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An attempt is made to use the sum rules of quantum chromodynamics to obtain basic properties 
of nuclear matter. It is shown that nuclear matter has an equilibrium state with a density that 
depends substantially on the magnitude of the TN a-term. An expansion of characteristics of 
nuclear matter in powers ~ f p ' ' ~ ,  wherep is the nucleon density, is obtained, and includes terms 
-p8I3. For o- 60 MeV the values of the nuclear-matter parameters are close to those which can 
be obtained from nuclear models. Estimates of nucleon swelling in the nucleus are given. 

1. INTRODUCTION 

The construction of a consistent theory of nuclear mat- 
ter is one of the principal tasks of nuclear physics. Numerous 
investigations' have been based on the nucleon-nucleon in- 
teraction and, therefore, have required the introduction of 
certain phenomenological concepts. These models appeared 
long before the advent of quantum chromodynamics 
(QCD). Since we believe today that QCD is the true theory 
of the strong interactions, it is desirable to have a model of 
nuclear matter based on QCD. 

In the present paper we make an attempt to obtain the 
basic properties of nuclear matter starting from QCD sum 
rules2 Why have we used this particular method, and not 
one of the others that are also based on QCD, e.g., that in 
Ref. 3? There are several reasons for this. 

1. The sum-rule method takes into account, albeit in a 
very "averaged" manner, the confinement of the quarks and 
gluons. The majority of chiral theories3 do not take confine- 
ment into account. The principal events of nuclear physics 
are played out at distances 0.3 fm 5 r <: 2 fm. To construct a 
theory of nuclear matter one requires knowledge of the con- 
tribution of both short distances r-0.3 fm, where perturba- 
tive QCD is valid, and distances r 2 1 fm, where it is neces- 
sary to allow for confinement. 

2. The sum rules are based on the QCD Lagrangian and 
use asymptotic freedom. Therefore, the method accords 
with our current understanding of the strong interactions. 

3. The accuracy of the method can be monitored in the 
framework of the method itself, without additional phenom- 
enological hypotheses. 

4. The sum rules successfully describe a series of proper- 
ties of nucleons, from their static characteristics to deep in- 
elastic scattering.4 

5. Owing to the sum rules, a new picture of the structure 
of the QCD vacuum has arisen."his may be a sign that the 
study of the sum rules is a necessary stage in the construction 
of a true model of the nucleus. 

In the present paper we have expressed the parameters 
of nuclear matter in terms of the expectation values of cer- 
tain QCD operators over the nucleus. This is an explicit 
expression of Migdal's idea, which is that the properties of 
nuclear matter are determined principally by the short- 
wavelength contributions associated with the interaction of 
the hadrons. The long-wavelength excitations (principally 
of the pion type) should be studied separately, after the ques- 
tion of the stability of nuclear matter has been solved. The 

method makes it possible to solve the first part of the prob- 
lem, while the second part has already been solved by the 
method of quasiparticles. 

We note that the sum-rule method has been used to 
study the bound states of two nucleons.' 

In the paper we calculate the equilibrium density of nu- 
clear matter, which depends on the magnitude of the pion- 
nucleon a-term. The potential energy U, binding energy E,  

and bulk modulus K are calculated as functions of the equi- 
librium density. For a = 60 MeV, 

p,=0.197 fmP3, E= -13 MeV, 

U =  -67 MeV, K=154 MeV. (1) 

2. THE SUM-RULE METHOD 

The sum rules describing the principal static properties 
of hadrons8 take the form of dispersion relations for the po- 
larization operator II, of the hadronic currentj(y) that have 
been subjected to a Borel transformation. Here, 

and the hadronic (henceforth, proton) current is given by 

j (y )=u"(y)Cy,ub~y)ys~"d' (~)~"bcg"' ,  ( 3  

where C is the charge-conjugation operator and u(y) and 
d(y ) are quark fields. In the dispersion relation the contribu- 
tion of the nucleon pole has been separated out, while the 
other states are approximated by a continuum starting at a 
certain point W 2 ,  i.e., 

m 

In Eq. (4)  il is the residue at the nucleon pole; 

and the function n,(q2) is calculated using QCD perturba- 
tion theory. 

The Borel transformation 
xn+l 

n! 
~~~f (2) = lim - 

annihilates the unknown residue polynomials and improves 
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the convergence. After the transformation (6 )  the disper- 
sion relation should be fulfilled for all values of M '. In Ref. 8 
the first few terms of the expansion of II, in powers of q-' 
were calculated, corresponding to the expansion o f j  in pow- 
ers of y2-the operator expansion of Ref. 9. The sum rules 
are found to be valid in the stability interval 

In Ref. 8 the following values were found for the quantities 
m, /Z 2, and W 2 :  

m=l GeV, h2=2,1 GeV6, WZ=2.3 Gev2 (8)  

We want to answer the question: How are the quantities 
(8)  changed in nuclear matter? To answer this question we 
shall solve the equations, analogous to (4), for the change of 
the polarization operator in a medium (nuclear matter). 

The polarization operator II, in a medium depends not 
only on q2 but also on the energy q,, i.e., 

where Id) is the nuclear-matter state. The value of the vari- 
able q, is determined by the fact that the nucleon corre- 
sponding to the pole in Eq. (4) is a constituent of nuclear 
matter. In the lowest orders inp (see Sec. 6) we can assume 
the nucleons of nuclear matter to be at rest. Therefore, repre- 
senting the matter by a "particle" with baryon number 
A% 1, momentum p, , and mass Am, we determine q, from 
the condition 

For the interaction with each of the nucleons the pair energy 
is 

wherep is the momentum of the nucleon in the medium. 
We assume that the interval of stability of the sum rules 

for the change of the polarization operator in the medium 

coincides with the interval (7)  for the vacuum. 
The sum rules for the operator (12), after the Bore1 

transformation (6), will give the values of the changes Am, 
M ', and A W2 in nuclear matter. Since in the nonrelativistic 
approximation, to lowest order in p, 

where U is the one-particle potential energy of the nucleon, 
we use the above nucleon-density function Am (p)  = U(p) 
to find the equilibrium nucleon density p,, and then calcu- 
late for p, the nuclear-matter characteristics ( 1 ) . 

a b 

FIG. 2. Contribution to the function H,. 

3. CALCULATION OF THE POLARIZATION OPERATOR 

The polarization operator has the form 

n (q ,  p)=Gn,(q, p ) + l . ~ , ( q ,  p)+?n3(q7 P). (14) 

We shall be interested in the first two structures (see Figs. 1 
and 2).  

1. The calculation of II, 

The leading term of the operator expansion is shown in 
the diagram of Fig. la: 

where 

Expanding in first order of the operator expansion 

and transforming ( 15) in a manner analogous to that used in 
the case of deep inelastic scattering (see, e.g., Ref. 9),  we 
obtain 

( D  '' is the covariant derivative with respect to y) .  In the 
expansion in the moments of the matter structure function 

FIG. 1. Contribution to the function 11,. 
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the leading contributions -q21nq2 and -lnq2 are given by 
the term with n = 0, while the terms with n> 1 give contribu- 
tions -9-2 (polynomials in q2 are annihilated by the Borel 
transformation). Confining ourselves to the term with n = 1 
in Eq. ( 17), we obtain 

where nu is the difference of the numbers of quarks and anti- 
quarks in the medium. Thus, the relation ( 19) does not as- 
sume that the matter consists of individual nucleons. In the 
following, however, it will be more convenient for us to work 
with relations explicitly containing the nucleon densities: 

wherep,,,, is the density of protons (neutrons) in the mat- 
ter. The Borel transformation gives 

The leading corrections to (21) arise, clearly, when contri- 
butions of the form ( ( s  - m2)/g2) "a:, , are taken into ac- 
count, where a:+ , are the moments of the nucleon structure 
function. These corrections correspond to the calculation of 
the graphs for n,, for a fixed 

x= -q2/2  ( p q )  = - q 2 / ( s - m 2 - q 2 ) .  (22) 

In the momentum representation it is easy to obtain'' 
1 

q2 n , . ( q 2 . x ) = 2 n F p ~ d a f ( a ) ~ n q z ( 1 + ~ ) ,  (23) 
0 

where f is the nucleon structure function. After the Borel 
transformation we have 

1 

where& describes the valence quarks. Using the parametri- 
zation" 

we find that the magnitude of the discarded terms in (20) is 
at most 20% in the interval ( 7 ) .  We note that the relation 
(24) makes it possible to calculate contributions that de- 
pend explicitly on s, as we shall need to do when corrections 
w p 5 I 3  are taken'into account (see Sec. 6 ) .  

A space-time picture of the process and its relationship 
to deep inelastic scattering are given in the Appendix. Terms 
-lnq2 also arise when the diagrams of Fig. lb  are taken into 
account: 

The quantity ( N  I lr-'a, G '1 N ) can be determined from the 
following relationship for the trace Tc of the energy-mo- 
mentum tensor'': 

where q, (mi ) are the fields (masses] of the quarks u, d, and 
s. Since ( N  I T z  IN) = m(N/N) ,  we obtainI2 

Analogously, for matter we obtain 

a 8 
(A)  ~ G z l d > = ( ~ n - x  n m i t d l B i q i ~ d + ) T .  (28) 

i 

Since the second term in (27) gives no more than 10% 
of the total contribution to n , ,  the entire structure of n ,  is 
independent of the circumstance that nuclear matter4con- 
sists of nucleons. In terms of nucleon densities, 

FIG. 3. Contributions not taken into account in the calculations 
of the functions II, ( a )  and II, (b, c ) .  
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The second term in Eq. (29) gives a contribution equal 
to 1/8 of the whole quantity n,, and one may hope that the 
series in powers of qP2 converges. The graphs of the next 
order that were not taken into account (Fig. 3a) contain 
unknown condensates of the form ( N  lijijqql N ). 

2. The calculation of II, 

The leading term of the operator expansion of the func- 
tion II, is determined by the diagram of Fig. 2a: 

where d ( y )  is given by the formula ( 16). As in the calcula- 
tion of rI ,, in the sum ( 16) over n the leading contribution is 
given by the term with n = 1: 

where x = 2 ( d  I ~ ( o ) ~ ( o )  IA). Since the equilibrium den- 
sity pph of nuclear matter is small in comparison with the 
close-packing density p,, , 

p p h / p c p - 0 . 3 ,  p p h = 0 , 1 7  f ~ r - ~  (Ref. I ) ,  (32) 

it is natural to attempt to find the solution in the form of an 
expansion in powers ofp. In lowest order in p, 

where IN ) is the free-nucleon state. 
For bound nucleons a large contribution mp4I3 also 

arises in the first nonvanishing approximation. In fact, all 
possible emissions of mesons by nucleons have already been 
taken into account in the states IN) appearing in (33). For 
bound nucleons we should, however, exclude occupied final 
states with momentump smaller than the Fermi momentum 
PF: 

PF= (3/2pnz)'h. (34) 

In the chiral limit, as is well known,13 only the one-pion 
exchange graph (Fig. 2b) survives. Thus, from the contribu- 
tion (3  1 ) we must subtract the contribution of the graph of 
Fig. 2b, in which the summation over the initial and final 
states d 3p,(2) /(2n-I3 is limited by the condition p , , , ,  <p,. 
Direct calculation gives 

and, to within terms -p2, we find 

9 (njijqln) 
nz=qz q2 [2nx. - - 

2n m," P F ] P  

In the graphs of Figs. 2a and 2b we have neglected the inter- 
action of the nucleons with other nucleons of the medium, as 
manifested in corrections -p to Eq. (36). Since the nu- 
cleons of the medium are moving, the corresponding correc- 
tions can be expanded in a series in powers ofp i  -p2I3. Thus, 
in general form, 

where the functions f ,., are not known to us. 

The next term of the operator expansion of the quantity 
( N  (ij(y)q(O) IN ) contains the operator 

This, as in the case of the vacuum, makes no contribution to 
the structure of II, (Refs. 8, 14), owing to the symmetry of 
the current (3) under interchange of the indices of the y- 
matrices. The neglected graphs of Figs. 3b and 3c contain 
contributions ( N  lqy,qlN) and ( N  IijG2(i1 /2)qlN). We 
shall compare each of them with the contribution H,, . With 
the natural factorization hypothesis 

strong cancellation occurs between these graphs. 
Thus, QCD perturbation theory gives for n,,, the ex- 

pressions (20) and (36). 

4. CONSTRUCTION OF THE SUM RULES 

We now turn our attention to the right-hand sides of the 
sum rules. In contrast to the case of the vacuum, the polar- 
ization operator contains branchings associated with the 
variable u,, and therefore the dispersion relation has the 
form 

We shall show, however, that for a bound system with finite 
binding energy E and finite detachment energy v ( E  - v > O), 
such as nuclear matter, the singularities in u, lie sufficiently 
far away. In fact, assuming the nucleons to be at rest, we 
shall set s, = (Am + m + E ) ,  (E <O). The singularities in 
u, correspond to states with baryon numberA - 1, i.e., lie at 
u, > (Am - m - v), ( v  < 0). Therefore, the singularities in 
u, lie to the right of the point 

For large A 9 1 the singularity (40) lies far to the right, and, 
after the Bore1 transformation, becomes exponentially 
small. Therefore, we neglect the last term in (39), writing 
the dispersion relation in the form 

where the function F(Q 2, is determined by the condition 
( 5 ) .  

We note that we were able to neglect the singularities in 
the u-channel because of the condition A> 1. Thus, this 
method is not applicable to the calculation of the nucleon- 
nucleon scattering amplitude. 

The left-hand sides of the sum rules also contain singu- 
larities in u. They appear explicitly when the graph of Fig. la 
is calculated in the momentum representation-see Eqs. 
(22) and (23). 

Substituting 
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we find that the term lnq2 corresponds to the same singulari- 
ties as in the case of the vacuum, while the term ln(1 + a / x )  
leads to the result that the function n,, calculated using 
perturbation theory has a discontinuity of the form 

4' 
s-rn*-qa 

across the cut 
S-m2 

o<q2 < - 
2 

For q2 R m2 the discontinuity (42) is small, this being ex- 
plained by the smallness of the function f ( a )  for 1 - a ( 1 
[see (24) 1. Therefore, the presence of the discontinuity 
(42) does not affect the structure of the right-hand side of 
the sum rules. 

All the nuclear excitations that could have a strong in- 
fluence on the description of the nucleon in the medium are 
related to singularities in the variables and do not change the 
dispersion relation (39). Therefore, we expect that the 
changes Am, M 2 ,  and A W2 are small, and shall take them 
into account by expanding in a series. 

5. SOLUTION OFTHE SUM RULES IN THE LOWEST ORDERS 
INP 

In this section we shall find the change Am in the nu- 
cleon mass with allowance for terms -p and -p4I3: 

and do the same for M and A W2. Substituting the functions 
(29) and (36) into Eq. (39), performing the Bore1 transfor- 
mation, and subtracting the sum rules for the vacuum, we 
obtain, taking only the terms linear in the unknowns into 
account, 

where a = 0.55 GeV4 (Ref. 8), L = (ln(M2/A2)1n-'(A2/ 
p2) )419, A = 0.5 GeV, p = 0.15 GeV, and 

The quantities x, and (N Ia,n-- 'G  '1 N )  are connected by the 
SU( 3 ) relation 

The quantity x, can itself be expressed in terms of the pion- 
nucleon a-term: 

where m,,,, is the mass of the u ( d )  quark. For the a-term 
the authors of Ref. 15 obtained 

a= (60*10) MeV, xo=ll*2, (50) 

while in Ref. 16 the following estimate is given: 

a= (40*10) MeV, xo=7,3*1,8. (51) 

Using also the relation 

we find the unknown quantities Am, M 2, and A W 2  by mini- 
mizing the relative difference of the left- and right-hand 
sides of Eqs. (45) and (46) by the method of least squares: 

Am=[ (-34-9.4~~) t+54E'f1] MeV, (53) 

where we have introduced the notation f = p/p,, , wherep,, 
= 0.17 fm- is the phenomenological equilibrium density. 
It can be seen that the solutions (53)-(55) are sensitive to 
the value of x,. The equilibrium density p, is determined 
from the equation6 

where 

T=pF2/2m (57) 

is the kinetic energy at the Fermi surface. When (53) and 
(57) are taken into account, Eq. (56) is transformed into a 
simple algebraic equation 

' / ,by2+ '12ayf 15=0 (58 

for the ratio y = 5- 'I3 of the Fermi momenta, with a and b 
given by (44) and (53). For u = 40 MeV we obtain 

y=1.26, g=2.0, po=2pph, (59) 

and for the potential energy U, the binding energy E,  and the 
bulk modulus K we obtain 

U=-69 MeV, e=-7 MeV, K=162 MeV. (60) 

The dependence of these quantities on x, is shown in Fig. 4. 
For u = 40 MeV we obtain 

AhZ=-0.29 G ~ V ~ ,  AW2= -0.29 GeV2. (61) 

Thus, taking into account only the terms -p and -p4I3 
we obtain a qualitative description of nuclear matter. For the 
values of a given by (50) and (5 1) nuclear matter is in a 
bound state. For a = 40 MeV the Fermi momentum is 20- 
25% greater than the phenomenological value, and this 
leads to an overestimate of the density by a factor of two. The 
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FIG. 4. Dependence of the equilibrium density and binding energy on the 
quantity x,. The solid traces are obtained when terms -pS13 are taken into 
account. The broken traces are obtained when only the terms -p and 
wp4I3 are taken into account. 

magnitude of the binding energy is then strongly underesti- 
mated, while the potential energy and bulk modulus are 
close to those that can be obtained in nuclear models. 

6. VELOCITY-DEPENDENT FORCES; THE EFFECTIVE MASS 

The function n, in Eq. (29)  depends explicitly on the 
quantity s, which, in its turn, depends on the three-dimen- 
sional momenta of the nuclei: 

After averaging over the directions and magnitudes of the 
momentap and q, we obtain the corrections 

to the solutions (53) - (55) .  The first term in (63)  gives cor- 
rections -p5I3, which will be calculated in this section. The 
second term in (63)  leads to contributions -p2, which will 
be calculated in Sec. 7. Using Eq. ( 2 4 ) ,  which sums the s- 
dependent contributions to n,, we obtain 

a 

where f ( a )  is given by the formula ( 2 5 ) .  In the second sum 
rule the dependence on s appears in higher terms of the oper- 
ator expansion (Fig. 3b). An analogous calculation gives 

Solving the sum-rule equations with allowance for (64)  and 
( 6 5 )  we obtain 

which leads to the solutions 

~ m = [  ( -34-9 .4~0)  g+54g"~+1.6g"/"] MeV,, (67)  

Neglecting small terms of order AmT2 we have 

U=Am/ ( l + T / m ) .  (70)  

When (67)  and ( 7 0 )  are taken into account the equilibrium 
equation can be written in the form 

(2+0,25xo) y3+31y2- (17+4,7~o)y+15=0, (71)  

which, for a = 40 MeV, gives 

In the form conventionally empolyed for nuclear phys- 
ics, 

~ = U + p , ~ / 2 m * ,  ( 7 3 )  

where U is the potential energy, determined by Eq. ( 5 3 ) .  
Under the condition ( 7  1 ), at the point u = 40 MeV we find 

U=-56 MeV. ( 7 4 )  

The velocity-dependent contribution -p5I3 is taken into ac- 
count in the second term of (74)  by means of the effective 
mass 

m'=m ( I -  (0.078+0.010xo) E )  . ( 7 5 )  

Thus, for a = 4 0  MeV, we have 

E=-2 MeV, m*=0,84m. ( 7 6 )  

The value of the equilibrium density has a substantial depen- 
dence on the quantity a. For a = 50 MeV, 

E=2,25, E=-16 MeV, K=210 MeV. (77)  

The dependence of the quantities 6 and E on u is shown in 
Fig. 5. 

60 C 

FIG. 5. Consistency of the left-hand side (the solid 
curve) and right-hand side (the broken trace) of Eq. 
(45) (the curves I )  and Eq. (46) (the curves 11) for 

40 
u = 40 MeV. Figures a and b show the terms -p and 

20 -p4I3, and Fig. c shows their sum. 
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7. FURTHER TERMS OF THE EXPANSION IN POWERS OF& 

To take further terms of the expansion in powers of p i  
into account we write the sum rules [the difference of Eqs. 
(41 ) and the corresponding equations for the vacuum] in 
the form 

9 (p) -8 (0) =R (am) -R (xt) (78) 

where 9 ( R )  is the left-hand (right-hand) side of the sum 
rules, and xi ( i  = 1,2, 3) are the quantities m, R ', W 2 .  The 
solutions (67)-(69) correspond to the first terms of the ex- 
pansion 

8 (p) -9 (0) =Zlp+L2p'~3+~3p"~, (79) 

where I, , , , ,  are expressed by means of the formulas (29), 
(36), (64), and (65). Then the changes Axiof the quantities 
are found from the equation 

and it is this which gave the solutions (67)-(69). 
To take the next terms of the expansion in powers ofp 

into account, we expand the right-hand side of (78) to terms 
of second order in Axi. Then from (79) we obtain 

I,p2+bp7/a+18p"= z Ax:" + Az:o)Ax,(o), 
axi 2 i , j  axixj 

where Ax:" = aip2 + pip7t3 + yipEt3,  and I,,,,, are un- 
known constants. As shown in Sec. 4, in the first sum rule we 
have I,,,,, = 0. In the second sum rule these constants can be 
expressed in terms of the unknown functions f,,, appearing 
in Eq. (37). 

Substituting the solutions Ax:'' from (67)-(69) into 
Eq. (8 1 ) and equating the coefficients of equal powers of p, 
we obtain equations for I,, ai, Pi ,  and y,: 

We note that in the case of the vacuum the sum rules8 
have been used to determine the condensates that appear in 
the higher orders of the operator expansion. Equations 
( 82)-( 87) are used to determine the unknown condensates 
in the higher orders of the expansion in powers of the den- 
sity. Minimizing the difference of the left- and right-hand 
sides in Eqs. (82)-(87) by the method of least squares, we 
obtain for Ax: ' )  

Am("= [ (2,3xo+l) E2- (0.2xo+7) g'/3+3E"a] MeV, 

and for the unknown condensates 
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P/P.,r ; E. MeV 1 We note that the series in 6 converges rapidly. Using (56), 
(73), and (75), we obtain the equilibrium equation of nu- 
clear matter: 

(98) 
The values of the equilibrium density po and binding energy 
E as functions of the quantity x, are given in Fig. 6. For 
IJ = 60 MeV and xo = 10.9, 

FIG. 6. Dependence of the equilibrium density and binding energy on the 
quantity x, with allowance for terms up to -p8l3. y=1.05, p0=0.197 fmP3, e=-13 MeV; 

then 

1,= (6?co-13) MeV - 50 MeV, (91) U=-67 MeV, K=154 MeV, (100) 

Is=- (1,2x0+5) MeV- - 20 MeV, (92) 
(see also Fig. 7 ) ,  and 

Ab2=-0.26 GeV6, A WZ=-0.30 GeV2. 

(the terms - x i  in Axj" and I ,  are negligibly small). In the 
equation for Ax('', I ,  - - 100 MeV and I, - 50 MeV. 

Finally, we obtain Axi = AxjO' + Ax;": 

Am= [ ( - 3 4 - 9 . 4 ~ ~ )  ~ + 5 4 ~ 1 3 + 1 , 6 ~ v 3  
+ ( 2 . 3 ~ ~ 4 - I )  E2- (0.2xo+7) g"+3E'/a] MeV, (94)  

The potential energy, when Eq. (70) is taken into account, is 

u ( ~ )  = [ ( - 3 4 - 9 . 4 ~ ~ )  g+54t'/3+ (2.3~0-1) t2+ (-0.2~o-5)E"' 
+ ( 3 - 0 . 1 ~ ~ )  E8I3] MeV, 

b=p/pph, pph=0.17 fm-3, (97) 

8. CONCLUSION 

Thus, we have attempted to obtain the basic properties 
of nuclear matter starting from the QCD sum rules. We have 
not used any phenomenological assumptions about the nu- 
cleon-nucleon interactions. The values of the change of the 
nucleon mass in the medium, the change of the residue at the 
nucleon pole, and the change of the threshold of the contin- 
uum have been represented in the form of an expansion in 
powers of the nucleon density. 

In the lowest terms of the operator expansion the left- 
hand side of the sum rules, as shown in the paper, does not 
contain an infinite series of operators but can be expressed in 
terms of the values of several operators averaged over the 
states of the medium. In their turn, in the lowest orders inp  
these are expressed in terms of known or calculable expecta- 
tion values over the nucleons. 

The right-hand sides of the dispersion relations contain 
not only singularities in q2 but also singularities in the u- 
channel. In this paper it is shown that in the bound system 
with a large number of nucleons ( A  % 1 ) the latter are shifted 
far to the right along the axis of the variable q2 and give an 
exponentially small contribution after a Bore1 transforma- 

FIG. 7. Dependence of the quantities Uand K (Fig. a) 
and AA *andA W Z  (Figs. bandc) on thequantity %,for 
equilibrium values of the density. The dashed-dotted 
curve takes only terms -p and -p4I3 into account; the 
broken trace corresponds to inclusion of terms -$I3; 

the solid trace takes terms up to -pal3 into account. 
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tion. Thus, the direct application of the method to the calcu- 
lation of the amplitude of the nucleon-nucleon interaction is 
not possible. We note that, for the same reasons, it is not 
possible to use the method to calculate the TN-scattering 
amplitude, which vanishes in the chiral limit. The left-hand 
sides of the sum rules do not vanish as m, -0. At the present 
time we cannot answer the question as to whether the n-N- 
scattering amplitude vanishes on account of the u-channel or 
on account of the contribution of graphs of higher orders. 
We cannot rule out the latter possibility, which would sug- 
gest poor convergence of the operator-expansion series. 

Taking into account only terms -p and mp4", we have 
obtained the basic properties of nuclear matter. We have 
shown that the matter has a state of stable equilibrium. The 
density depends strongly on the magnitude of the n-N u- 
term. For u = 40 MeV the Fermi momentum, for which the 
equilibrium equation is solved, turns out to be 25% greater 
than the known phenomenological value. This leads to a 
density p = 0.34 fmP3 for the given value of u. The value of 
the binding energy turns out to be strongly underestimated, 
although the potential energy and compressibility agree well 
with the known values. 

In the next order (p513) velocity-dependent forces arise 
naturally. Allowance for these leads to a smaller value of the 
equilibrium density (p = 0.19 fm-3 for u = 40 MeV), but 
for values of Uclose to those obtained in nuclear physics the 
binding energy is sharply underestimated. 

The calculation of the next terms of the expansion in 
powers ofp1I3 includes the unknown condensates. The latter 
are also determined from the sum rules, just as, in the case of 
the vacuum, the condensates appearing in higher orders of 
the operator expansion have been determined from the sum 
rules. Allowance for terms up to pa" leads to a smoother 
dependence of the quantities sought on the magnitude of the 
u-term (Fig. 6). For u = 60 MeV the values given in Eq. ( 1 ) 
are realized. 

We note that the magnitude of the potential energy can 
be estimated easily. In the case of the v a c u ~ m , ~  

m=I-8n2(OIEu+dd10> 1'"=1 GeV, 

while in a medium 

m,= [ - 8 n Z ( . d  I Eu+ddI &>]'" 

which determines the scale of the phenomenon. 
We recall one further result of the paper. Since the 

quantity M has the meaning of the quark wavefunction at 
the origin of the coordinate space, the estimate 
M '/A ' - - 0.1, which follows from formula (95), gives the 
scale of the nucleon swelling in the nucleus. In terms of the 
increase of the radius, this scale corresponds to Ar/r-  3%. 

Improvement of the method should involve allowance 
for the next terms of the operator expansion, and this re- 
quires the calculation of expectation values (over the nu- 
cleus) of several more operators. The results obtained in the 
paper permit us to hope that it will be possible to use the 
method to give a simultaneous description both of the struc- 
ture of nuclear matter and of hard processes in it. 
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Ryskin, E. A. Sapershtein, V. A. Khodel', and M. A. Shif- 
man for valuable discussions, to N. A. Poltavskaya for help 
in the computer work, and to L. Kh. Valyamova for prepar- 
ing the manuscript. 

APPENDIX 

We shall compare the space-time pictures of our pro- 
cess and deep inelastic scattering." The latter is described by 
the matrix element 

F ( ~ ) = I ~ ~ ~ ~ ~ ~ - ' ( ~ ~ ) ( N ~ T { J , ( ~ ) ~ . ( O ) ) ~ N ) ,  ( A l )  

where 

is the electromagnetic current. Choosing as the z axis the 
direction of q, we denote 

In deep inelastic scattering", 

y i2 -  1 /qZ<z2;  yt2<zZ 

and 

exp i ( q y )  =exp{ iq2 /2mxz+ imxz ) ,  x= -q2 /2  ( p q )  . (AS) 

For the structure proportional to g,, in F one can ob- 
tain9." in the first approximation in y2 

Since, obviously, 

( N l  E ( y )  ( y,DNZ . . r r n ~ ( 0 )  ( N > m p a ,  

we have, to within terms -y2, 

( N ( C i ( y ) y , D " . . . v n u ( 0 )  IN>=p,cp(z) ,  (A71 

where p is an unknown function. Equation ( A l )  acquires 
the form 

which can be transformed to 

F= ( p q )  J dy12  dz  exp  i  ( L g  
2 m x  z  + m x z ) r p ( z )  (A91 

or 

F = B  (s) = j drcp ( z )  erp ( i m x z )  . (A101 

In our case the function II, can be represented in the 
form 

'dV ( N I T ~ ~ ( y ) j , ' ( 0 ) ) I N > e - z ~ ~ ~ )  

(A1 1) 

wherej; (y) = u(y)Cy,, u(y).  Equation (A1 1) can be trans- 
formed to the form 
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or, with allowance for (A7), 

n1 ( 4 )  =2 ( p q )  j 

After the integration over y, and yi'2 we obtain 

In Eq. (A14) we can set ln(q2/2mxz) = lnq2, since the 
Bore1 transformation6 annihilates the polynomials. Using 
(AlO), we obtain 

Since in first order of the expansion in powers of q2 we have 
x = 1 [see Eq. (22) 1,  we arrive at the expression ( 19) in the 
same approximation. To take the next terms of the expan- 
sion into account requires knowledge of the function p(z), 
or, equivalently, knowledge of the moments of the structure 

The above can be extended in an obvious manner to the 
calculation of expectation values over nuclear matter. 
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