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We examine charged-particle dynamics in a constant external magnetic field and the field due to 
two arbitrarily polarized electromagnetic waves. We derive the general condition for the onset of 
local instability of particle motion, valid for all particle-field resonances-namely, Cherenkov, 
cyclotron, normal- and anomalous-Doppler cyclotron, and parametric Cherenkov resonances. 
We go on to show how all presently known conditions for the onset of local instability follow as 
special cases. 

The interaction dynamics of charged particles with reg- 
ular fields due to electromagnetic waves is a topic of consid- 
erable interest in the solution of problems dealing with 
charged-particle acceleration and with plasma heating by 
external fields for the purposes of controlled thermonuclear 
fusion. 

Charged particles are of course known to interact effi- 
ciently with electromagnetic waves under resonant condi- 
tions. The most familiar elementary resonances between 
charged particles and electromagnetic waves are Cheren- 
kov, normal- and anomalous-Doppler cyclotron, and para- 
metric resonances. To this list we must also add the reso- 
nance that occurs when a charged particle interacts with an 
electromagnetic wave inside a periodic medium.' This re- 
duces formally to a Cherenkov resonance between the parti- 
cle and the virtual wave that arises in the periodic medium. 

The natue of the ensuing particle motion depends heavi- 
ly on both the separation between resonances and the width 
of each of the linear  resonance^.^^ If the wave is of low am- 
plitude, so that the width of a nonlinear resonance is less 
than the separation between adjacent resonances, then the 
particle will interact efficiently only with a single, isolated 
resonance. In that event, particle motion will be regular over 
the entire phase plane, except for narrow stochastic layers 
near the separatrices where these layers are formed.293 This 
picture changes qualitatively at wave amplitudes high 
enough that the sum of the halfwidths of neighboring reson- 
ances exceeds their separation-i.e., when nonlinear reson- 
ances overlap. Particle motion then becomes chaotic. 

The chaotic dynamics of particle motion and the condi- 
tions under which it arises are of considerable interest, par- 
ticularly in the develbpment of charged-particle acceleration 
techniques. Indeed, on the one hand, the onset of stochastic 
instability can lead to the disruption of acceleration in reso- 
nant accelerators, but on the other, it opens new avenues for 
the implementation of stochastic acceleration  method^.^.^.^ 

There is a sizable literature on chaotic motion of 
charged particles. Relativistic and nonrelativistic charged- 
particle motion in a constant magnetic field and in the field 
of a longitudinal plasma wave was examined in Refs. 5-7. 
Chaotic particle motion in the field of a longitudinal-wave 
packet was studied in Ref. 8. In Ref. 9, a solution was found 
for the chaotic motion of an oscillator in either a prescribed 
or a self-consistent field of a transverse electromagnetic 
wave propagating perpendicular to an external magnetic 
field. References 2, 11, and 13, which deal with chaotic parti- 
cle dynamics in the field of two waves but with no external 

magnetic field, are also to be noted. 
In the present paper, we examine the interaction of an 

arbitrarily polarized electromagnetic wave with charged 
particles in an external magnetic field, all in the presence of a 
medium-in particular, a plasma. With overlap of nonlinear 
resonances as our criterion, we identify a general condition 
under which charged-particle motion in an external electro- 
magnetic field becomes stochastic. We derive a condition for 
the validity of all known resonant interactions between par- 
ticles and a field; it subsumes the presently known conditions 
for the onset of local instability of charged-particle motion as 
special cases. 

1. CHARGED-PARTICLE DYNAMICS IN THE FIELD OF AN 
ELECTROMAGNETIC PLANE WAVE 

We consider the motion of a charged particle in a con- 
stant, externally applied magnetic field H, directed along the 
z-axis, and in the field of an electromagnetic plane wave, 
which in the general case has components 

+ 
8' = Re[E exp (ikr-iot) 1, 

9 = ~e {:[LEI enp (ikr-iot) } , 
0 

where a = (a ,  ia, ,a, ) is the polarization vector of the 
wave. 

With no loss of generality, we may assume that the wave 
vector k has only two nonvanishing components, k, and k, . 
In terms of the dimensionless variables 

0 t - + a t ,  r + - r  P 
C 9 P - + =  

the equations of particle motion can be reduced to the form 

where h = H / H , ,  w ,  = eHo/mcw, f9 = eE /mcw, 
T = kr - t, k is a unit vector in the direction of wave propa- 
gation, y = ( 1  +p2)"*  is the particle energy, and p is its 
momentum. 

Multiplying the first of Eqs. (2 )  by p, we obtain an 
equation for the rate of change of particle energy: 
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Making use of Eq. (3), we find the following constant of the 
motion from the system of equations (2)  : 

p-Re I B e " )  +~=[rh] -ky=const. (4) 

For subsequent analysis, it is convenient to transform to 
new variables p, , pll ,6,6, and 77 defined by 

in terms of these variables, Eqs. (2) and ( 3 ) take the form 

n * = ( i - k , ~ , , )  8. (az- Jn-aVlnr ) cos 0. 
dt rr=-m CL 

+80k.Vll z Eln cos 0.. 
n--a P 

d0 OH -=-- 
I-k V + 8   ax^- - J sin 0. 

dt 't PI ,,=-- ) P 

dE 1 - = - 8. -a, (1-k.V,,) z Jn sin 0. 
at O x  n--m 

k%VL - 8  - z ?In sin 0.9 all 
O x  ,=-m II. 

where 

Let us consider the case of a small amplitude electro- 
magnetic wave, g0g 1. The particle will then interact effi- 
ciently with the wave if it fulfills one of the resonance condi- 
tions 

Assuming that one such condition is in fact satisfied 
and introducing the resonant phase angle 6,, we obtain the 
following equations from ( 6 )  after averaging, which de- 
scribe particle motion in the case of an isolated resonance 

-=- dy 8 0  kZw, ear 0,. - = - W. cos B., 
at 'r at 7 

dB. OH - = A.=k,VU+s - - 1. ( 8 )  
at 'r 

Here 

The third equation in this system is a consequence of the first 
two. Note that we have neglected terms proportional to 
As '69, in the first two equations, and terms of order $, in the 
last. 

We shall assume that the change in particle energy re- 
sulting from its interaction with the electromagnetic field is 
small [ ( y = yo + y s ,  I ys 1 4 yo, where yo is the energy at 
which the resonance condition (7) holds]. Retaining terms 
to first order in P s ,  the last two equations in the system (S) ,  
in conjunction with the approximate integral of the motion 

yield a closed set of two equations that determine ys and 8, : 

df, Ws d0, k; - l  - 
~ = ~ o - c o S e g ,  -=- 

dt 'to dt 70. 

These are the equations of a mathematical pendulum. It 
is then straightforward to find the width of the isolated non- 
linear resonance. 

The width of the nonlinear resonance may conveniently be 
expressed in energy units: 

The resonance conditions (7)  and the approximate integral 
of the motion (9)  give the separation between adjacent re- 
sonances 

Equations ( 1 1 ) and ( 12) then imply that when 

the width A& of the nonlinear resonance is greater than the 
separation Sy, between resonances; in other words, reson- 
ances overlap. Under such conditions, particle motion be- 
comes quite complicated, and in fact chaotic. It should be 
noted that condition ( 13), which relates to the onset of sto- 
chastic instability of particle motion, is quite general, and 
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holds in all the most important instances of resonant interac- 
tion between particles and electromagnetic waves. Thus, Eq. 
( 1 la)  or ( 1 lb)  gives the width of the nonlinear resonance 
that occurs for Cherenkov interaction (s = 0) between a 
particle and field, and for the resonances associated with the 
normal (s > 0) and anomalous (s < 0) Doppler effects. Ac- 
cordingly, Eq. ( 13) is the condition for the onset of stochas- 
tic instability of motion due to overlap of these resonances. 

We now investigate the expression for the overlap of 
resonances in a number of specific instances of particle inter- 
action with electromagnetic fields. 

1.1. Consider the case of particle interaction with a lon- 
gitudinal wave under conditions of Cherenkov resonance 
(s=O). For such a wave, we have a, = k,, a, = k,, 
a,, = 0. From ( 13), we obtain the following criterion for the 
overlap of a Cherenkov resonance with its neighboring nor- 
mal and anomalous Doppler resonances: 

Apart from a multiplicative factor, the condition ( 14) 
for the onset of stochastic behavior is the same as the analo- 
gous expression obtained by S h k l ~ a r . ~  The reason for the 
factor is that the width of the nonlinear resonance was esti- 
mated only to order of magnitude in Ref. 6. 

1.2. Next, consider a transverse electromagnetic wave 
propagating perpendicular to an external magnetic field. In 
this situation, the overlap of resonances stems from a change 
in particle energy y. Two cases are possible here, corre- 
sponding to different wave polarizations. For a TE-wave 
[polarization a = (0,1,0) 1, the resonance-overlap criterion 
takes the form 

independent of the longitudinal velocity of the particle. 
For a TM-wave (polarization a = (0,0,1) ), the reso- 

nance-overlap criterion takes the form 

~ ~ ~ 0 ~ ~ / 1 6 p , ~ J ,  (p) . (16) 

In contrast to ( 15 ), the amplitude at which resonance over- 
lap sets in depends strongly on the longitudinal momentum. 

The condition ( 16) for the onset of stochastic behavior 
is approximate, inasmuch as it was derived with no regard 
for the interaction of nonlinear resonances. Since there exist 
no good analytic methods for describing stochastic compo- 
nents of the motion, it is natural to turn to a numerical inte- 
gration of Eqs. (2). One important aspect of the numerical 
analysis is of course the accuracy of the results that are ob- 
tained. A check on the accuracy of solutions is available if 
one makes use of the constant of the motion (41, and exer- 
cises local adaptive control over the integration step size. 
The integral (4) can then be computed to an accuracy of 
better than 

To determine quantitatively the degree of chaos inher- 
ent in the particle motion under the influence of the external 
fields (that is, to obtain a measure of the divergence of ini- 
tially neighboring trajectories), we have computed the K- 
entropy (see Refs. 3 and 8)  over the entire phase plane of 
initial values. As might be expected, for small-amplitude ex- 
ternal fields the particle motion is regular and takes place 
inside isolated resonances, apart from certain regions near 
the separatrices where chaotic domains arise for any non- 
zero amplitude of an external wave. In fact, as can be seen 
from Fig. 1, the value of the K-entropy is small (close to 
zero) in the vicinity of both Cherenkov and Doppler reson- 
ances. At the boundaries of these domains, near the separa- 
trices between resonances, finite-width stochastic layers are 
formed. Within these layers, the K-entropy is nonzero. As 
the external wave amplitude increases, so does the width of 
the stochastic layer, and at amplitudes that exceed the reso- 
nance-overlap amplitude A ,, global stochastic instability 
sets in.3 Under these circumstances, the motion becomes 
chaotic over the entire phase domain of the Doppler reso- 
nance (s = - 1 ), and the K-entropy becomes nonzero (see 
Fig. 2). 

For motion in the vicinity of the Cherenkov resonance 
(S = O), the domain of initial phase values giving regular 
motion becomes progressively more restricted as the wave 
amplitude rises. Even when the wave amplitude exceeds the 
critical value by a factor of ten (A- 10A. ), or if we use a 

FIG. 1. ( a )  Distribution of K-entropy in the (k,z,,  V, ) 
phase plane of initial conditions in the case of isolated 
resonances; b) particle trajectory in the ( k , z ,  V, ) phase 
plane under the same conditions. 
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more accurate valueg ofA . , giving A - 3A . , a domain of reg- 
ular motion is retained, which confirms our previous re- 
sults.1° Regular trajectories are then not localized within the 
original phase domains, and over the course of time they 
migrate into regions of phase space from which chaotic tra- 
jectories emerge. 

1.3. Let us consider a plane-polarized electromagnetic 
wave propagating at some angle to an external magnetic field 
in a medium with refractive index n > 1. Let the particle be 
described by Cherenkov resonance conditions (s = 0). 

For a (TM-polarized wave with a = (cos p, 0, sin p) ,  
where p is the angle between the wave vector and the z-axis, 
the overlap criterion for the Cherenkov and adjacent cyclo- 
tron resonances may be written in the form 

We then find that as the longitudinal velocity of the particle 
increases, the wave amplitude required for the onset of sto- 
chastic instability of the particle motion rises. For a TE wave 
with a = (0,1,0), the resonance overlap criterion takes the 
form 

In this case, the wave amplitude at which the particle motion 
becomes chaotic decreases with increasing transverse mo- 
mentum. 

2. OSCILLATOR DYNAMICS IN THE FIELD OF TWO 
ELECTROMAGNETIC WAVES 

In the present section, we derive the criterion for the 
onset of stochastic instability of charged-particle motion in a 
constant magnetic field and in the field of two arbitrarily 
polarized electromagnetic plane waves. We show that condi- 
tions exist for which stochastic instability can develop for 
particle interactions with waves of arbitrarily small ampli- 
tude. We go on to treat examples of the use of the criterion 
that is derived to analyze particle motion in the field of a 
wave packet and in a periodic medium. 

FIG. 2. a) Distribution of K-entropy in the (k,z,,V,) 
phase plane of initial conditions in the case of global sto- 
chastic behavior; b) particle trajectory originating in a 
regular region of the (k, z, V, ) phase plane under the same 
conditions. 

Consider the motion of a charged particle in a constant 
magnetic field and in a field due to two arbitrarily polarized 
electromagnetic waves. 

E,,,=Re {Ai,zai,z exp i'Yl,z), 

H , ,  = Re { ~ A , , , I ~ ~ . ~ ~ , Z I ~ ~ P  ~ Y ~ , z } ,  
0 1 . 2  

where the subscripts 1 and 2 refer to the first and second 
wave respectively, a is the unit polarization vector, the z-axis 
points along the external magnetic field H,, k = (k, ,k, ,k, ) 
is the wave vector, and w and A are the wave frequency and 
amplitude. 

The basic assumption that we make in deriving the cri- 
terion for stochastic motion of a particle in the field of two 
electromagnetic waves is that at small wave amplitudes, the 
particle interacts resonantly with one of the waves. This as- 
sumption then enables us to make use of certain of the results 
of Sec. 1. 

As in the case of a single wave (Sec. 1 ), it is a straight- 
forward matter to derive the equations describing the change 
in oscillator energy upon interaction with one of the two 
waves: 

where 

and Wj'32' takes the form 

S + IV, sin PI, ,  [au J.(P~,.)-  a= i r ~ ' ( ~ l . , ) ]  
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Herep,,, = k,,,p,/o, ,,, , k,,,, is the projection of the wave 
vector on the x-y plane, /3 ,,, is the angle between k,,, and the 
x-axis, and J, ( x )  is the Bessel function of order s. 

Notice that Eq. (2 1 ) for WS1,2' is a generalization of the 
analogous expression (8) to the case of a wave propagating 
in an arbitrary direction. Subscripts 1 and 2 in Eq. (20) refer 
to two different cases: 1) the particle lies within an isolated 
nonlinear resonance y = k,, p, + soH with the first wave, 
and in accordance with the assumption we have made, its 
interaction with this wave is independent of the presence of 
the second wave; 2) the particle, situated at a resonance 
y = k,,p, + sw,, , interacts only with the second wave. 

Making use of the approximate integral of the motion 

which is valid within any, isolated resonance (as in Sec. 1 ), 
we obtain an expression for the halfwidth of the nonlinear 
resonance: 

Let us now find the energy difference between reson- 
ances. For definiteness, we assume that a particle with initial 
energy y, and longitudinal momentum p,, is in resonance 
with the first wave; that is, it lies at the point A on the straight 
line 1 in Fig. 3, the latter being defined by the resonance 
condition 

Particle motion is then consistent with the constant of the 
motion, 

An increase in the wave amplitudes results in an in- 
crease in the resonance widths (the shaded areas in Fig. 3) 
and, for certain wave amplitudes, an overlap between these 
regions results in the particle crossing over into the reso- 
nance region of the second particle. 

(line 2 in Fig. 3), andthen moving along line &that is, it 
conforms to the constant of the motion 

which holds in the resonance region (26). This momentum 
will also correspond to over-lap of the resonances (24) and 
(26). 

The problem may be stated as follows: knowing y, and 
p,, (the initial state of the particle), find y2 andp,,-that is, 
the coordinates of point B (Fig. 3). To do so, it is necessary 
to determine the constant C2 in the integral (27); then, using 
the resonance condition (26) and the constant of the motion 
(27), it is straightforward to find y2, and consequently the 
energy difference Sy = 1 y, - y,l between resonances. 

From (25) and (27), we find that at point C (Fig. 3), 

FIG. 3. Resonance lines for particle motion in the field of two electromag- 
netic waves. 

Noting that y, = y, - Ay, [where Ay, is the halfwidth of 
the resonances (24) 1, we find the constant C,: 

Making use of (26) and (27) with the constant (28), we 
may determine y,: 

The final separation in energy between resonances takes the 
form 

Clearly, resonances will overlap if the sum of the half- 
widths of nonlinear resonances exceeds the distance between 
them: 

Some simple manipulation gives the following criterion for 
overlap of resonances: 

Note that the prerequisite for stochastic instability of 
particle motion in the field of two electromagnetic waves 
takes the form (32) not just for the example depicted in Fig. 
3 (two slow waves), but for other combinations of waves 
(two fast waves, a fast and a slow wave) and positions of 
point A relative to the intersection of the resonance lines as 
well. 

Condition (32) is quite universally applicable. Since for 
k, = k,, w,, = a,,, n = s + 1, the criterion (13) for sto- 
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chastic motion of an oscillator in the field of a single wave 
follows directly. 

We see from (32) that when 

overlap sets in at arbitrarily small wave amplitudes. Equa- 
tion (33) corresponds to the point at which the resonance 
lines in Fig. 3 intersect. 

As examples of the use of (32), let us examine the mo- 
tion of a charged particle in the field of a wave packet and in a 
periodic medium. 

2.1. Charged-particle motion in the field of a wave packet 

Consider a charged particle with V, = 0, moving in the 
field of a wave packet 

E,  = Re ZE, exp ~ i k z - i o t )  (34) 
k 

with a characteristic separation Ak between wave vectors 
(Ak& k). The particle will then interact with the wave field 
under resonance conditions, 

and the criterion (32) for stochastic instability will take the 
form 

Taking k ,,, = k ,,, c/w,,, , k, - k, = Ak and Aw = Ak(dw/ 
ak) ,  we obtain the following condition for the onset of sto- 
chastic instability: 

which at low energies is the same as the criterion derived in 
Ref. 2. Note that as the particle energy rises, so does the field 
amplitude at which stochastic instability sets in. 

22. Criterion for stochastic motion of a charged particle in a 
periodic medium 

We may represent the field of a wave in a spatially peri- 
odic medium as an expansion in plane waves. 

n 

where x, = 277/d, d is the spatial period of the inhomogene- 
ity, and the E, are the amplitudes of the spatial harmonics, 
n = 0 ,  + I ,  +2 ,  + 3  ,.... 

For a weakly inhomogeneous medium with dielectric 
constant 

where a< 1, the amplitudes of harmonics quickly drop off 
with increasing n; that is, 

If we then consider the motion of a charged particle with 
V, = 0, which is initially at the resonance GI = kV corre- 
sponding to the fundamental frequency of oscillation 

(n = 0), we obtain the following criterion for stochastic par- 
ticle motion in a periodic medium: 

The nature of the motion of a charged particle in a wave 
field excited by a beam of relativistic charged particles mov- 
ing in a periodic medium is of practical interest. This is the 
way in which electromagnetic waves are excited in certain 
kinds of free-electron lasers. The basic radiation mechanism 
consists of parametric Cherenkov radiation resulting from 
charged-particle motion in a periodic medium; the wave- 
length excited by the charged particles is then 

The wave amplitude E, may be estimated by assuming 
that the wave field captures particles from the beam, i.e., 
that Im w -a,, where Im w is the differential amount by 
which oscillations excited by the beam grow. The criterion 
(39) for the onset of stochastic particle motion then be- 
comes 

I m o  1 
-2-. 

0 4y"' 

Thus, for growth rates satisfying (40), particle motion 
in the field of a wave excited by these particles becomes sto- 
chastic. In actual fact, however, this does not happen, as the 
growth rates of a wave excited by a beam in a spatially peri- 
odic medium turn out to be rather small. 

I m o  a --- 
o yV ' 

where u )  1/2, and a is proportional to the beam density to a 
certain extent. As a rule, a& 1, and stochastic instability 
therefore fails to develop when there is particle motion in a 
periodic medium. 

3. CHARGED-PARTICLE DYNAMICS IN THE FIELD OF TWO 
LONGITUDINAL WAVES 

In the previous section, we demonstrated that a particle 
moving in the field of two longitudinal waves may be cap- 
tured by one of them. Such a situation is possible when the 
phase velocities of the wave differ significantly. In that 
event, a nonresonant wave may affect particle motion in 
such a way that a stochastic layer arises in the phase plane in 
the vicinity of the separatrix that distinguishes capture tra- 
jectories from pass-through t ra jec t~r ies .~~ ."  As the wave 
amplitude increases (and the phase velocities approach one 
another), the nonlinear resonances corresponding to each of 
the waves also approach, and ultimately start to overlap. 
Under these circumstances, particle motion becomes chao- 
tic. 

Below we point out that during particle motion in the 
field of two longitudinal waves, there appear-in addition to 
Cherenkov resonances-a set of parametric resonances, 
whose overlap also leads to the onset of chaotic particle mo- 
tion. The wave amplitudes required for the overlap of the 
parametric resonances may then be substantially lower than 
for the Cherenkov resonances. 

The equation describing particle motion in the field of 
two longitudinal waves is of the form 
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e e 
2 = - - E l  sin ( k l z - o i t ) - - E z  sin ( k 2 z - 0 2 t ) ,  (41 

m m 
where e and m are the charge and mass of the particle, k ,,, 
and w , ,  are the longitudinal wave numbers and frequencies 
of the longitudinal waves, and E ,,, represents the wave am- 
plitude. 

It proves convenient to transform (4)  using the new 
variables 

Equation (41 ) then takes the form 

( 1 - q  s) -' 3 = - 8 ,  sin I-& sin r ,  

where 

To further simplify the derivation, we assume that 

Estimating a typical value of dc /dr  to be the width of 
the separatrix 2g:" corresponding to the nonlinear reso- 
nance of the particle in the field of wave number 1, we may 
rewrite (44) in the form 

Over the domain of parameters for which (45) is satisfied, 
the particle motion is described by the pendulum equation, 
with an external harmonic driving force at unit frequency: 

ag - + cT1 sin f =-a2 sin z .  
d r Z  

(46) 

With the replacement 

b sin z , (47) 

Eq. (46) in turn can be reduced to the form 
rn 

-%. + 8, C I. (8,) sin (F+sr)  = 0. 
dzZ  

8=-m 

Each term of the sum in (48) corresponds to a nonlinear 
resonance 

When the overlap condition 

for parametric resonances is satisfied, the particle motion 
becomes stochastic. A numerical solution of Eq. (46) con- 
firms the validity of the criterion for a transition to stochas- 
tic particle motion. The resonance condition (49) may be 
rewritten as 

The set of resonances (5 1 ) corresponds to plasma-wave 

scattering by particles. It is clear from a comparison of the 
condition (50) for overlap of parametric resonances with 
the analogous condition for Cherenkov resonances. 

that when 8, - 8, in the first case, overlap sets in at smaller 
values of the wave amplitude. 

4. MOTION OF AN ENSEMBLE OF OSCILLATORS IN THE 
FIELD OF AN ELECTROMAGNETIC WAVE 

As stochastic instability develops, particle trajectories 
become exceedingly complicated, and are only amenable to 
study by numerical methods. Sometimes, however, this very 
complexity makes it possible to simplify the problem consid- 
erably by utilizing the methods of statistical physics. To il- 
lustrate this point, consider the evolution of the distribution 
function for an ensemble of oscillators in a constant magnet- 
ic field H, that points in the z-direction, and in the field of an 
arbitrarily polarized external electromagnetic wave. Mutual 
interactions of particles and wave excitation by particles will 
be neglected (low-density beam approximation). Under 
these conditions, the problem of the motion of the ensemble 
reduces to a one-particle problem. The criterion for the onset 
of stochastic instability is given for each particle by ( 13 ); we 
shall assume that the electric field strength of the external 
field satisfies this condition. In order to study the diffusion in 
energy of the particles belonging to the ensemble, we use 
Eqs. (8),  which may conveniently be rewritten as 

y = B a  ZW. cos 0.lY. 8 . = k , V , + n o ~ / y - - l .  (52) 

Since stochastic instability will have set in, we may as- 
sume that the phases of the resonances are random and inde- 
pendent. Bearing in mind that the terms on the right-hand 
side of the first of Eqs. (52) are of small amplitude, we may 
substitute the unperturbed values of the variables. Then the 
first equation in (52) yields the following expression for the 
correlation function: 

1 
X ( T )  - ( i .  ( t + r )  y  ( t )  ) = - ( 8 , / y ) z  2 

X R ~  { e x p [ i r  ( k , ~ ~ - l )  ] W.' e r p  ( i so . r / y )  }, (53) 

where 

dk ,  1  
(1) = J - 2 . - J  dp. y .  

2n 2n 

Using the addition theorem for cylindrical functions,14 
we can expand the sum on the right-hand side of (53) to 
yield 

1 + a,2pI12Ja ( I I )  + - p L z ~ + a - ~ e " " H " T J o  ( I I )  
2 
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where that the presence of a second wave did not change the condi- 
tions for resonant interaction of a particle with one of the 

Making use of (54), we can easily find the variance 
c?=((Ay),). Indeed Eq. (52) gives 

t 

~y = J r ( t l )  at., (55) 
0 

so for the variance we have 
1 

At small times 

the quantity X(T) can be treated as a constant, yielding a 
quadratic dependence for the variance: 

At large times, the main contribution to the integral in (56) 
comes from values of T less than to. We then obtain 

02d3! '  ( 0 )  tot. (58) 

If the wave propagation is strictly perpendicular to the 
external magnetic field (k, = 0, p, = 0),  then only cyclo- 
tron resonances are possible, and their overlap is governed 
by relativistic effects.I2.l5 Equation (54) for the correlation 
function then simplifies to a form that agrees with the one 
derived in Ref. 15. In that same paper, we demonstrated 
good agreement between the analytic results and numerical 
calculations. 

Note that according to the numerical results obtained 
in Ref. 15, the mechanism considered here for particle inter- 
actions with a field can be an efficient means of heating and 
accelerating charged particles-the mean particle energy, in 
a time of order 100 periods, increased from (y) = 2 to 
(Y) = 5. 

CONCLUSION 

To summarize, we have obtained the most general con- 
dition (32) for the onset of stochastic instability in the mo- 
tion of a charged particle undergoing interaction with an 
electromagnetic wave. That condition is applicable to all 
known resonances, namely Cherenkov, cyclotron, normal 
and anomalous Doppler cyclotron, and parametric reso- 
nance. All existing conditions for the onset of local instabil- 
ity may be derived from our condition as special cases. 

One important assumption used in the derivation of 
(32) should be pointed out; it is clear from the derivation 

waves. That is, the existence of new resonances due to the 
presence of a second wave (these might be called parametric 
resonances) was not taken into consideration. 

Condition (32) suggests the existence of a number of 
novel results in addition to those that are already known. We 
have already commented on some of these above. Here were 
point out o111y two of the most interesting. In the (y,p, ) 
plane, the resonance lines give rise to a grid of resonances. 
Both along the resonance lines and at their intersection 
points, stochastic instability can develop at arbitrarily small 
electromagnetic wave amplitudes, and this can then'result in 
particle diffusion. Constraints on this diffusion can be de- 
rived from the constant of the motion (22). In fact, when the 
constant of the motion (22) is integrated over some short 
time interval, it will also give rise to a straight line in the 
( y,p, ) plane. In general, the straight lines due to resonances 
and those due to the integrals will not be the same. They will, 
however. coincide under conditions of self-resonance, and it 
is precisely near self-resonance that diffusion will be most 
efficient. 

Self-resonance conditions are of interest for other rea- 
sons as well. As we have seen above, the distance between 
resonances is determined along the lines controlled by the 
constants of the motion. Therefore, as a system approaches 
self-resonance, this distance increases, and larger and larger 
electromagnetic wave amplitudes are required for stochastic 
instabilityto develop. 

The authors thank Ya. B. Fainberg his stimulating in- 
terest in this work and for fruitful discussions of our results. 
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