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Muon polarization P( t) due to the magnetic dipole interaction with integral and half-integral 
spins I of ambient nuclei in zero external magnetic field is calculated as a function of time. It is 
assumed that the electric quadrupole interaction between the muon and the nuclei (with I >  4) 
has its maximum possible strength. 

We calculate the spin relaxation for a positive muon 
interacting with the nuclei of ambient atoms via the dipole 
interaction between their magnetic moments. The charac- 
teristic properties of muon spin relaxation are particularly 
well defined in zero external magnetic field ( B  = 0). The 
first calculations' were performed on the basis of the Kubo- 
Toyabe theory2 of spin relaxation with an approximately iso- 
tropic distribution of magnetic fields acting upon the parti- 
cle. The relaxation function P ( t )  obtained in Ref. 1, i.e., the 
muon polarization as function of time, has been very useful 
in studies of different processes leading to the relaxation of 
muon spin in matter, e.g., slow muon diffusion. Recent cal- 
c u l a t i o n ~ ~ - ~  of P ( t )  have taken into account both nuclear 
spin dynamics and the discrete disposition of the spins at the 
crystal lattice sites. These factors were found to have a signif- 
icant effect on the form of P( t ) .  The function P( t )  deter- 
mined in this way is in agreement with the measured relaxa- 
tion of the spin of the muon localized in a diamagnetic metal7 
in which other muon spin relaxation processes are negligi- 
ble. 

At the same time, we recall the complexity of the meth- 
od usually employed to calculate P( t ) ,  based on the deter- 
mination of the eigenfrequencies of the many-body Hamilto- 
nian for interaction between the spin of the muon and the 
spins of the ambient nuclei. Mathematical difficulties re- 
strict this method to the case of a small number of interacting 
nuclei and low nuclear spins. On the other hand, our method 
of calculating P ( t )  enables us to extend the number of nuclei 
participating in the interaction and to consider the case of 
higher nuclear spins. 

The relaxation function P( t )  is determined by the spin 
Hamiltonian for the interaction between the muon and the 
ambient nuclei, i.e., 

N 

h 

zhich consists of the sum of the dipole H f and quadrupole 
H 2 interactions: 

where Nis the number of nuclei interacting with the muon, 
S, is the muon spin operator, I, is the nuclear spin operator, 
n, is the unit vector in the direction between the muon and k 
th nucleus, w i  and w$ are the frequencies of the dipole and 
quadrupole interactions, y, and y, are the gyromagnetic 
ratios for the muon and the nucleus, and r, is the distance 

between the muon and k th nucleus. As usual, we have ne- 
glected in the Hamiltonian ( 1 ) the relatively weak spin-spin 
interaction between the nuclei. All the nuclei are assumed to 
be identical, and the external magnetic field is B = 0. 

We shall now consider a situation that is frequently en- 
countered in muon spin relaxation in metals, namely, 

o ~ ~ B o ~ " .  (4) 
Since muon spin relaxation due to dipole interactions occurs 
in a time t- (a:)-', where wf corresponds to minimum 
distances r ,  , the inequality given by (4)  allows us to average 
over time intervals 

when we evaluate P( t ) .  The interval defined b l  (5)  corre- 
sponds to averaging the dipole Hamiltonian H f over the 
quadrupole interactions: 

When the average defined by (6)  is evaluated, the inter- 
action between the muon and each individual nucleus is con- 
sidered in its own "radial" coordinate frame ( x ,  , y,, z,  ) in 
which the quantization axis z, is parallel to the vector n, . In 
the radial coordinate frame, the quadrupole operator ( 3 )  
has the form 

h 

and the operator exp(iHft/fi) in (6)  can be transformed so 
that 

exp (iBkQtlh) = exp (-iAh) ZP. a exp (iokqm't) , ( 8 ) 

where m = h,+ ,..., I for half-integral I and m = 1,2 ,..., 1 for 
h 

integral I. In these expressions, A ,  = f wfI ( I+  I ) ,  and Em 
is a diagonal operator with two elements equal to unity, i.e., 

Substituting (8)  in ( 6 ) ,  we obtain 

Using (5)  and recalling that wf$ wf, we have 

ItAfollow~ from (8)  and (10) that, for I = ;  we have 
(H f )  = H f', which should be the case in the absence of the 
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quadrupole interaction between nuclei with spin I = 4. 
A 

Replacing H f  with the expression given by (2) ,  and 
recalled that 

we find that 

= fiatD [s,, (z -w,$,) + sY, (z E ~ J ~ ~ E , )  
111 m 

The cases 2f integral and half-integral spin I,  for which the 
operators F a r e  determined in different ways, will now be 
considered separately. 

For integral I ,  we have &A = FYh = 0 and it follows 
from ( 1 1 ) that the average dipole Hamiltonian is 

It is clear from this expression that the dynamics of the muon 
spin S is determined exculsively by the radial projection IzA 
of the nuclear spin, which is conserved because of the strong 
quadrupole interaction. The function P ( t )  can therefore be 
determined in this case by classical methods by calculating 
the magnetic field that acts on the muon and is due to the 
radial projections of the magnetic moments of the ambient 
nuclei. Of course, for integral I, the functions P ( t )  can also 
be calculated for half integral I by the quantum mechanical 
method described below [see( 14) 1. 

h h 

For half integral spin I,  the operators Fxk and Fyk in 
( i l l  are deter~ined by the two nonzero elements 
(F) ,/, and (F) - 11,,11, and can be symbolically written 
in the form 

The2e exprezsions are meant to indicate that the Pauli matri- 
ces gXA and uyk = 0 are augmented with zeros in all the peri- 

h h 

pheral rows and columns of the operators FxA and F,,, . The 
relaxation function for this case is given by 

P ( t )  = 
2 

(2Zfl)  Sp(Sz exp (&t/fi) S, exp (-i%t/fi) 

(14) 

where S, is the projection of the muon spin on to the intial 
polarization okthe muon spin in the laboratory frame (x,y,z) 
fort = 0 and %is the spin Hamiltonian of the muon and the 
ambient nuclei, averaged over the electric quadrupole inter- 
aztion between the muon and the nuclei. The Hamiltonian 
2?' is the sum of N averaged Hamiltonians ( 1 1 ) that de- 
scribes the interaction between t h ~ m u z n  a2d the spins of the 
individual nuclei. The operators Sxk, SyA, Szh that appear in 
( 11 ) in the radial coordinate frames (x,, y,, z, ) must be 
transformed so that they act on the components of the muon 
wave function $ specified in the laboratory frame (x,y,z) : 

- 2 (2@k'sz,@,) I,,]. (15) 

h 

The two-dimensional operator M, in this expression trans- 
forms the muon wave function $ from the laboratory f r a ~ e  
of coordinates to the k th radial frame, and the operator M i  
executes the reverse transformation 

The operators 2, and 2; can be expressed in terms of the 
Euler angles defining rotations of the coordinate axes of the 
laboratory frame (x,y,z) under transformation to the k th 
radial frame and back again. The result is 

f = hokD[  (3% cos ak+S, sin a,) 8,, + (-S, sin a, cos B k  

+ay cos akcos pk+Sr sin fi,) PUk-2(S,sin p, sina, 

-8, sin pk cos a,+$, cos Bk) I z k  1. (16) 
h h h  

where the operators S,, Sy, S, act on the muon spin wave 
fpcgon  i n  the laboratory frame (x,y,z), the operators 
Fxh, Fyk, FZk act on the nuclear spin wave functions in the 
radial coordinate frames (x,, y,, z, ) a, and fl, are the an- 
gles through which the axes of the radial frame of coordi- 
nates have to be rotated to make them coincident with the 
laboratory axes; a, is the angle defining the rotation around 
the x axis, i.e., around the direction of the primary muon 
polarization, and flk defines the rotation around the x, axis 
whose direction is taken to be perpendicular to the plane 
containing the vectors z and n,. It is readily seen that this 
choice of the direction of the x, axis enables us to superim- 
pose the radial and laboratory coordinate frames by the 
above two rotations alone. It may be shown that the Hamil- 
tonian given by ( 16) describes the muon spin dynamics not 
only for the electric quadrupole interaction of maximum 
strength, as defined by (4),  but also for I = f ,  for which there 
is no quadrupole interaction. 

The relaxation function evaluated with the aid of ( 14) 
can be written in the form of the series 

FIG. 1. Muon poarization P ( t )  in the absence of an external magnetic 
field. The time t is shown in units of A ' ,  defined by ( 19). The polariza- 
tion P (  t )  was calculated from ( 17) for a muon localized in the octahedral 
interstitial space of an fcc crystal interacting with six nearest neighbors 
with spin I = 4. 
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FIG. 2. The function P ( t )  for a muon in the octahedral interstitial space of 
an fcc crystal interacting with the six nearest neighbors with spins I = 
3/2. 

where 

A 

The commutators R ,  zan  bezvaluatzd from the recursion 
formula n > 1 for any R, = [ R ,  , , XI. 

Figures 1-5 show the relaxation function P ( t )  at the 
octahedral and tetrahedral interstices of an fcc crystal, cal- 
culated from ( 17) for different values of the nuclear spin I, 
taking into account one or two coordination spheres con- 
taining the nuclei nearest to the muon. In these figures, the 
horizontal axis gives the time t in units of A -  ' where A is the 
second moment in the expression 

P ( t )  =P (0) exp (-A2t2/2), 

which describes the function P ( t )  for t-O.For the case 
wj;')wf in which we are interested here, we haves 

for integral spin I and 

FIG. 4. The function P ( t )  for a muon in the octahedral interstital space of 
an fcc crystal. The solid curve corresponds to the interaction between the 
muon and six nuclei in the nearest coordination sphere; dashed curve- 
interaction between the muon and 6 + 8 nuclei in the two nearest coordi- 
nation spheres. The nuclear spin is I = 1. The quantity A is given by ( 18) 
in this case. 

for half-integral spin I, where Bk is the angle between the 
direction of the primary muon polarization P (0 )  and the 
direction of the vector nk . The sum is evaluated over all the 
nuclei interacting with the muon. We note that the expres- 
sions given by ( 19) for A2 and by ( 17) for the function P ( t )  
are also valid for I = 1, for which there is no quadrupole 
interaction between the muon and the nuclei, i.e., wf = 0. 
The accuracy with which the function P ( t )  is calculated is 
determined by the number of terms taken in the series ( 17), 
and decreases with increasing time t. To calculate P ( t )  with 
SP/PSO,l%fort = 15A-' (seeFigs. 1-5) weneedfiftytoa 
hundred terms in ( 17), depending on the number of nuclei 
interacting with the muon. 

It is clear from Figs. 1-5 that the function P( t )  has a 
deep minimum for tA - 2, as was shown in Ref. 1. The func- 
tion P( t )  os~illates~-~when tA > 4, and these oscillations be- 
come better defined for small values of I and for a relatively 

FIG. 3. The function P ( t )  for a muon in the tetrahedral interstitial space FIG. 5. The function P ( t )  fora muon in theoctahedral interstitial spaceof 
of an fcc crystal interacting with four nearest neighbor nuclei with spins an fcc crystal. The muon spin I = 2. The remaining notation is the same as 
I = 9/2. Fig. 4. 
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small number N of nuclei interacting with the muon. The 
oscillations on the function P ( t )  are a consequence of the 
finite number of frequencies used to describe the dipole in- 
teraction between the muon spin and the ambient nuclei. 
The low value of I, and the small number of nuclei interact- 
ing with the muon, lead to a smaller number of frequencies 
and deeeper oscillations on P( t )  . 

Figures 4 and 5 illustrate how the second coordination 
sphere, containing nuclei nearest to the muon, affects the 
oscillations of P ( t ) .  It is clear from these figures that the 
amplitude of the oscillations is reduced when the interaction 
between the muon and the nuclei in the second coordination 
sphere is taken into account. This reduction is particularly 
noticeable in Fig. 4 in which there are large oscillations due 
to the interaction between the muon and the nuclei in the 
first coordination sphere. 

The graphs of P ( t )  shown in Figs. 1 and 4 are in agree- 
ment with calculations performed by a different method in 
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Ref. 8 for nuclear spins I = 1 and I = 1, and for the relatively 
short times t  < 8A-'.  

The authors are indebted to V. Yu. Dobretsov for useful 
discussions. 
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