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The three dimensional stochastic Navier-Stokes equation with a random force correlator - k(k + m2) -'is studied by the renormalization group method which is applicable beyond the 
&-expansion. Real IR pumping corresponds to the region ~ > 2 .  It is shown that the formulas 
A, = 1 - 2~ /3 ,  A,. = 2 + 2d3 ,  and A, = - A, = - 2 + 2E/3 for the critical scalingindices 
are only valid in the UV pumping range 0 < E < 2; fore22 the indices do not depend on E and are 
identical to the Kolmogorov indices. The second Kolmogorov hypothesis (independence of the 
viscosity coefficient) is substantiated in the real region ,522 by the renormalization group 
method. It is possible to prove the first Kolmogorov hypothesis (independence of m) for a 
simultaneous velocity correlator only for the region 0 < E < 2. In this region, an &-expansion of the 
form &'13p(&) is obtained for the analog of the Kolmogorov constant C,. He re ,p (~ )  is a series in E; 
the first term is C,  (E) = (40~ /3 )  'I3 which results in C, E 3 for real E = 2. For comparison, the 
experimental value is C, = 1.4-2.7. 

1. INTRODUCTION 

The basic problem in the theory of fully developed (ho- 
mogeneous, isotropic) turbulence of an incompressible liq- 
uid is that of justifying Kolmogorov's postulates from first 
principles, i.e., in the framework of a microscopic mbdel. 
The latter is usually taken to be stochastic hydrodynamics' 
described by the Navier-Stokes equation 

V tcp,=voAcp,-dip+Fi, Vt--at+ (cpd), (1 

where pi is the transverse (due to incompressibility) veloc- 
ity field, andp and Fare the pressure and transverse random 
external force per unit mass, respectively [all these quanti- 
ties are functions of XE (t, x)] ;  vo is the viscosity. We take 
for F a gaussian distribution with (F) = 0 and correlator 

where P,, = S,, - k,k,/k is the perpendicular projector 
and d(k)  is a given function of k= Ikl and parameters. The 
random force modulates the stochasticity and simultaneous- 
ly acts as an energy pump balancing the dissipation in the 
system. The pumping power E is connected with the func- 
tion d (k )  in Eq. (2)  by the familiar relation 

The pumping in a realistic model should be in the in- 
frared, i.e., the basic contribution in Eq. (3)  should come 
from the region of k 5 m, where m is the inverse characteris- 
tic size of the energy-pumping large-scale eddies. The func- 
tion d ( k )  in Eq. (2 )  should contain m and at least one pa- 
rameter for guaranteeing the arbitrariness of E for fixed m. 
The inverse dissipative length A= E '14v0-314 plays the role 
of a maximum momentum in the problem, i.e., an ultraviolet 
cutoff, where the Reynolds number Re = (A/m)4'3 for fully 
developed turbulence is of order lo4-10" The inertial range, 
characterized by the Kolmogorov scaling, is determined by 

the inequality m 4 k 4 A for momenta and 
E 113m213 4 w 4 voA2 for frequencies. 

It  is convenient to describe the basic quantities in the 
model ( 1) in terms of the pair of fields @=-p,p ', where 
g, ' 5 p i l (x )  is a transverse (as is p) auxiliary field. The de- 
rived quantities are statistical averages (Green's functions) 
(@...@), the most important of which are the velocity corre- 
lator ( p p  ) and the response function (44'). The Green's 
functions of the p-field can be considered either as dynamic 
(different-time) or static; the static Green's functions are 
independent of time for all fields. 

The basic propositions of the phenomenological Kol- 
mogorov-Obokov theory's2 reduce to the following two hy- 
potheses: 1 ) in the region k% m, w % v,m2, the Green's func- 
tions depend only on the total pumping power E and do not 
depend on its detailed structure, in particular on m; 2) in the 
region k(A, 04voA2, the Green's functions do not depend 
on the viscosity vo. Therefore, in the inertial range where 
both conditions are fulfilled, the only dependence is on the 
parameter E. Hypothesis 1 has various interpretations: in 
the standard treatments (Ref. 1, p. 391; Ref. 2, p. 189), it is 
formulated without any limitations (we call this variant 
lA),  while in some recent work, e.g., Ref. 3, it is assumed 
that m is absent in static objects, but may occur in dynamic 
ones (variant 1B). 

It follows from the Kolmogorov hypotheses and dimen- 
sional considerations that in the inertial range 

where r = Ix, - x,l, t = t ,  - t2, and f is an unknown scaling 
function of the dimensionless arguments Et 3r-2 and mr. Hy- 
pothesis 1A allows a dependence only on the first argument, 
but hypothesis 1B allows a dependence on both arguments 
that necessarily vanishes at t = 0. In any case, the equations 
given express scaling invariance with respect to consistent 
dilation of the fields, coordinates, times, and m for fixed E 
and vo with definite Kolmogorov indices 
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where the momentum scaling was taken as unity, 
A k - - - A r = l .  

Many studies (see, e.g., Refs. 3-9) have been devoted to 
the problem of justifying the Kolmogorov hypotheses. The 
conventional approach is to consider schematic self-consis- 
tency equations with dressed lines and to pose the problem of 
proving the existence of Kolmogorov-type solutions to these 
equations. The basic problem in this approach is the exis- 
tence of infrared (IR) divergences in the schematic graphs 
with Kolmogorov lines. In spite of some success, a generally 
accepted solution does not exist at this time. Another com- 
paratively new approach, the use of quantum-field tech- 
niques of the renormalization group (RG) has been used 
successfully in solving the critical scaling problem in the the- 
ory of critical phenomena. 'o-" The RG method explains the 
origin of the scaling and provides a method of calculating the 
critical indices analogous to Eq. (4)  in the form of a series in 
the parameter &=4 - d, the deviation of the dimensionality 
of space x from four, whose actual value is E = 1. This tech- 
nique was generalized to the theory of turbulence in Ref. 14, 
where model 1 with the specific function 

in the correlator (2)  was considered. The constant go in Eq. 
(5) guarantees the arbitrariness of E, and m is the infrared 
mass (the indices 4 0 %  indicate parameters which will be 
renormalized; m will not). The parameter E in the exponent 
of Eq. (5) is the analog of 4-d in the Wilson scheme. Real IR 
pumping corresponds to the region ~ 2 2 ;  for 0 < E  < 2 pump- 
ing in Eq. (5) is in the ultraviolet (UV) and a cutoff at A in 
Eq. ( 3 )  is understood. The RG method in Ref. 14 showed 
the existence of a critical scaling with indices 

(without corrections of order E', E ~ ,  etc.), coinciding with 
Eq. (4)  for E = 2. Results of Ref. 14 were subsequently aug- 
mented and generalized (the dimensionality of the compo- 
nent operators was and magnetohydrodyna- 
mics" and turbulent mixing of passive impuritiesI8 were 
studied). 

In all these treatments only the &-expansion of critical 
dimensionalities was considered, in actuality always a mass- 
less model with m = 0 in Eq. (5 ), because the dimensionali- 
ty does not depend on m and the coefficients of the E-expan- 
sion diagrams are finite for m-0 in agreement with 
hypothesis 1A. However, this proves nothing for finite E be- 
cause in the diagrams a UV-divergence appears for m -0 
(the function m l - "  is a simple example; its coefficients in 
the &-expansion are finite for m -0, but it itself diverges for 
E > 1 ). Questions concerning hypothesis 1 were not dis- 
cussed in Refs. 14-1 8 and they generally are unrelated to the 
validity of RG because there the asymptotic case m -0 for 
finite E was considered; this is a case for which the scaling 
functions are undetermined by the RG method. 

The second previously undiscussed question is the con- 
nection to the real parameter E and the problem of how the 
critical indices ( 6 )  in all regions E )  2 are frozen at their 
Kolmogorov values for E = 2. In the massless model E > 2 is 
not allowed due to the IR divergence ( 3 )  and thus E = 2 is 
taken as the actual value. However, form #O any ~ 2 2  corre- 
sponds to some model of IR-pumping and the indices should 
not depend on E .  

In this paper we consider the question taking into ac- 
count m in Eq. (5) outside of the framework of the E-expan- 
sion. The basic results are the following: 1 ) The RG method 
is used to justify hypothesis 2 (independence of vo) for ,522; 
2) The same method is used to justify the critical scaling for 
fixed E and vo with indices ( 6 )  for 0 < E < 2 and indices (4)  
for ~ 2 2  [The freezing of the indices ( 6 )  at their values for 
E = 2 is due to the dependence ofgo in Eq. (5 ) on m for fixed 
El ;  3) The devklopment analogous to Ref. 3 of infrared per- 
turbation theory leads to a proof of hypothesis 1B in the 
interval 0 < E < 2; for the Kolmogorov constant in the spec- 
trum of the static correlator' in the interval 0 < E < 2, we 
obtained an &-expansion of the form E ' / ~ ~ ( E ) ,  whe rep (~ )  is 
a series in E whose first term (40~/3)  'I3 is (80/3) 'I3 3 for 
E = 2 (the experimental  value^'.'^ are 1.4-2.7). The basic 
unsolved problem (unrelated to the validity of the RG meth- 
od) is justification for E > 2 of hypothesis 1B ( 1A is necessar- 
ily false). 

For greater clarity and to establish analogies with the 
theory of critical phenomena, we consider simultaneously 
model 1 and the standard p model of critical statics, eluci- 
dating in detail the ideas and techniques of RG. 

2. INFRARED SlNGULARlTlES OF PERTURBATION THEORY 
DIAGRAMS 

We consider the problem in the quantum-field formula- 
tion, having in view a model of a classical random field @ 
whose correlation functions (Green's functions) are deter- 
mined by functional averages with weighting exp s(@), 
whereS(@) is a given action functional. It is known that any 
stochastic dynamics of the form ( 1 ) is completely equivalent 
to some quantum-field model (for a short proof, see Ref. 
15). In particular, our problem is the equivalent of the theo- 
ry of two transverse vector fields @ = p,p ' with action 

where D, is the correlator (2) with the function (5).  Neces- 
sary integrations over the arguments x and summations over 
indices are understood. The Green's functions of any field 
model have standard Feynman diagrams. For Eq. (7)  they 
coincide with the diagram technique of W~1d.l .~ The lines in 
the diagrams are associated with the bare propagators 
(@@),; for the model (7)  in thew, p-representation we have 
(p ',p = 0 and 

where d(p)  is given by Eq. (5).  From the vector indices, 
which are omitted in Eq. (8) ,  all lines are multiples of the 
transverse projector. The interaction (7)  corresponds to the 
three-line vertex 

with vertex multiplier 

where, in the momentum representation a+ - ip, for mo- 
m e n t u m ~  flowing into the vertex through the field p '. 

To each object P in  Eq. ( 7 )  one can assign definite mo- 
mentum d$, frequency d g, and total d, = dP, + 2d $ ca- 
nonical dimensionalitiesI5, which are determined from the 
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TABLE I. 

requirement of nondimensionality (momentum and fre- 
quency separately) of each term of Eq. (7).  The dimensiona- 
lities are given in Table I along with the renormalized pa- 
rameters g, v, and M, which will appear below. 

We use for comparison the simplest static (time-inde- 
pendent) standard model with one scalar field p = p ( x )  
and action 

where integration over x is understood, go is the coupling 
constant (charge), and mi = T - T, is the deviation of the 
temperature T from the critical value. The model (9) is con- 
sidered in the d-dimensional space x with UV-cutoff 
A = r;,', where r,, is the interatomic distance. Each value 
of F in Eq. (9) corresponds to one (momentum) canonical 
dimensionality d, (see Table 11, which includes the renor- 
malized parameters). We note these differences: the dimen- 
sionalities of values in Eq. (9)  are completely determined by 
the dimensionality of the spaced while in Eq. (7)  they do not 
depend on d, except for p ', and for go are completely deter- 
mined by the parameter E in Eq. (5 ). 

In the theory of critical phenomena one seeks the 
asymptotic form of Green's functions in the regionp, mo 4 A 
(temperatures close to T,, distances large in comparison 
with r,,, ) for which one considers go = const A4 - with 
const 5 1. In order to be specific we consider the correlator 
D = ( p p  )in the momentum representation. It is found from 
the Dyson equation (p is the external momentum) 

where Z(p)  is an infinite sum of all 1-irreducible diagrams 
(see Fig. 1) whose vertices correspond to the multiplier go 
and whose lines correspond to the bare propagator 
( k  + mo2) - I .  We clarify the essence of the IR problem for 
dimensionality d = 4-2 (the actual value is 2~ = 1). For 
0 < 2 < 1 there are, in the first graphs of ( lo),  independent 
ofp and m,, algebraic UV-diverging terms g;f A2 - '"' (where 
n is the order of perturbation theory) which correspond to 
the simple shift T, in m: = T - T,. If we consider the value 
of T, in m: to be known exactly, it is necessary to discard all 
such terms. This is implemented by subtracting their values 
forp = mo = 0 from all graphs of the form ( 10). After these 
subtractions the integrals for 0 < 28 < 1 become UV-conver- 
gent, the cutoff A can be eliminated (taken as co ), and the 

TABLE 11. 

I 1 no. m. i. M I L / P 

d, 1 d i Z l  I 1 1 4 - d  I 0 

series ( 10) takes the form 

Forp - mo (A and E > 0 the dimensionless parameter of the 
expansion go p - '" - ( Ap- ) '" in Eq. ( 1 1 ) is not small and it 
is necessary to sum the series. This is the first IR-problem 
which is solved by the RG method. The second IR-problem, 
occurring in the region mo(p, is connected with singulari- 
ties of the coefficient c, in Eq. ( 11 ) for mo/p-+O and cannot 
be handled by RG. 

In a clearer formulation the first problem reduces to a 
determination of the asymptotic value of D, = D(Ap,Amo) 
for A -+ 0 (everything is fixed except for A). This procedure is 
nontrivial for E > 0 due to the presence in the c, of poles in E 

connected with the appearance of new UV-divergences in 
the graphs ( 10) for E = 0. We call the task of removing poles 
in E the UV-problem. It is solved by the UV-renormalization 
procedure whose arbitrariness leads to the equations of RG 
(Sec. 3) .  The connection of the IR- and UV-problems noted 
above (in the absence of the latter, the format is also absent 
for E -+ 0) shows how the UV-renormalization and the tech- 
niques of RG have a definite relation to the IR-problem for 
small E.  

All these things can be generalized immediately to the 
model (7) ;  the role of the charge is played by the parameter 
go in Eq. (5) and the parameter E in Eq. ( 6 ) ,  now totally 
unrelated to the dimensionality of space, plays the role of 4-d 
in Eq. (9) .  For the exact correlator D = ( p p  ) in the a, p- 
representation, an analogous of the series in the brackets of 
Eq. (11) is 

and the first IR-problem reduces to determining the asymp- 
totic value D, = D(Ap,Am,A ' a )  for A-0. We emphasize 
that this IR-problem is nontrivial also in the region of UV- 
pumping 0 < E  < 2. We also note that in this region, on the 
one hand, E = A4vO3 from the definition of A, but, on the 
other hand, ~-g,v:A~ - ZE from calculating Eq. ( 3 )  (more 
exact equations are given in Sec. 5); thus, go-A'" as in Eq. 
(9) .  The first IR-problem is solved by the RG method for 
any fixed (in the limit A -0) ratio m/p; thus the second IR- 
problem (for which asymptotically m/p-+O) can be dis- 

FIG. 1. The functions B(p) in the p4 model. 
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cussed in the framework of a general solution of the first 
problem. 

3. RENORMALIZATION AND THE RG EQUATIONS 

The UV-divergences (in this case poles in E )  of the 
models considered are removed by the multiplicative renor- 
malization procedure. It amounts to the following: the ini- 
tial; action S(@) is referred to as unrenormalized, its param- 
eters e, (the letter e designates the whole set of parameters) 
are referred to as bare; these are considered as some (remain- 
ing to be determined) functions of new renormalized param- 
eters e, with the new renormalized action considered as a 
functional S,,, ( a )  = S(Z ,  a) with some (remaining to be 
determined) constants of the renormalized field Z,  (one for 
each independent component of a). In the unrenormalized 
Green's functions W, = (@...a), the averaging is carried 
out with weight exp S(q5) and in the renormalized ones 
W r ,  averaging is carried out with weighting exp Sre, ( a ) ;  it 
follows from the connection between S and S,, that 
W','" = Z ;  " W,, where W, = W,, (e , ,~ ,... ) where the dots 
indicate other arguments of coordinates for momenta, and 
W',"" and Z,  are expressed correspondingly through the 
variables e. The correspondence e,ee is assumed to be one- 
to-one; thus, the independent variables can be chosen to be 
either of the two sets e, or e. It is considered in the renormal- 
ization equations that 

The functions e,(e,E) and Z,  ( e , ~ )  can be chosen arbitrarily 
corresponding to the arbitrary choice of normalization of 
the field and parameters e for given e,. The basic assertion of 
renormalization theory is that these functions can be chosen 
such that they guarantee the UV-finiteness (in this case fini- 
teness in the limit E-0) of the functions W?(e,&, ... ) for 
fixed e. For such a choice all UV-divergences (poles in E) 

appear in the functions e,(e,E) and Z ,  ( e , ~ )  and are absent 
in W','"(e,&, ...). 

The RG equations are written for the functions W y ,  
which differ from the initial W, only by normalization and, 
thus, can be used equally validly for a critical scaling analy- 
sis. We present a brief derivation of the RG equations. The 
requirement of eliminating singularities does not determine 
the functions e,(e,&) uniquely because an arbitrariness re- 
mains allowing introduction in the functions (and through 
them in W','") of an additional dimensional parameter, the 
renormalized mass M: 

W F  (e, M, E ,  . . .) =Zo-n (e, E )  W, (e, (e, M, el,  e, . . .) . 

Variation of M  for fixed e, leads to variations of e, Z, , and 
W? for fixed W, (e , ,~ ,... ). We denote by 3, the differen- 
tial operator Ma, for fixed e,. Applying it on both sides of 
the relation Z :  W','" = W, leads to the basic RG equation 

where gRG is the operator B,, expressed in terms of e and 
M. 

We turn now to our specific models. General rules exist 
(for an analysis of the dimensionalities of 1-irreducible 
Green's functions. see Ref. 20, Chap. 5) which allow one to 
determine which renormalization constants are necessary 

for eliminating the IR-divergences. Three of them are neces- 
sary for model (9): the field renormalization constant Z,  
and two parameters m, = mZ, , andg, = gM "Zg, where M 
is the renormalized mass, and the renormalized charge g and 
all constants Z are dimensionless. Their actual form depends 
on the choice of subtraction scheme. In the theory of critical 
phenomena and in Refs. 15-1 8 on turbulence, the most con- 
venient one in practice is the scheme of minimal subtrac- 
t i ~ n , ~ '  in which all Z have the form 

n-i k-i 

where a,, are numerical coefficients independent of any pa- 
rameters. It  follows from the definition of g,, and the re- 
normalization parameters according to the above equations 
that in this model 

Here and in the following, we use $9, r x a ,  for any param- 
eter of the renormalization theory; for any Zi 

These identities determine the Sfunction and the anoma- 
lous dimensionalities y,. We call these in general RG-func- 
tions. One calculates the renormalization constants Zi from 
the diagrams of perturbation theory and the RG-functions 
follow from Eq. ( 15). In more detail, for any Zi of the form 
( 14) we have from Eq. ( 15) 

where for i = g  it follows from Eq. (15) that 
p = g (  - 2.5 -Bag in Zg ); thus, the p - function is ex- 
pressed algebraically through a, In Zg , and the remaining yi 
for if g are calculated using yi = pag In Zi for the corre- 
sponding Zi . All RG-functions are constructed as a series in 
g and for constants of form ( 14) the functions yi (g) do not 
depend on E. 

This scheme is also applicable to the model (7).  Con- 
ventional analysis  show^'^.'^ that it is even easier than the 
model (9) from the point of view of renormalization because 
only one independent renormalization constant Z ,  is neces- 
sary for the complete removal of the IR-divergences (poles 
in E):  

Renormalizations of the fields in the parameter m are not 
necessary, i.e., Z,  = Zm = 1; thus, in Eq. ( 13) y, = 0, and 
the contribution of 9, is absent in gRG : 

It follows form Eqs. ( 15) in the last equality of Eq. ( 16) that 
y, = - 3y, and 

i.e., only the one RG-function y, ( g )  is independent. It is 
calculated via Z ,  as a series in g. Only the first coefficient is 
well knownI5; y, (g) = ag + ...; in the three-dimensional 
problem a = 1/20?. It follows from the positivity of a that 
thep-function ( 18) for small E must have a fixed point g, 2 ~ /  
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FIG. 2. Trace I is a graph of thep-function; trace I1 is a graph of gzx;trace 
111 is a graph of the solution of Eq. (27). 

3a + 0(.L2), at whichp(g, ) = 0, andp '(g, ) > 0. The behav- 
ior of the &function (calculated for small E and guessed for 
larger) is shown as a solid line in Fig. 2. 

4. SOLUTION OF THE RG EQUATIONS: INVARIANT CHARGE 

The fields in model (7) are unrenormalized; thus, 
W r  = W,, and there is a difference only in the choice of 
variables and the form of perturbation theory (in g or in go). 
We consider as a qualitative example the correlator 
D = (qq ) in the w, p-representation. In renormalized vari- 
ables D = D(p,m,w,v,g,M), where the perpendicular projec- 
tor in the vector indices is omitted and the function D is 
calculated as a series in g. In lowest order it coincides with 
the bare propagator (8),  with the changes v,-v and 
g,-+gM2' [see Eq. ( 16) 1. Hence, 

where the dots indicate contributions of higher order in g 
and R is some function of dimensionless arguments: 

R=R(s, g, z, u), s=p/M, z=o/vM2, usrnlp. (20) 

In agreement with Eq. (17), the function D satisfies 
g,, D = 0. Substituting Eq. ( 19) into this equation and 
taking into account Eq. ( 18), we obtain for R 

(recall that gx =xdx for any variable). The solution of Eq. 
(21) for known RG-functions can be written in the form 

dhere g = g(s,g) is the invariant charge, implicitly deter- 
mined by the relation 

and 
3 

where the second equality for Y follows from Eqs. ( 18) and 

(23) (in models of the type (9)  all RG-functions are usually 
independent). We note that the values g, Z, and ii = u are the 
first integrals of Eq. (21), normalized with respect to g, z, 
and u for s = 1. We show for illustration an explicit expres- 
sion for g obtained from Eqs. ( 18) and (23) in the one-loop 
approximation ( y, (g) = ag, a = 1/20g : 

Analogous equations for the static (simultaneous) cor- 
relator Ds,  = (27~) - ' ~dwD can be obtained by integrating 
Eq. (22) over o ,  but it is simpler to derive it from first princi- 
ples: in place of Eq. ( 19) we have (in the same notation) 

where the RG equation for the new function R (in lowest 
order R = 1/2) has the form LR = 0 with 
L = - 9, + /Idg + y,,. Its solution is R (s,g,u) 
= R(l,g,u)Y. 

When one calculates the function R in Eqs. (19) and 
(26) by perturbation theory, one introduces the parameters 
s - ~ '  = ( M P - ' ) ~ ~  lwhich grow as the order ingincreases, as 
illustrated by the series for g in Eq. (25). The RG equations 
show that these powers s -  2" form combinations ofg and Y, 
having, as we shall see, simple asymptotic forms for s-0. 

For future purposes it is important to estimate the value 
of the renormalized charge g. Initially in the model the bare 
parameters are given; the renormalized ones are expressed in 
terms of them through Eqs. ( 16) with arbitrary choice of M 
(the natural choice is M-A). For a given M and go, the 
value of g is found from 

The behavior of the right hand side as a function of g can be 
established, linking it with the B-function [see the discus- 
sion following Eq. ( 15) ] : 

and 
P 

where the term l/x guarantees convergence for x = 0. For 
thep-function shown in Fig. 2 the behavior of the right hand 
side of Eq. (27) is shown in the same plot by the broken 
trace; for g-g, it diverges. The graphical solution of Eq. 
(27) is shown in the same figure: one can see that some value 
of g in the interval (0,g. ) corresponds uniquely to any arbi- 
grary value of g,,k-2', i.e., g<g ,  -E is a small value for 
small E for any go. It follows from Eq. (23) that g(s,g) for 
any s = p/M is also located within the interval (0,g. ) , that it 
is a monotonic function of s, and that 

g(s, g)+g. for s=p/M+O. (28) 

In the approximation (25), g-g. = 2d3a  for s-0. 
The property (28) supplies a solution using Eqs. ( 19)- 

(24) of the first IR-problem, the determination of the 
asymptotic value for /2 - 0 of D, obtained from D in Eq. ( 19) 
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by the A-substitution 

p, m, o+Ap, Am, A2m; 

where M, g, and Yare fixed. For this substitution 

n = g  (AS, g) -+g. 

for R + 0 and from Eq. (24) we have 

Zn-$r-Azef', 

which in Eq. ( 22) leads to 

R(1, gn, %, u) +R( 1, g,, 0, u) 

for A -+ 0 (it is known from the diagrams that the limits exist) 
so that we find from Eqs. ( 19) and (22) the desired asymp- 
totic value 

Dh=Ch-3-2Ef3 

where the coefficient cis independent ofA and w. The depen- 
dence on A in the asymptotic value has disappeared because 
the A-substitution in Sec. 2 was chosen simply according to 
canonical dimensionalities. To obtain a more complete pic- 
ture of the asymptotic value, the critical scaling, it is neces- 
sary to change the form of the A-substitution. 

5. CRITICAL SCALING 

We consider a A-substitution of the form 

with some critical dimensionalities A,,, (A, = 1 is the nor- 
malization). When the function F with the A-substitution 
has a power-law asymptotic form FA -A AF, for Ado,  one 
says a critical scaling occurs for F, and the index A, = A [F] 
(the second designation is for complicated 3') is called the 
critical dimensionality of F. Property (28) guarantees the 
existence of a critical scaling (see below) for the model as a 
whole with definite critical dimensionalities of the fields and 
parameters. The dimensionality of the arbitrary Green's 
function in the x-representation is the sum of the dimension- 
alities of the fields that go into it while that in the momentum 
representation is obtained from the Fourier transformation 
relations, in particular 

The last inequality follows from the normalization to 
S(x, - x,) of the response function (p(x,  )p ' ( x , )  ) for 
t ,  = t2 + 0. 

We show that a scaling with definite critical dimension- 
alities actually follows from the equations of Sec. 4. It is clear 
from Eq. (28) that the asymptotic value for A + O  does not 
change if we make the substitution g+g. in the equations, 
which gives 

D=I)."vM2"p-"-'"(u) f (F, u), I=$.o~-'p-~ 

for the dynamic correlator and 

for the static one, where q. = (s2"g. g-I) 'I3, and l and  f are 
scaling functions: 

E (u) - (l+uz)-", f (u) =R(1, g., u), 
f(r, u)=R(I, g,, T, u). (30) 

It is easy to verify that with the substitution s = p/M, the 
values ofg, Y, and Mare always grouped so that they do not 
depend on M in the combination gy3M2' = govo3 (the rela- 
tion follows from Eq. ( 16) ), which leads to 

'h % D=ao g, (u) f ( E ,  U) , 
% YI 

D,, =ao g .  p-'-k'3sg (u) f (u) , (31) 

These equations for fixed a, and arbitrary functions f de- 
scribe the scaling with the dimensionalities (6); one can easi- 
ly be convinced of the consistency of the indices using Eq. 
(29). Justification of the critical scaling in models of the 
type (9)  can be carried out in the same way; the critical 
dimensionalities of the variables ei are determined in general 
by hi = di + yi (g. ), where d, is the canonical dimensional- 
ity and yi (g) is the corresponding RG function ( 15). Usual- 
ly all RG-functions P and yi are independent; thus, yi (g, ) 
can be expressed as a series in E. In our model there is only 
one independent RG-function y, (g); it follows from the 
connection ( 18) that the value y, (g. ) = 2 ~ / 3  is determined 
exactly without corrections~~, E~ etc., this is a unique feature 
of the model. It should be emphasized that the scaling is due 
to property (28), and this property in turn is due to the 
behavior of thee-function shown in Fig. 2. The smallness of 
E is needed only to guarantee this behavior; it is assumed that 
when E grows the picture deforms, but does not qualitatively 
change. Thus, g. continuously shifts, but does not disap- 
pear; this is the basis for belief that there is a critical scaling 
and that the indices are continuous in E for large E.  

In models of the form (9)  the parameter analogous to a, 
in the A-substitution is always fixed; thus, equations of type 
(31 ) are final answers for the critical scaling. In the theory 
of Kolmogorov-Obukov, one speaks about the scaling for 
fixed E and v,; thus, it is necessary to express go in Eq. ( 3  1 ) 
through the pumping power E to obtain final results. 

Performing the integration in Eq. (3) with the function 
(5)  and cutoff A gives 

The Reynolds number Re = (A /m)413 is of order lo4-lo6, 
so we have from Eq. (32) 

c,EAZ"' for 2>e>0, 
ao=govo3=EB (A, m, E )  (33 

where c, -4n2(2 - E), c2=c, (1 - E), and the determina- 
tion of the exact function B(/Z,m,&) in Eq. (33) is clear from 
comparison with Eq. (32); in particular B(A,m,2) z 2 d /  
ln(A/m) for E = 2. The simple approximations (33) are 
useful outside the transition region close to E = 2, which has 
a small width - l/ln Re; hence, we consider below that ap- 
proximations (33) are valid everywhere right up to E = 2. It 
follows from Eq. (33) that for the A-substitution with fixed 
E and v, (and A = E 1/4v,314), the parameter a, in Eq. (33) 
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in the region of UV-pumping 0 < ~ ( 2  is fixed. Thus, from 
Eq. (31 ), one has a scaling with dimensionalities ( 6 ) .  A 
dependence on v, remains in this region, entering through 
~ 2 ~ ~ 4  in a, and disappearing for E = 2. In the actual region 

of IR-pumping ~ ) 2 ,  the dependence on v, in a, disappears, 
but ao-m2E-4 for the A-substitution acquires the dimen- 
sionality A, = 2~ - 4. Thus, a scaling emerges from Eqs. 
(29) and (31) with different dimensionalities 
A,' = A, + A,/3 and A,' = A, + A,/3 which coincide 
with Eq. (4), as is easily seen. In this way we have proven the 
basic assertions 1 and 2 made at the end of Sec. 1. 

6. SCALING FUNCTIONS AND THE FIRST KOLMOGOROV 
HYPOTHESIS 

Equation (3  1 ) for D,, describes the critical asymptotic 
value in the regionp,m A for arbitrary u = m/p. The iner- 
tial range corresponds to the additional condition u<  l so 
that C(U) 2 1 [see Eq. (30)l.  Hypothesis 1B (se Sec. 1)  im- 
plies elimination of m in the term ~,; '~f(u) for u+O, i.e., 
taking into account Eq. (33) 

const=f (0) for 2>e>0, 
const U 4 ( 2 - e ) ~ 3  for ~ a 2 .  

Strictly speaking, the Kolmogorov theory is relevant only 
for the case of real IR-pumping with &>2; Eq. (34) is a gen- 
eralization to arbitrary E > 0. 

The scaling functions (30) are in no way fixed by the 
RG equations. They are systematically calculated by an E- 

expansion in the theory of critical phenomena: the initial 
functions R in Eqs. (19) and (26) are calculated as a series 
Z,gnR, of renormalized perturbation theory, where R, is 
the sum of contributions of diagrams of order n. For the 
substitution R = ZgnR, in Eq. (30), g-g., and expanding 
g. and R, in E,  we obtain the desired &-expansion of the 
scaling function; for example 

for DsT. It is important for the calculation of a finite order in 
E that there be a finite number of diagrams, since g, - E  and 
R, does not contains poles in E. 

We are interested in the asymptotic value as u -0. It is 
known from an analysis of diagrams that the coefficients 
f, (u)  of the &-expansion have only weak singularities of the 
type u In u, i.e., they are finite for u = 0; thus, one can postu- 
late hypothesis 1 in the framework of the E-expansion. How- 
ever, this does not prove it for finite E because for any E > 0, 
however small, there are diagrams diverging for m - 0. This 
is all true for models of type (9); in the general case the 
argument of the scaling function is the invariant quantity 

where y, * E y, (g, ) is the anomalous dimensionality of the 
parameter m (for us y, = 0 due to the absence of a renor- 
malized m). Hence, the problem which interests us has al- 
ready occurred in the theory of critical phenomena where 
the method of operator expansion was employed, which al- 
lows the asymptotic value as u-0 to be found for finite E 

(Refs. 22, 23). We clarify this procedure for the model (9) .  
The role of a, in equations of type (3  1 ) is played by go; thus, 
all dependence on m is contained in the function f(u) ,  and its 
singularity in u consists of singularities in m of the renormal- 

ized correlator D. These are studied with the help of the 
following fact, proved inthe Wilson theory of the renormal- 
ized operator expansion (see Ref. 20, Chap. 20). For 
x =  (x, + x2)/2 = const and r= Ix, -x21 -0, 

where the ci are analytic numerical coefficients for m-0, 
and F, are all possible combinations with the symmetry of 
the problem of renormalized localized component opera- 
tors, i.e., combinations likep '(x), p (x)Ap(x) ,  p 4(x)  o f p  
and its derivatives. The coincidence of field arguments in 
these terms leads to new IR-divergences in the Green's func- 
tions . A generalized renormalization theory of component 
operators exist that is quite complicated partly due to their 
mixing in renormalization. For our purposes it is only im- 
portant that to each F, in Eq. (35) one can assign a definite 
critical dimensionality A, = di + y,*, where d, is its canoni- 
cal dimensionality (the sum of the canonical dimensionali- 
ties of the fields and their derivatives comprising F,), and 
y,* is the anomalous dimensionality, calculated by the RG 
method in the form of an E-expansion. 

The correlator D is obtained by averaging Eq. (35); on 
the right hand side the values (F, ) = md'a, (g,m/M) appear 
whose asymptotic values form -0 are determined (with jus- 
tification from RG) by the critical dimensionalities A, and 
A, :(F,) (in hydrodynamics A, = 1 ). In view of 
the fact that m - u, the operators Fi in Eq. (35 ) give rise to 
nonanalytic contributions u ~ " ~ , "  in f(u) ;  one must add to 
them all possible analytic contributions (of power u2). 

The most important contributions for u-0 are those 
with the smallest A, which are those with the smallest 
di ( E  = 0)  in the framework of the &-expansion. We will call 
operators with A, < 0 "dangerous" because their contribu- 
tions are divergent for u -0. Dangerous operators do not 
occur in the &-expansion because A, = n; + O ( E ) ,  where 
n, > 0 is the total number of multipliers p and a in F, (see the 
table of dimensionalities in Sec. 2) .  For the model (9)  the 
operatorF = p '(x) has thesmallest nj inEq. (35) (F = 1 in 
Eq. (35) yields a contribution which is analytic in m2; 
F = p ( x )  is forbidden by the symmetry p- - p ) ,  giving 
rise to the contribution u2 + 0'"' in f(u) ;  to this one must add 
u4 + O ( & )  corrections from the operators pAp, g, 4, etc. The 
positivity of all A, is guaranteed by the finiteness of 
f(u = 0 , ~ )  in spite of the divergence of separate diagrams for 
m -0 with finite E .  Strictly speaking, the positivity of A, is 
guaranteed only within the &-expansion, i.e., for asymptoti- 
cally small E because we actually know only the finite re- 
mainders of the &-expansion of A,. However, in the theory of 
critical phenomena, there is a simple argument for the finite-' 
ness of f ( u  = O,E), namely the very existence of a critical 
(massless) system; thus, the positivity of Ai is not called into 
question. We note that the form of the massless correlator 
for the real value 2~ = 1 is well known from experiments: 
D-p - *  +?, where 7 ~ 0 . 0 5  is the Fisher index (see Ref. 12, 
p. 62). Insertion of this correlator in the schematic graph for 
Eq. ( 10) leads to IR-divergences that are the exact analog of 
the problem attacked in Ref. 3. The problem was not solved 
in Ref. 3 and does not occur in the theory of critical phenom- 
ena; the alternative RG technique in Eq. (35) gives a solu- 
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tion of the problem without direct solution of the problem of 
Ref. 3. 

One can imagine (though there is no proof) that the 
operator expansion (35 ) is correct for the static correlator in 
our problem; the total canonical dimensionality Fi plays the 
role of the di. The relation Ai = ni + O(E) remains valid 
(see the dimensionalities in Sec. 2); thus, in terms of the E- 

expansion, the most important operators in Eq. (35 ) are, as 
before, those with the smallest number of fields and their 
derivatives, the most important of which is p '. The renor- 
malization and critical dimensionalities of the first compo- 
nent operators with d ( ~  = 0) < 4 were studied in Refs. 15 
and 16. In comparison with model (9),  it is possible in model 
(7) to calculate exactly some critical dimensionalities due to 
the termination of the series in E, which gives 

This rule was proven in Ref. 16 for n<4. We have general- 
ized it to any n; the proof is based on Ward identities which 
express Galilean invariance and is omitted for lack of space. 

One can see from Eq. (36) that all operators p "become 
dangerous (A < 0)  for E > 3/2, i.e., even before reaching the 
border E = 2 of the region of actual IR-pumping. We assume 
below that only the operators p"  can be dangerous in the 
region 0 < E  < 2. This was proven for operators with 
d ( ~  = 0) < 4 in Ref. 16 and is supported indirectly in the 
general case by the results of Sec. 7. In the region 0 < E < 3/2 
there are no dangerous operators, i.e., there are no diverging 
contributions to f(u)  for u-0 and f(u = 0) is finite; thus, 
the hypothesis (34) in this region is proven. In the region 3/ 
2 < E  < 2 all operators p " are dangerous, but there are none 
of the most dangerous with the smallest value of A (the larg- 
er n, the more dangerous); thus, one must sum all their con- 
tributions, which is not done in the theory of critical phe- 
nomena (and in fact is impossible) due to a lack of 
knowledge of exact dimensionalities. The necessary summa- 
tion is carried out in Sec. 7 where it is shown, as a result of the 
summation form - 0, one obtains a finite expression for D,, , 
i.e., the hypothesis (34) holds in the whole interval 0 < c < 2 
and, thus, from Eqs. (3 1 ), (33), and (34) 

This equation is the generalization in the region 0 < E < 2 of 
the phenomenological Kolmogorov spectrum 

where the analog of the Kolmogorov constant A (A = C, in 
the rotation of Ref. 1, p. 183) in Eq. (37) is 

A ( e )  =c: g? f (u=o) /2n2, (38) 

where c ,  = 4 3 ( 2  - E )  (see below following Eq. (33) ), and 
g. and f(u = 0) are series in E. Actually, we only know their 
first terms: 

(see the end of Sec. 31, and f(u = 0) = 1/2 + ...[ see after 
Eq. (26) 1 from which A(&) ~ 2 ( 5 ~ / 3 ) " ~ .  The spectrum 
(37) coincides with that of Kolmogorov at the boundary 
E = 2; in lowest order A = A ( E  = 2) = (80/3) ' I 3  z 3, which 
is not too bad [from experiments, A = 1.4-2.7 (Refs. 1, 
1913. 

(Spy') = --++-+GI--+... , 

FIG. 3. Theone-loop approximation for pair correlators in the model ( 7 ) .  

7. INFRARED PERTURBATION THEORY 

We analyke the leading singularities in m of diagrams of 
perturbation theory ing, in the model (7) for the example of 
the pair of correlators (pp ) and (pp '). They are given in the 
single loop approximation in Fig. 3 with lines corresponding 
to bare propagators (8 ) : an uncrossed line designates the 
field p, a singly crossed line designates the field p ', and there 
are no doubly crossed lines because (p 'p '), = 0. Le t j  be the 
four-dimensional external momentum in the diagrams - 
(PO = W, ji = pi for i = 1,2,3), and k be the total momen- 
tum flowing in the line pp in the loops; thus, j - I? flows in 
the second line. We assume that p is located in the inertial 
range so that j) m (this notation always signifies p) m and 
jo = m)v0m2). We introduce some fixed limiting mass p 
with j % p % m ,  dividing the region of weak (I?<p) and 
strong ( b p )  momenta, and label the lines of the diagram 
accordingly. The integration over the circulating momen- 
tum I? in the loops is divided into two regions: 1 ) both lines of 
the loop are strong and 2) one of the lines is weak and the 
other is strong (two weak lines are forbidden by j sp ) .  The 
singularity in m is evidently produced by the weak line pp. 
Its contribution, neglecting the dependence of vertices and 
the strong line on weak k, is identified as the multiplier 

(cp2(r) ).= (2n)-'S dk(cp9). ( k )  - 5 dk d ( k )  k-'-gorn2-', 

(39) 

which diverges for m -0 for c > 1. The corresponding ap- 
proximation for the one-loop diagrams is given in Fig. 4. The 
shortened loop signifies (p ' ( x )  ), and the index < O  % is the 
zeroth approximation in go. The coefficient 1/2 in one of the 
diagrams of Fig. 3 is lost because there are two lines pp in its 
loop and the weak one can be either of them. 

The procedure of extracting the leading singularities in 
m corresponds to an operator expansion of the form (35) : to 
first order in go only (p '), appears, in the next two-loop 
approximation (p '), and a correction of first order in (p '), 
appears, and finally all completely dressed multipliers (p '") 
occur. Taking into account the dependence of the strong 
lines and the vertices occurring on them on weak momenta 
(i.e., momenta of the p field of the multipliers (p 2 " )  ) would 
correspond to the calculation in Eq. (35) of operators with 
their derivatives which we do not consider dangerous for 

FIG. 4. The one-loop diagrams neglecting the dependence of the vertices 
and stong lines on weak momenta. 
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E < 2. It should be noted that from the point of view of a 
direct count of orders of magnitude it is always more advan- 
tageous to use the next weak lines to dress the already exist- 
ing weak block (p2") and not to construct the block 
( p  '" + '). In fact, the first process is characterized by the 
dimensionless parameter gom -" and the second one by 
gom2 - 2"p-2 because the new weak line only produces the 
singularity -gom2 - 2" (see above) which is nondimensiona- 
lized with the strong momentump, and the weak block go is 
completely nondimensionalized by m .  If we limit ourselves 
to perturbation theory, it would be possible to conclude from 
what was said above that the main contribution is produced 
only by the completely dressed operator p and all other q, '" 
operators are not important, which corresponds to the ap- 
proximation of Fig. 4 with an exact loop. However, we in- 
tend to estimate ( p  '") by the RG method which allows cal- 
culation not only of canonical, but also anomalous 
dimensionalities. We know from Eq. (36) that for E = 3/2 
all operators p "are equally important; for E > 3/2 the opera- 
tor p " is more important than the larger n and, all q, " are 
necessary. 

We introduce a simple method for their approximation. 
Representing the field @ = p,p  ' in Eq. (7 )  in the form of a 
sum @=a, +@, of weak @, =p,,q,, '  and weak 
@ , = p , ,p  , ' components leads to 

What is of interest is the average of strong fields 
D, = (@, @, ) (argumentsx are dropped) which is repre- 
sented by the functional integral 

D,= Dm@,@, exp ~ ( m )  

accurate to within an unimportant normalizing multiplier 
[we note that in models of type ( 7 )  the vacuum loops are 
absent" and, thus, one can consider JD@ exp S(@) = 11. 
The definition of D ,  can be rewritten as 

where 

(41 
The idea of Eq. (41) is that a strong propagator in a fixed 
[similar to frozen-in impurities (see Ref. 1 1, Chap. 10) 1 
weak external field and Eq. (40) represents the weak-field 
statistical average, and hence the average over the exact sta- 
tistics, i.e., that determined by the whole S (@) .  When 
@ = 4, + 4, is substituted in the action of Eq. (41 ), its 
interaction q, '(q,d)q, produces several terms. In the zeroth 
approximation only the p, '(p, d )p ,  term is retained, and 
Eq. (41 ) has the sense of bare propagators with the substitu- 
tion d, -+a, + p , d. The weak field p < (x)  is not strictly 
homogeneous, but its inhomogeneity is weak and in the ze- 
roth approximation can be neglected, which means that re- 
placing the values (p ,  (x, ) ...p, (x, )) appearing in Eq. 
(40) with localized averages ( p  , (x) ...p < (x)  ) that are in- 
dependent of x (this is equivalent in the language of dia- 
grams to neglecting the dependence of strong lines and ver- 
tices on weak momenta). This operation corresponds to the 

substitution p, (x) --t U =  p, (0) in Eq. (41 ); the latter is 
just a simple random value and not a random field. Then the 
quantities (41 ) have the sense of bare propagators after the 
substitution dl -+ 8, + va, i.e., w - w - vp in the momentum- 
frequency representation; the transition to this representa- 
tion is possible due to the homogeneity of v. The functional 
average over 0 , in Eq. (40) becomes equivalent to the aver- 
age (... ) over a distribution of the random variable v: 

~ U ~ ) ) - < ~ ; ( Z )  )=J  DO,lpcn(r) j DID, eapS(@), 

so that it follows from Eqs. (40) and (41) that 

These equations were obtained previously in Ref. 3 by an- 
other method. Use of the functional integral simplifies their 
derivation. More importantly, it allows one to consider Eq. 
(42) as the zeroth approximation of some new infrared per- 
turbation theory since the prescription for constructing a 
series of corrections is clear. 

The first of Eqs. (42) was given in Ref. 3, but the second 
was not because in Ref. 3 the pumping function d(p) was 
considered equal to zero in the inertial range; in our case it is 
a power of the momentum. This difference is important and 
deserves some comment. We feel that it is necessary to re- 
gard the model of pumping (5)  in exactly the same way as 
fluctuation models of the type (9) in the theory of critical 
phenomena. These are not exact, but phenomenological 
models in the spirit of the Landau theory are intended only 
for a description of IR asymptotic values. 

Justification of the model of power-law pumping (5) in 
the theory of turbulence is, evidently, the same type of prob- 
lem as that ofjustifying the fluctuation models in the theory 
of critical phenomena. The finite pumping d(p),  disappear- 
ing outside a region of width of order m, plays the role of an 
exact micro-model. Its spreading in the regionp) m requires 
multiple bifurcations, or, in diagram language, higher order 
perturbation theory. Of course, the corresponding theory 
(Ref. 2, 4 32) predicts a scaling that can be considered as an 
indirect justification of the power-law pumping model (5) 
for p )  m. However, even in the absence of a strict justifica- 
tion, such models, as shown by experience with the theory of 
critical phenomena, can be used qualitatively successfully as 
a basis for the RG model. 

Equations (42) are the result of summation of all con- 
tributions p " to Eq. (35) to lowest order in go for ci. When 
there are no other dangerous operators (which we consider 
true in the region 0 < E < 2), the corrections in Eq. (42) con- 
tain only mA with positive indices and, thus, disappear for 
m -0. In the region E > 2 it is impossible to trust Eqs. (42) 
because it is known from the RG analysis16 that for ,522 the 
operator of local energy dissipation becomes dangerous 

and, consequently, all its powers; thus, as E increases new 
dangerous operators will appear. 

The quantities < u2" ) occur in the expansion in v of Eq. 
(42) that coincide with the exact (because the total action 
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S ( @ )  enters in Eq. (40) ) local averages (p '" (x) ) (averages 
of odd powers equal zero). Figure 4 corresponds to the first 
order in v2 in Eq. (42). The behavior of 4 v2" ) = ( p '") for 
m -0 is determined by the critical scalings of the operators 
q, '" (see Sec. 6) known from Eq. (36): 

for E > 3/2 they diverge for m -0. In dynamic objects (42) 
there is no obvious reason for the disappearance of the de- 
pendence on m, i.e., hypothesis 1A is not fulfilled even in the 
UV-pumping region 0 < E < 2. The transition to static objects 
corresponds to integration over w in Eq. (42); thus, the de- 
pendence on v disappears because up is a simple frequency 
shift, i.e., inthe region 0 < E < 2 [where we trust Eqs. (42) ] 
hypothesis 1B is fulfilled and DsT does not depend on m. We 
note that integration over w leads to a disappearance of the 
dependence on m in Eqs. (42) in each order in u2; in particu- 
lar, the integral over w goes to zero for the coefficient for 
4 v2) in Fig. 4. 

Hence, we have shown that the coefficients for the dan- 
gerous averages (p '") in static objects become zero; thus, 
hypothesis 1B is satisfied (as E increases) until operators 
with derivatives become dangerous. On the basis of the re- 
sults of Ref. 16 we say that this occurs for ~ > 2 ;  to prove 
hypothesis 1B for E > 2 it is necessary to show that the contri- 
butions of these new dangerous operators sum up to the 
known power of Eq. (34). This is clearly not a simple prob- 
lem and requires refinements of the present technique. 
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