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The phenomenon of coherent population trapping in an optically dense medium is analyzed 
through a self-consistent solution of the system of Maxwell-Bloch equations. When this trapping 
occurs, there is a transparency window for a laser beam. The width of this window decreases with 
increasing optical thickness. Possible practical applications of this phenomenon are discussed. 

1. INTRODUCTION 

The phenomenon of coherent population trapping in 
three-level media which are interacting with two electro- 
magnetic waves has recently been the subject of active theo- 
re t i~a l l -~  and experimental7.' research. The primary reason 
for this interest is that this trapping is a fundamental phys- 
ical phenomena which occurs in diverse media and over 
broad ranges of the frequencies of the exciting fields. It is 
manifested during the excitation of a medium by either opti- 

or rf fields5 It is seen during both cw4 and pulsed 
excitation.' It has also attracted interest because of a variety 
of applications: for frequency stabili~ation,~.~ for spectros- 
copy free of not only Doppler broadening but also homoge- 
neous broadening of spectral lines,' in optical bistability sys- 
t e m ~ , ~ . ' ~ )  and elsewhere. ' I . ' *  

The concept of a three-level medium is itself quite gen- 
eral, since it means that each element of the medium has a 
three-level excitation scheme. In this sense we could speak in 
terms of a three-level atomic medium, a medium consisting 
of three-level nuclei, color centers, etc. For all such (qualita- 
tively different) three-level media one can observe coherent 
population trapping; the conditions for the occurrence of 
this trapping depend only on a relation among the param- 
eters of the exciting fields. 

Coherent population trapping is known to occur most 
obviously in the interaction of two-frequency laser light with 
a three-level medium having a A-shaped level configuration 
(a  "A medium")." Coherent population trapping can be 
summarized as follows: Under the condition for a two-pho- 
ton resonance for optical fields propagating in the same di- 
rection, i.e., under the condition 

where a,,, are the field frequencies, and w,, and w,, are the 
frequencies of the 3-1 and 3-2 transitions, coherent super- 
position ofthe states I 1) and 12) arises between the low-lying 
levels in the A system, and the system is not excited to state 
13) even in resonant fields. In other words, the steady-state 
population of the upper level is approximately zero, while 
the probability for finding the system in each of the lower 
levels is approximately 1/2, if the fields are equal in intensi- 
ty. This assertion is the physical essence of coherent popula- 
tion trapping. 

As a result, a medium in which coherent population 
trapping is occurring can neither absorb nor emit light, and a 
narrow gap (a  "dark line") appears in its fluorescence spec- 
trum. The width of this dark line can be much smaller than 

the homogeneous linewidth corresponding to the 3-1 and 3- 
2 transitions.' 

In this paper we analyze the propagation of cw laser 
light through optically dense three-level media under condi- 
tions corresponding to coherent population trapping. A 
problem of this sort was first taken up by Kocharovskaya 
and Khanin,6 for the case of pulsed excitation with a pulse 
width rP whose reciprocal is much larger than the frequency 
separation w,, of the low-lying levels: T; 'Bw,,. In this case 
the light interacts with the two resonant transitions simulta- 
neously in the A system, and bleaching of the medium occurs 
if the pulse repetition frequency T - '  is a multiple of w,,. 
Because of this bleaching, we can say that coherent bleach- 
ing of the A medium occurs when ultrashort light pulses are 
applied to it. The physical reason for this bleaching is the 
imposition of low-frequency coherence between the low-ly- 
ing levels during the pulse. 

We would like to stress that this bleaching of a medium 
is qualitatively different from both the bleaching which re- 
sults from optical pumping in a three-level system and the 
bleaching caused by light so intense that it saturates a reso- 
nant transition in a two-level system. The primary reason for 
these qualitative differences is that in the case of coherent 
population trapping there are no reradiated photons in the 
optically dense medium. 

Similar bleaching should occur in the case of cw two- 
frequency laser light if the widths of the frequency spectra of 
the exciting waves, Awl,,, are smaller than the distance 
between levels / 1) and 12) (Awl, ,  <a,,). In this case each 
resonant transition in the A system is excited by only a single 
wave. If the conditions for coherent population trapping are 
satisfied by virtue of the appearance of a coherent superposi- 
tion of states 11) and /2),  the three-level medium will not be 
excited to state 13), so bleaching of the medium will again 
occur. 

In the present paper we analyze the propagation of cw 
laser light through an optically dense A medium. We show 
that during coherent population trapping bleaching occurs 
in the medium, and the propagation of the light in the medi- 
um is qualitatively different from that described by the 
Bougher-Lambert law. We find the conditions which corre- 
spond to the lowest laser light intensity at which the medium 
absorbs only weakly. We also find that as the frequencies w, 
and w, are scanned there is a transparency window due to the 
coherent population trapping. Outside this window, the 
light is attenuated exponentially in the medium. We show 
that the width of this transparency window decreases with 
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increasing optical thickness and can reach a value on the 
order of the homogeneous linewidth of the 2-1 transition. 
We discuss some possible practical applications of the effects 
found here. 

The paper is organized in the following way. In Sec. 2 
we write self-cosistent Maxwell-Bloch equations for an opti- 
cally dense medium. They describe both the dynamics of the 
excitation of the medium and the propagation of the laser 
light in it. These equations are used in Sec. 3 to derive analyt- 
ic solutions for several cases of practical importance. On the 
basis of these solutions, one can draw conclusions regarding 
the nature of the light propagation in the medium. In Sec. 4 
we discuss some possible pratical applications, and we report 
some numerical estimates of the effects corresponding to re- 
alistic experimental situations. 

2. BASIC EQUATIONS 

To solve our problem, we specify a light field consisting 
of two traveling plane light waves with amplitudes E,, fre- 
quencies w,, , wave vectors k,, , and unit polarization vectors 

E ( r ,  t )  = E,e, exp[i (k,z-opt) 1. 

We also assume that the light waves propagate parallel to the 
z axis of the Cartesian coordinate system. We stress that for 
light waves which are propagating in the same direction the 
coherent population trapping occurs regardless of the veloc- 
ity of an atom [condition ( 1.1 ) 1, so we will be ignoring the 
thermal motion of the atoms in the A medium. If this motion 
is taken into account in the final results, the homogeneous 
optical absorption line is replaced by an inhomogeneous 
Doppler line. The properties of the dark line, on the other 
hand, are not affected by the thermal motion of the atoms in 
this case. 

Let us examine the interaction of the field (2.1) with a 
three-level A medium. We assume that a dipole transition 
between levels 1 and 2 is forbidden and that the partial prob- 
abilities for decay from optical level 3 to levels 1 and 2 are 
equal. We furthermore assume that each of the light waves 
acts on "its own" resonant transition (w, is in resonance 
with the 1-3 transition, and w ,  with the 2-3 transition). The 
quantum-mechanical kinetic equations describing the dy- 
namics of the density matrix of the active atoms under these 
conditions are given in Ref. 14. For the problem at hand, 
however, that system ofequations is not complete. It must be 
supplemented with Maxwell's wave equations. We take the 
customary approach"." of writing simplified wave equa- 
tions for the slowly varying amplitudes E, of waves which 
are propagating along the z axis ( p  = 1, 2) : 

whered,,, is the dipole matrix element for thep-3 transition, 
N is the density of active atoms, and F,,, = p,, exp- 
[i(w, t - k,, z )  ] is the optical coherent. 

We are interested in a steady-state solution of this sys- 
tem of equations or, more specifically, in the propagation of 
laser light in such a medium. For convenience we introduce 
the dimensionless optical length T and the dimensionless 
field intensity J,, (T) ( v = w ,  =a2, d=d3[  ~ d , ~ ) :  

We also introduce the quantities a,, P, ti,, and W, , which 
are defined by 

where A is the rate of the spontaneous decay of state 13), 
En = &I /2d is the field amplitude which saturates the opti- 
cal transition, W, represents the rate of the coherent optical 
pumping by fieldp, and I, (0)  is the intensity of the light for 
field p at the entrance to the medium. 

Using the rotating-wave approximation, and eliminat- 
ing the off-diagonal matrix elements (coherences), we find 
the following system of equations after some lengthy but 
straightforward manipulations: 

where 

pi, is the population of state li) and y and r are the rates of 
the longitudinal and transverse relaxation between levels 1 
and 2. 

Equation (2.5) are a self-consistent system of nonlinear 
equations which can be solved in the general case only by 
numerical methods. However, there are several particular 
cases of practical interest in which it is possible to derive 
some fairly simple analytic solutions by making use of the 
symmetry properties of Eqs. (2.5). 

3. PROPAGATION OF LASER LIGHT; THE TRANSPARENCY 
WINDOW 

Let us examine some analytic solutions of system (2.5). 
A .  Case of a two-photon resonance. Let us examine the 

conditions which are most favorable for the manifest of this 
coherent population trapping. We know that these condi- 
tions are that the deviations of the exciting fields from the 
resonant frequencies be equal and that the amplitudes of 
these fields also be equal: 

From (2.4) under condition (3.1) we find 
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Using (3.2), and introducing the resultant intensity 
J = (J, + J2)/2,  we find a nonlinear differential equation 
which describes the propagation of laser light in the case of a 
two-photon resonance: 

where L ( R )  = A  '/4(A 2/4 + R 2 )  is Lorentzian. 
Equation (3.3) has the solution 

W 
- (1-1) -In J=L (Q )  T, r 

from which we see that the propagation law for the light 
depends on the intensity of the laser light as it enters the 
medium [the initial intensity I ( 0 )  = I ( T  = 0 )  1, on the opti- 
cal length T, and on the frequency deviation R. A character- 
istic parameter of this problem, as in Ref. 6, is the coherent 
intensity 

r c 
1, = - I , ,  where I ,  = - haA2/4d2 

A '  8n 
(3.5) 

is the intensity which saturates the optical transition. We 
know, for example, that optical transitions of alkali metal 
atoms can usually be saturated by a fairly modest intensity 
I ,  ~ 0 . 1  W/cm2. In this case the coherent intensity is I, =: 10 
,uW/cm2 for the values r=: lo3 s- ' and A = lo7 s- '. 

At an initial I ( 0 )  >I, ( W > r )  it follows from (3.4) 
that the propagation law for the light in the medium is linear: 

If, however, an increase in T is accompanied by a decrease in 
the intensity I(r) to the extent that the relation I ( T )  <I, 
becomes satisfied, the propagation law becomes exponential 
(the Bougher-Lambert law), while for I ( 0 )  <I, the light 
attenuation is exponential for arbitrary T (Fig. l a ) .  

The physical meaning of the coherent intensity I, is 
that for I 2  I, coherent population trapping, in which the 
atoms or molecules are trapped in a superposition state 
between the low-lying levels, arises in the medium. In this 
case the coupling with optical level 13) is broken, and the 
medium absorbs the optical radiation only weakly. 

Note that coherent population trapping would be possi- 
ble only under fairly restrictive conditions on Aw,., (the 
spectral widths of the exciting waves). According to Ref. 4, 
this trapping occurs for Aw,, ,  5 W; in the opposite case, the 
coherence p , ,  is disrupted, and the coherent population 
trapping disappears. 

Figure l b  shows a spectral plot of J (T,  0 )  versus the 
frequency difference R for various values of T. We see that 
the medium becomes progressively more transparent to the 
light as / R /  increases. The reason is that a nonresonant 
bleaching mechanism comes into play along with the bleach- 
ing due to the coherent population trapping. 

B. Case of mirror-image frequency differences. In this 
case we have 

In place of ( 3.2) we have 

FIG. 1. Propagation of laser light under condition of coherent population 
trapping ( R ,  = R 2 = R ;  A=3.8.107 s-I; y =  r =  100 S-I). a: R = 0 .  
I-V= 104s ' ; 2 -V=  10's-';3-V= 2B 10's-';4-V= 3B 1 0 " s ' ;  
5-V= 4B 10" s I; 6- V = 5B 10' s I. b: Spectral plot of the signal, for 
V= 3B lo5 s-'. 

For the resultant intensity J we then find the differential 
equation 

whose solution is 

In deriving (3.8) we used the condition W < A ,  which im- 
plies a limit on the intensity of the laser light as it enters the 
medium: I ( 0 )  <I , .  

At R = 0, the two cases are the same, and (3.9) be- 
comes (3.4). However, there is a substantial distinctive fea- 
ture in the J(T,  R )  spectrum in this version of the problem 
(Fig. 2 ) : At frequency differences T,, < I R 1 <A the decay of 
the light with increasing r is exponential, while for In/ 5 r,, 
it is linear. As a result, as the field frequency is scanned a 
transparency window arises in the medium due to coherent 
population trapping. Interestingly, the width of this win- 
dow, r,, depends on the optical length, and it decreases with 
increasing T (Fig. 2b). The analytic expression found for T,, 
through an analysis of the numerical calculations on the ba- 
sis of (3.9) is 

where V = d lE(0) ( / A  is the Rabi frequency for the field 
E ( 0 ) .  The large intensity in the transparency window, I ( r ) ,  

FIG. 2. A transparency window. R ,  = - R s d 2 ,  V =  3.105 s-I. a: 
In1 5 A .  1-7 = 0. I; 2-r = 1; 3-7 = 4. b: Central part of the line. The 
values of the other parameters are the same as in Fig. 1. 

730 Sov. Phys. JETP 68 (4), April 1989 Gornyl et a/. 730 



FIG. 3.  Spectrum of the resonant fluorescence. The parameter values are 
the same as in Fig. 2 a: lIZJ < A .  b: Central part of the signal (the "dark 
line"). I-T = 0.1; 2-7 = 0.5; 3-T = 1.4; 4-T = 2. 

falls off linearly. However, the decay becomes exponential at 
values of T for which the intensity satisfies I ( r )  <I,. At large 
frequency differences, IRI 2 A, the medium absorbs only 
weakly (Fig. 2a), by a nonresonant mechanism. 

Finally, we find the spectrum of the upper level, p,,, 
which determines the dark line in the fluorescence spectrum 
during coherent population trapping for this case. 

Using (3.8), we find from (2.5) 

where J ( r )  is given by (3.9). Figure 3 shows curves ofp,,(r, 
a). At the centers of these curves there are clearly defined 
dips (this is the dark line), with a width which is given quite 
accurately by (3. lo).  

4. MODULATION OF OPTICAL RADIATION 

The analysis above the propagation of light in a A medi- 
um provides a solid basis for the practical use of coherent 
trapping in optically dense media. For definiteness, we take 
as the A medium a gas-filled cell holding the vapor of an 
alkali metal, e.g., rubidium. The A arrangement which we 
need can be formed by two sublevels of the hyperfine struc- 
ture of the 5S state and the upper 5Pl,, level. As was shown 
in Sec. 3, under conditions of coherent population trapping, 
even in the case of fairly intense fields, I ( 0 )  >I , ,  there is a 
narrow transparency window in the A medium in which the 
light decays linearly in the medium; i.e., bleaching of the 
medium occurs. Outside this transparency window, the light 
is rapidly (exponentially) attenuated in the medium. These 
circumstances can be utilized to convert frequency modula- 
tion of a light beam into amplitude modulation. Let us con- 
sider the case in which the frequency of one of the light 
waves, e.g., that of the wave with the frequency w,, is modu- 
lated by square pulses of length to and repetition frequency 
T-I  in such a manner that we have 

olnL=o,+A for tl<t<tz, (4.1) 

olm=ol for & < K t 3 .  

We choose the optical frequencies w, and w, to satisfy condi- 
tion (1. I ) .  In this case to and Tmust be larger than A - I :  

where A - '  is the time scale of the spontaneous decay of the 
5P, ,, level (A ~ 4 . 1 0 '  s- ' ), and the modulation depth A 
must exceed the width of the transparency window, To: 

For example, if we use a laser beam intensity I ~ 0 . 1  mW/ 

cm2 and the 5s-5P transition of Rb atoms excited from two 
low-lying states of the hyperfine structure, the width of the 
windows is ro=: lo4 s- I. The reason for the restriction (4.2) 
is that the coherent population trapping is established and 
destroyed in a time of order A - I  in a A system.' For the 
conditions specified above, the medium is bleached at 
t ,  < t < t,, while at t ,  < t < t2 we observe a pronounced ab- 
sorption of light by the medium. As a result, the frequency 
modulation of the light wave with a carrier of optical fre- 
quency wl controls the transmission of the light by the gas- 
filled cell, so the frequency modulation is converted into an 
amplitude modulation. The extent of the conversion of one 
type of modulation into the other depends in this case only 
on the magnitude of the optical absorption in the medium. It 
can reach 100% by virtue of a simple increase in the optical 
density of the medium. Since the optical length is given by 
T Z  NA ,z [see (2.3) 1, the attenuation of the light by a factor 
of e outside the transparency window occurs over a distance 
l-, (NA 2 ,  -'. In the case ofa cell holding a vapor of Rb atoms 
whose 5s-5P transition (A z cm) is to be used, and for 
an atomic density N =  cmp3, we find an absorption 
length I=. 1 cm. Consequently, a gas-filled cell only 1 cm in 
size would have an optical thickness sufficient for a complete 
conversion of one type of modulation into another. 

Converting frequency modulation into amplitude mod- 
ulation through the use of coherent population trapping re- 
quires optical fields with very stable frequencies w, and w2. 
The degree of this stabilization, i.e., the spectral widths 
Awl,, of these fields, must be smaller than the rate of the 
coherent optical pumping: 

Under the condition Awl,, 2 W, there is a complete decay of 
the coherent superposition of states of the low-lying levels, 
and the atom is excited into the upper state. 

We would like to stress two other possible applications 
of a converter of this sort. First, a cell filled with three-level 
atoms could work as part of a signal coincidence circuit, with 
both of the optical fields (w, and w,) being modulated. As 
before, the modulation is by rf pulses, and in general it is 
random. The cell would then transmit light only in the case 
in which the frequency differences R,,, satisfying condition 
( 1.1 ) are temporally coincident. The second possibility in- 
volves the simultaneous operation of a converter of this sort 
with a large spatially separate signals of modulated light 
beams. Since light beams can be focused to a transverse di- 
mension r o d ,  up to n - S / A  - 10' data channels could be 
packed on the surface of a converter with an area SZ 1 mm'. 
Because of its simplicity and high conversion quality, such a 
modulator could be developed into readout devices for opti- 
cal-fiber communications and optoelectronics. 

Finally, there is the possibility of using magnetic sub- 
levels of one of the hyperfine states as the low-lying levels of 
the A system. In this case, however, it would be necessary to 
use light of definite polarization, and the choice of this polar- 
ization would depend on the quantum numbers of the mag- 
netic sublevels. Coherent population trapping would occur 
even in a zero magnetic field, and even in the case of the level 
crossing, with w2, -0. Here there is a unique opportunity to 
observe a coherent population trapping excited by a single 
laser beam, provided that this beam acts on both of the de- 
generate components of the low-lying level. 
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CONCLUSION 

In summary, this study has established that substantial 
bleaching of a medium occurs under conditions of coherent 
population trapping in the case of continuous excitation of 
an optically dense A medium by light at two frequencies. The 
light propagation law in the medium is linear and differs 
from the familiar Bougher-Lambert exponential attenu- 
ation. We have found the minimum light intensity at which 
bleaching of the medium is possible. We have detected a 
transparency window and determined its properties. We 
have discussed a new practical application of coherent popu- 
lation trapping, for optical modulation, and we have esti- 
mated the characteristics of a corresponding modulator (the 
extent of the conversion, the speed, etc. ). 
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