axial and 
planar cases. 

The transitions associated with incoherent scattering 
with an arbitrary momentum transfer lead to an incoherent 
bremsstrahlung with a continuous spectrum. The magni- 
tude of the longitudinal momentum transfer, qll , determines 
the deviation of the frequency of the radiation from reso- 
nance. If this deviation is large (in the hard part of the spec- 
trum), we can ignore the change in the transverse energy in 
comparison with that in the longitudinal energy, and we can 
sum over intermediate states. In this case the incoherent 
bremsstrahlung is not the same as that in an amorphous me- 
dium, because it is described by a factor 1 - exp( - q2u2) 
and also because, as we see from (59), an average is taken 
over the distribution of the particle beam in the transverse 
plane. The latter averaging increases the incoherent brems- 
strahlung for electrons and reduces it for positrons. If the 
frequency deviation is small, i.e., if we are in the region of 
soft radiation, where we find the peak of spontaneous emis- 
sion of channeled particles, we need to carry out an exact 
summation of the nonresonant terms in (5  1 ) . These terms 
generate a continuum. The effect of channeling remains 
qualitatively the same as in the hard part of the spectrum. 
Analysis of the results shows that the contributions of the 
various mechanisms to the bremsstrahlung spectrum de- 
pend on the range of radiation frequencies under considera- 
tion, the energies of the particles, and the distribution of 
particles among transverse-energy states. The contributions 
are different for electrons and positrons. 

The regions in which coherent bremsstrahlung and 
channeling radiation are dominant are well known.6s7 The 
radiation which results from incoherent scattering is similar 
in nature and properties to incoherent bremsstrahlung in an 
amorphous medium: It has a spectrum which falls off mono- 
tonically with increasing frequency ( a l/w) at frequencies 
well above the channeling-radiation maximum. However, 
this radiation depends on the orientation of the crystal and 
the sign of the charge of the particle. Because of the redis- 
tribution of the particle beam during channeling, this radi- 
ation is amplified severalfold for electrons, while it is atten- 
uated for positrons. Correspondingly, there is an increase or 
decrease in the diffuse background in comparison with that 
for an amorphous medium. These conclusions are supported 
by the well-known experimental observations (see, for ex- 
ample, the review in Ref. 7) .  The level of the diffuse back- 
ground depends comparatively weakly on the energy. At low 
energies (1-100 MeV), at which one observes distinct and 
comparatively monochromatic peaks in the channeled radi- 
ation, the background level is several times lower than these 
peaks. As the energy increases, the height of the peaks of 
channeled radiation increases ( cc E 'I2), and these peaks 
broaden because of the contributions of higher-order multi- 
poles. Consequently, the diffuse background can be ob- 
served in this case only at high frequencies, far from the main 
channeled-radiation peak, specifically, at energies from 100 
MeV to 10 GeV. At higher energies, at which the channeled 
radiation becomes quite different from dipole radiation, it 
dominates the entire bremsstrahlung spectrum. It follows 
from (60) that the orientational dependence of the incoher- 
ent bremsstrahlung should be similar to that of the probabili- 
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ty for processes which require close collisions with nuclei 
(e.g., Rutherford scattering). 
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