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Vacuum polarization by a point charge Z is calculated rigorously without using an expansion in 
the parameter aZ.  The corresponding correction to the energy levels of hydrogen-like ions with Z 
between 10 and 137 is calculated, and substantially reduces the uncertainty in theoretical 
estimates of the level energies of multiply charged ions. An asymptotic expansion is obtained 
analytically for the polarization potential at large distances from the nucleus. 

1. INTRODUCTION 

Although quantum electrodynamics has been success- 
ful in describing the interaction between free electrons and 
photons, the computational difficulties encountered in the 
case of bound states are so much greater that even calcula- 
tions of lowest-order radiative corrections in a have to be 
considered separately in each special case, and require the 
use of powerful computers. Thus, the energy shift in hydro- 
gen-like ions was calculated in the late 1940s to lowest order 
in a Z  ( Z  is the nuclear charge), but the precise calculation 
that did not involve an expansion in a Z  was not carried out 
until 1975 (Refs. 1 and 2), and is the only example of an 
exact evaluation of the quantum electrodynamic corrections 
to the energy levels of high-Z atoms. In the present paper, we 
report an analogous evaluation of another diagram in the 
lowest order in a that contributes to the Lamb shift, namely, 
the vacuum polarization effect. In view of experimental ad- 
vances (e.g., in the spectroscopy of mesic atoms and of mul- 
tiply-charged ions, and in collisions between heavy nuclei), 
accurate calculations of the polarization of vacuum by a 
high-Z Coulomb center is of both theoretical and practical 
interest. In particular, the main uncertainty in theoretical 
estimates of the energy levels of heavy ions' is currently due 
to a lack of accurate calculations of the vacuum polarization 
diagram. 

Vacuum polarization produces a "smearing out" of the 
point charge eZ, so that the charge density distribution as- 
sumes the form4 

and the expression V'3) was used in various calculations (see 
for example Ref. 3 ) . 

Vacuum polarization was subsequently investigated 
analytically and numerically by several workers,-but the re- 
sults obtained were valid mostly for small distances r S A ,  
(A, = fi/mc), which are significant in mesic atoms and 
superheavy ions with a Z >  1. The first few terms in the ex- 
pansion of V'"+'for small rwere obtained in Refs. 7 and 8. In 
particular, a simple expression was found for the point 
charge Q (see also Ref. 9).  In Refs. 10 and 11, a numerical 
calculation of p"+' was made, using the Coulomb Green's 
function and taking into account only the first term in the 
partial expansion [cJ: the term with k = 1 in (2)  1. In Ref. 
12, p"+' was calculated by direct summation over the state 
of the electron and positron in the Coulomb potential, taking 
into account a few terms of the partial expansion. It was then 
used in Refs. 10-12 to calculate the energy level shifts in 
mesic atoms and heavy ions, so that the finite size of the 
nucleus had to be taken into account. 

In the present paper, we report a complete calculation 
of V"+' for a point nucleus with Z g  137. The overall scheme 
of the calculation (Sec. 2) is closest to that used in Ref. 10. 
Asymptotic expansions are obtained for V'"' and for the 
partial terms p, ( r )  (Sec. 3) for large r. These enable us to 
develop a technique for calculating V'"' for all r (Sec. 4). 
The results obtained in this way are used to calculate the 
energy level shifts for the states Jnlj  ) of hydrogen-like ions 
wi thn= 1 -5 ,1=O-2  (Sec. 5).  

p (r) =eZb(r).+p('' (r)  +p'3) (r) +p(" (r) + . . . 2. GENERAL FORMULAS 
=&6(r) +p(i)+p('" ( r ) ,  ep(")(r) -a(ccZ)" The expression for the density of induced charge in 

where r is the distance from the nucleus. We shall write the terms of the exact Feynman propagator SF (x,x') for the mo- 
potential due to this charge distribution in the form tion of an electron in the Coulomb field of the nucleus is 

given by the well-known expre~sion'~' 

p=ie Sp(Sdx, 2') yo) 1,~,,, 
where V"' is the well known Uehling potential which is lin- 
ear in Z (Ref. 5)  and V'")contains terms that are nonlinear where the matrices yare chosen in the standard manner and 
in Z. The question of vacuum polarization by a strong Cou- the charge of the electron - e .  If we write SF as a Fourier 
lomb field was first examined in Ref. 4 in which general ex- integral of the Coulomb Green's function G(r , r l ,E) ,  and ro- 
pressions were obtained for V'"' and for the point charge Q tate the contour of integration on the complex plane of E 
that appears in p'") and determines V'3+i for small r: around the imaginary axis, we obtain 

V(3+)=Q/r, r+O. 
w 

e 
q=- -  J dwSpG(r,r1;io)yoI.,+,. 

However, the expressions for V'"' are found to be very com- 2n-_ 
plicated. They were simplified to some extent in a later pa- 
per," but only for the part of the potential that was cubic in Z,  If we then use the following partial expansion for G: 
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G Y ~  (r, r'; E )  Y L L  (11, n'), iGY1 (r, r'; E )  YLr,, (n, nf) G (r, r'; E) = 
($4) i ~ y l  (r, r'; E) YL,L (n, n'), - J~ (r, rf ,  E )  Y~,,I , ,  (n, 11') 

where YLtLl(n,nl) =RJL,,(n)QJL?,(nl), is the 
spherical bispinor, and L ' = W - L, we obtain the following 
expression after summation over M and evaluation of the 
tracein (1) :  - 

where 
m 

e 
P J + %  = - - J do  [G::' (r, r; iw) +G$' (r, r; io) 1. 

4n2L=J*'b  -m 

We have put r' = r in the above expressions because the par- 
tial terms G j;l' (r,rl;E) are finite for r' - r. Using the expres- 
sion for GJL in terms of the Whittaker functions M,,, and 
W,,, (see, for example, Ref. 13), we obtain 

where 

gk (o ,  r) = -Re 2r(y-q) {ZV[ (7-q) M-W-+M+ W+] 
( I + O ~ )  r (27+1) 

+io (7-q) [M-W+- (y+q)M+W-1). (5) 

r ( x )  is thegamma function, and M +  - = M,,, ,,,, (x) ,  W +  
= W, . ,,,,, (x) . We have changed the limits of integration 

with respect tow between (3 )  and (4) in view of the symme- 
try of the integrand. 

The above expressions forp do not converge. The diver- 
gence in ( 1) is due to the singularity G(r,rl;E) - Ir' - rl-' 
for r f+r .  The quantity p, ( r )  is finite in ( 3 )  and (4),  but the 
sum over A in (2)  does not converge. The expression forp is 
conveniently regularized by subtracting from (4) the part of 
p, ( r )  that is linear in Z (Refs. 10-12). This removes from 
p, ( r )  the part of the induced charge density that corre- 
sponds to the Uehling potential, which is very convenient in 
the evaluation ofp'"). After this subtraction, the expression 
for p'3+' is found to be finite, but contains ambiguities be- 
cause the diagram f ~ r ~ ' ~ '  with four vertices has to be renor- 
malized. This ambiguity is reflected in the fact that the val- 
ues ofP'3+) are found to be different if we alter the order of 
summation over the k and integration with respect to w in 
(2)  and (4).  It is shown in Refs. 10 and 12 that the addi- 
tional renormalization is unnecessary when integration with 
respect to w is carried out in each partial term p, in (4),  
followed by summation over k in (2) .  

Thus, the renormalized expression for p, is 

where the part that is linear in Z, i.e., 

l in d 
gk ("?r)=z[dZgk(o?r)]I 2-0 

can be written in the form 

in which 

The explicit expressions for the derivatives M '+ and W', 
are given in the Appendix. 

3. ASYMPTOTIC EXPRESSIONS FOR p AND V 

An analytic examination ofp"+'(r) is possible only for 
small and large r. The expansions for r-0 are discussed in 
the Introduction, so that we shall confine our attention to 
the case r%A,. To  determine^'^+', we must find the asymp- 
totic behavior of pi3 + ' ( r j '  for large r and k. To obtain the 
necessary expansions for the integral ( 6 ) ,  it is convenient to 
write g ,  (w,r) in (5)  in the form 

( 8 )  

where 

As in the general case of a product of any two solutions of a 
linear second order differential equation, we can write the 
following third-order equation for T(r],y,x): 

674 Sov. Phys. JETP 68 (4), April 1989 Manakov et aL 674 



[ (m+1) /21  Zm-2n+i 

dm = r, en,, (aZ) "+'p ( r )  n+m+2 

where en, are rational numbers that can be expressed in 
terms of C,,,, p ( r )  = 3(? + k 2  - 1 / 4 ) - I .  The first few 
terms of the expansion for pi" ) ( r )  are 

which is convenient for obtaining the asymptotic expansion 
for T +  . 

Since y is finite for x-+ CQ (this corresponds to large r  
and finite k ) ,  T can be written in the form 

rn 

where a, = 1, which follows from the known asymptotic be- 
havior of M and W (Ref. 1 4 ) ,  and a, for n > 0  is found from 
the recurrence relation 

which follows from ( 9 ) .  The solution of ( 1 1  ) is Substituting ( 16) and ( 17) in ( 2 )  and summing over k term 
by term with the aid of the well-known Euler-Maclsnrin 
formula [it is convenient to use the expansion ( 13) for pL3 + ' 
to calculate the derivatives in these expressions], we finally 
obtain 

m [ ( m + 2 ) / 2 1  

where a,,, are positive integers. The expansions given by 
( 10) and ( 12) enable us to write g, (w,r)  in the form of a 
series, where the integral ( 6 )  with respect tow can be evalu- 
ated analytically: 

+ ( r  = (m!)'  (2m+4) 
4n2 m=o n = i  

We also supply an analytic expression for the potential v(B+l ( r ) .  Since the induced charge must be zero, i.e., 

we have - 
Henceforth we use relativistic units for which f i  = m = c 
- - 1. 

For large k- r  (y  - x ) ,  we can find the asymptotic be- 
havior of T by substituting x  = by, b = (4y2 - 1 ) "' in ( 9 )  
and take Tin the form 

Substituting ( 19) in (21  ), we obtain the following expres- 
sion for the energy of an electron in the potential V"+': 

A set of coupled differential equations is thus obtained for 
T ' " )  from ( 9 ) .  Its solution is The first few terms of this expansion are 

where C , , ,  are rotational numbers ( C , , ,  = 1 )  that can be 
determined recursively. 

Evaluating the integral with respect to w in ( 6 ) ,  and 
using ( 14) and ( I S ) ,  we obtain the following expression for 
pi3+ ) ( r ) :  

Table 1 lists the higher-order coefficients A,,, for m = 5-12, 
n = 1-4. We note that earlier papers reproduce only the first 
term of the asymptotic form of U t3 + ' (Ref. 14; see also Ref. 
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TABLE I. Values of the coefficients f,,,, . 

IS), which can be interpreted in terms of the Lagrangian for 
the uniform electromagnetic field. 

4. NUMERICAL DETERMINATION OF CHARGE DENSITY AND 
POTENTIAL 

The fun~tionsp '~+'(r)  and V'3+)(r) were calculated ac- 
curately using (2)-(7) and (2 1 ) . The function M,,, (x)  was 
calculated either by expanding it into a series or by using the 
asymptotic expansion in terms of x .  The function W,,, (x)  
has a range of intermediate values of x in which both these 
expressions yield values of low precision. It is then more 
effective to use the ~ - a l ~ o r i t h m ' ~  for the asymptotic expan- 
sion for W. There is some loss of precision for small Z when 
the difference g, - g y  in (6) is evaluated because (g, 
- gP)/g, - (aZ)2. The calculations were therefore per- 
formed only for Z> 10. 

The integral with respect tow in (4)  was evaluated nu- 
merically, using Gauss quadratures between 0 and w,, and 
analytically between w, and W ,  using the asymptotic expan- 
sion for g, (w,r), obtained from ( 10). It is important to note 
that the integrand in (6)  is a smooth function of w that 
changes sign only once on the interval (0, w ), but the total 
integral with respect tow is found to be 3-7 orders of magni- 
tude smaller (as a function of r )  than the integral of Ig, 
- gPI, and this means that the final answer is accurate to a 
smaller number of significant figures. 

This evaluation of pL3 + ' ( r )  was performed only for 
k = 1-7. For k>8, the functionpL3 + ' ( r )  was calculated us- 
ing the asymptotic expansion ( 16). For r- k - 15, up to 
twelve expansion terms had to be included to achieve a rela- 
tive precision of lo-'. For r >  15, the required precision is 

obtained with ( 19) for p~ '~+ ' ( r ) .  The summation over k in 
(2)  presents no difficulty. For small r, the terms in the sum 
over k fall rapidly, whereas for large r the main contribution 
is provided by the region k=  r [it follows from ( 16) that the 
expression for kp i3 + ' (r)  has a maximum at kzr/m]. 
Figure 1 shows the relative contribution of kpL3 + ' ( r )  to 
~ ' ~ + ) ( r )  for k = 1-4 and Z = 82. 

The above procedure was used to calculate the func- 
tions ~ ' ~ + ) ( r ) ,  V'3+)(r) throughout the interval 0 < r < a 

and Z<137 with relative precision of lo-' or better. The 
value a- ' = 137.036 was used in the numerical calculations. 
An additional check on the precision was made by verifying 
that the total induced charge was 

" 

I PpC3+) (r) dr+Q=O, e-4-0, 

where Q is the induced point charge calculated from the ana- 
lytic formulas.'-"Figure 2 shows the r dependence of the 
function 

f (r, 2 )  =rU(3+)(r)/u(a2)3 

for several values of Z. We note that the f(r, Z = 0 )  curve 
corresponds to the potential V'3', calculated from the formu- 
las given in Ref. 6, and that f ( r  = 0 , Z )  = Q/a (aZ)3 .  

5. CONTRIBUTION OF VACUUM POLARIZATION TO THE 
ENERGY-LEVELSHIFT IN HYDROGEN-LIKE IONS 

The energy shift is calculated in the usual way: 

where we have taken into account the contribution of the 

FIG. 1 .  The ratio 6, = kpL3 ' ' /p'3+' as a function of r  for Z  = 82. The FIG. 2. The radial function f ( r , Z )  = r U " + ' / a ( a Z ) ' .  The traces are la- 
traces are labeled with the values of k. beled with the values of Z. 
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Uehling potential AE'" and of the terms nonlinear in Z .  We 
begin with the case a Z g  1. The matrix elements of U'" can 
then be evaluated by replacing the bispinor Y,,,. ( r )  with its 
expansion for r+ 0 .  In the lowest order in a Z ,  we have 

We note that the expression for AE ,(,:,'(aZ-0) given in Ref. 
13 (Page 7 7 )  does not include the term containing S,,,, ,,, , 

due to a small component of Yno.  It follows that, when the 
contribution of the Uehling potential is estimated, we cannot 
use the nonrelativistic hydrogen wave functions even to low- 
est order in a Z .  For small 2, the quantity AE :;+ ' is deter- 
mined exclusively by the term V'3' in the potential v ' ~ + ) ,  and 
can be obtained by recalling that, for small Z,  the Bohr radi- 
us a, is significantly greater than the characteristic length 
for a change in V ' 3 ) ( r ) .  For I = 0 ,  the quantity AE it'' 
( a Z - 0 )  is determined by the behavior of the wave function 
for r-  1 <a,, whereas for 1>2, it is determined by the region 
r=a,& 1 in which we can use the asymptotic form of vt3+'. 
For I = 1, we must take into account the contribution of 
both regions ( r e  1 and r ~ a , ) .  The expression for AE ,!;+ ' 
for a Z -  0 is 

where C, = 0 ,  C3 = - 7/16,  C, = - 147/200, C, = - 77/80, 
and C = 0.57721566 ... is the Euler constant. The results of 

rn 

numerical calculations are conveniently written in the form 
6, = 2 J r2U(3) (r)dr=0,0045105564, 

u (az ) '  AE:::'= ( I + "" ) F,,,, ( a ~ )  AEZ:) (aZ-0) , ( 2 6 )  
[1 - (aZ)2] 'b  

1 2 a ( a Z ) 3 ) d r ]  where Fir  a smooth function ofZ. Table I1 lists the values of b , = - [ l r 4 0 ( 3 ) ( r ) d r +  j ( r 4 U ( 3 ) ( r ) - - - - - -  
a ( a z ) '  ,, a 225x1- F for states with n = 1-5, 1 = 0,1,2. 

TABLE 11. Values of the function F,,,, ( a Z ) .  

The calculated energy levels of hydrogen-like ions with 
allowance for radiative corrections, and also for recoil and 
nuclear structure effects, are gathered together in Ref. 3, 
where the potential V'3' was used to estimate AE1(3+). Com- 
parison with our results shows that the use of V'" instead of 
V"+)  leads to a result that is too low. Thus, for Z = 82, the 
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TABLE 111. Values of the corrections AE"', AE"', and AE"+', AE"' 
~ ( u Z ) ~  F ~ , , ~ ~ ' ,  =- 

77 

z 

55 I 82 I 92 I i00 

I I I I 

uncertainty is l o%,  but for Z = 130 it reaches 30-60%. The 
corrections AE '3+) are small in comparison with AE'", but 
they are much greater than the contribution AE ::; of the 
radiative corrections which are of order a2. Thus, for the 1s 
state and Z = 100, the ratio AE"':AE'3+':AE :,Zd is 400:20: 1. 
In previous publications, the uncertainty in the estimated 
AE'3+' was one of the main sources of uncertainty in the 
theoretical values of the energy leveh3 This uncertainty is 
removed by the data given in Table 11, so that the principal 
uncertainty in the calculations is now related only to the 
finite size of the nucleus. 

In general, the finite size of the nucleus must be taken 
into account in the calculation of vacuum polarization as 
well. This is important for estimates of AE"', but can be 
omitted from AE'3+) because AE '3+' is itself small (the con- 
tribution due to the finite size of the nucleus to V'3+' was 
estimated in Refs. 10 and 12).  Of course, as Z approaches 
137, the results obtained for the j = t, which diverge for 
aZ = 1 [see ( 2 6 )  1, will not be valid for real ions. 

In conclusion, we reproduce the corrections AE"', 
AE'3', and AE'3+' corresponding to the Uehling potential 
V'", theBlomqvist potential V'3' (Ref. 6 ) ,  andour calculated 
potential V'3+) for the ground state of ions with Z = 55, 82, 
92, and 100 (Table 111). We note that the values of AE") 
given in Table I11 of Ref. 3 were used as estimates for AE'3+'. 

APPENDIX 

The derivatives 

Wllr-n,k ( x )  =e-"" 

h-n 

(k+n)m(k-n-m+l)m 
[9(k+n) 

m-0 

where ( a ) ,  = T ( a  + n ) / r ( a ) .  
The formulas given by ( A l )  and ( A 2 )  were obtained 

by term-by-term differentiation of the expressions for M and 
W with an integer parameter.14 For large x ,  we used the 
asymptotic expansion 

( k f  n), (k-n-m+l), w(,-",~ (Z) =e-'12 { z m!xn+m-'b 
m=O 

m 

(-1) "+'-" (kf n) (k-n) ! 
+ m = ~ - n + l  ' ( ~ + n - k ) , , , + , ~ ~ + ~ - ~  ( A 3 )  

d and also the expressions for M in terms of W' and W: 
w:/,,k (3) = - Wq*%,k (5)  I tl-0 

d rl 

M;2-n,k (x) 
were calculated using the following expansions: 
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Whenever the upper limit of summation is smaller than the 
lower, the corresponding sum is omitted. 
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