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Vacuum polarization by a point charge Z is calculated rigorously without using an expansion in
the parameter aZ. The corresponding correction to the energy levels of hydrogen-like ions with Z
between 10 and 137 is calculated, and substantially reduces the uncertainty in theoretical
estimates of the level energies of multiply charged ions. An asymptotic expansion is obtained
analytically for the polarization potential at large distances from the nucleus.

1.INTRODUCTION

Although quantum electrodynamics has been success-
ful in describing the interaction between free electrons and
photons, the computational difficulties encountered in the
case of bound states are so much greater that even calcula-
tions of lowest-order radiative corrections in a have to be
considered separately in each special case, and require the
use of powerful computers. Thus, the energy shift in hydro-
gen-like ions was calculated in the late 1940s to lowest order
in aZ (Z is the nuclear charge), but the precise calculation
that did not involve an expansion in aZ was not carried out
until 1975 (Refs. 1 and 2), and is the only example of an
exact evaluation of the quantum electrodynamic corrections
to the energy levels of high-Z atoms. In the present paper, we
report an analogous evaluation of another diagram in the
lowest order in a that contributes to the Lamb shift, namely,
the vacuum polarization effect. In view of experimental ad-
vances (e.g., in the spectroscopy of mesic atoms and of mul-
tiply-charged ions, and in collisions between heavy nuclei),
accurate calculations of the polarization of vacuum by a
high-Z Coulomb center is of both theoretical and practical
interest. In particular, the main uncertainty in theoretical
estimates of the energy levels of heavy ions is currently due
to a lack of accurate calculations of the vacuum polarization
diagram.

Vacuum polarization produces a ‘“‘smearing out” of the
point charge eZ, so that the charge density distribution as-
sumes the form*

o (r)=eZd(x)+p V) (r)+p (r)+p () + . ..
=eZd(r) +p W +p ) (r), ep™ (r)~a(aZ)”

where r is the distance from the nucleus. We shall write the
potential due to this charge distribution in the form

V(r)=eZ[r+V W (r)+V(r),

where V" is the well known Uehling potential which is lin-
earin Z (Ref. 5) and ¥ ®**’ contains terms that are nonlinear
in Z. The question of vacuum polarization by a strong Cou-
lomb field was first examined in Ref. 4 in which general ex-
pressions were obtained for ¥ **’ and for the point charge Q
that appears in p®*’ and determines ¥ ®*’ for small r:

Ve =Qfr, r—0.

However, the expressions for ¥+ are found to be very com-
plicated. They were simplified to some extent in a later pa-
per,® but only for the part of the potential that was cubicin Z,
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and the expression ¥ was used in various calculations (see
for example Ref. 3).

Vacuum polarization was subsequently investigated
analytically and numerically by several workers,-but the re-
sults obtained were valid mostly for small distances r S A4,
(A, =#/mc), which are significant in mesic atoms and
superheavy ions with @Z > 1. The first few terms in the ex-
pansion of V"' for small » were obtained in Refs. 7 and 8. In
particular, a simple expression was found for the point
charge Q (see also Ref. 9). In Refs. 10 and 11, a numerical
calculation of p**’ was made, using the Coulomb Green’s
function and taking into account only the first term in the
partial expansion [¢f. the term with kK = 1 in (2)]. In Ref.
12, p®* was calculated by direct summation over the state
of the electron and positron in the Coulomb potential, taking
into account a few terms of the partial expansion. It was then
used in Refs. 10-12 to calculate the energy level shifts in
mesic atoms and heavy ions, so that the finite size of the
nucleus had to be taken into account.

In the present paper, we report a complete calculation
of ¥ *for a point nucleus with Z<137. The overall scheme
of the calculation (Sec. 2) is closest to that used in Ref. 10.
Asymptotic expansions are obtained for ¥+’ and for the
partial terms p, (r) (Sec. 3) for large r. These enable us to
develop a technique for calculating ¥®* for all r (Sec. 4).
The results obtained in this way are used to calculate the
energy level shifts for the states |#/j ) of hydrogen-like ions
withn=1—5,/=0—2 (Sec. 5).

2. GENERAL FORMULAS

The expression for the density of induced charge in
terms of the exact Feynman propagator S, (x,x') for the mo-
tion of an electron in the Coulomb field of the nucleus is
given by the well-known expression'’

p=ie Sp(SF(z, :t')”{o) Ix'-’h

where the matrices y are chosen in the standard manner and
the charge of the electron — e. If we write S as a Fourier
integral of the Coulomb Green’s function G(r,r',E), and ro-
tate the contour of integration on the complex plane of £
around the imaginary axis, we obtain

n= —iidm SpG(r,r’;i0)Yo|r o (1)

If we then use the following partial expansion for G:
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G(r,r';E)=

JLM

where Y, , (nn') =Q,  (n)Qy 0 ('), Qp, is the
spherical bispinor, and L ' = 2J — L, we obtain the following
expression after summation over M and evaluation of the
tracein (1):

o()= Yikor(r), k=J+1/s @)

R=1

where

p:+v,(r)="'47 2 jdm[G:L (r,r;i0)+GY (r,r;i0)].

L=J+' —oco
(3)

We have put 7 = rin the above expressions because the par-
tial terms G {¢’ (r,7;E) are finite for 7 —r. Using the expres-
sion for G, in terms of the Whittaker functions M, , and
W, . (see, for example, Ref. 13), we obtain

) =— o fgk(m ) do, @
where
_ 2r'(y—m) _
&(a,r)= —Rem (Zv[(\—M)MW_+M, W ]

+io (y—n) [M-W,— ('{+T])M+W_]}, (5)

y=(k*—(aZ?))", v=a/(1+e®)" n=iwZv,

[(x) isthe gamma function,and M, =M, . ,,,, (x), W,
=W, . 1,2, (x). We have changed the limits of i mtegratlon
with respect to w between (3) and (4) in view of the symme-
try of the integrand.
The above expressions for p do not converge. The diver-
gence in (1) is due to the singularity G(r,r’;E) ~|r' —r| ™'
for r' »r. The quantity p, (7) is finite in (3) and (4), but the
sum over A in (2) does not converge. The expression for p is
conveniently regularized by subtracting from (4) the part of
P (r) that is linear in Z (Refs. 10-12). This removes from
px (r) the part of the induced charge density that corre-
sponds to the Uehling potential, which is very convenient in
the evaluation of p® . After this subtraction, the expression
for p°*’ is found to be finite, but contains ambiguities be-
cause the diagram for p with four vertices has to be renor-
malized. This ambiguity is reflected in the fact that the val-
ues of p°* are found to be different if we alter the order of
summation over the k and integration with respect to w in
(2) and (4). It is shown in Refs. 10 and 12 that the addi-
tional renormalization is unnecessary when integration with
respect to w is carried out in each partial term p, in (4),
followed by summation over k in (2).
Thus, the renormalized expression for p, is
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z=2r(1+w?)",

GHL(ryr's EYYir (0, n'), iGR(r,r'; E)Y 1y (m, n’) |
ZGJL(r’r ’E) YL'[‘(ﬂ,n), ﬁaflhllz(rvr 1E) YL’L’ (n1 Il’) I '

o (r)=— Tt j(gh(m nN—g" (o,r))de, (6)
where the part that is linear in Z, i.e.,

lin

6" (0,0 =2 L. ]
can be written in the form

Lin _ 20Z (k—1)!
g (0,r)= ERTEOTICAYY

Z=0

(KM_W_+M, W,

o[ (1+kp(k)) MW,

k(M W, +M_W,’)
k(ML W_AM W —p (k) M W) 1}

in which

Y@= T T@, M=Man(o),

d
- Mni’/z,h (x) I n=0,

W1=W¢’!,,h(x)1 Mi, = dn

d
W, = an Wasnp (2) | n=o- (7)

The explicit expressions for the derivatives M
are given in the Appendix.

‘. and W',

3.ASYMPTOTIC EXPRESSIONS FOR p AND V

An analytic examination of p'**'(r) is possible only for
small and large r. The expansions for -0 are discussed in
the Introduction, so that we shall confine our attention to
the case r>A,. To determine p®*’, we must find the asymp-
totic behavior of p{’ *’(ry for large r and k. To obtain the
necessary expansions for the integral (6), it is convenient to
write g, (w,7) in (5) in the form

1
gr(0,r)=—Re N +w2{ Zv(T,+T-)

d
+im[ (z—n—1) T++z:;—l— T+]},

(8)

where

T1=T(ni‘/21 Yy I),

r ('Y—"] +1/,)

T(n,y,2)= Ty D)

M1 (2) Woa ().

As in the general case of a product of any two solutions of a
linear second order differential equation, we can write the
following third-order equation for T'(7,y,x):
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aT ar ( 4y°—1 )
2 __ 2__ 2__ —_—— 2 —— amr———e T=0,
T [z —dnzt+4y*—1] T2 M -

9

which is convenient for obtaining the asymptotic expansion
for T,

Since ¥ is finite for x — o (this corresponds to large »
and finite k), T can be written in the form

oo

T(m,y,z)= Z az™

n=0

(10)

where a, = 1, which follows from the known asymptotic be-
havior of M and W (Ref. 14), and a,, for n > 0 is found from
the recurrence relation

(nH1) @ =21 (2n+1) a,+n (R*—4y?) an_y, (11)
which follows from (9). The solution of (11) is
n [(n-m)/2] 1
a,,=2 Z am,(—x’)’(n——z—) ) (12)
m=0 1=0

where a,,,, are positive integers. The expansions given by
(10) and (12) enable us to write g, (w,r) in the form of a
series, where the integral (6) with respect to w can be evalu-
ated analytically:

[(m+2)/2] m—2n+2

4“ (=+)() Z —2m—9 Z thnl(az)2n+lk21

me=0 n==1 lom0
16 (640 64
—(aZ)* _5% ),
(aZ)*r {15 +( 21 15 )r

[61920 _ 5200 5200 ., +1 P
63 21 15

+g—f(aZ)2]r"+...} (13)

Henceforth we use relativistic units for which i=m =c¢
=1.
For large k~r (y~x), we can find the asymptotic be-

havior of T by substituting x = by, b = (4y*> — 1)"/%in (9)
and take T in the form
T (n,,2) = 2 T (1) b, (14)

n=0

A set of coupled differential equations is thus obtained for
T from (9). Its solution is

m+1 ant+i
) () = Corm (15)
T (y) 2‘ ,,; ! (1+y2)m—h
where C,,,, are rotational numbers (C,,, = 1) that can be

determined recursively.

Evaluating the integral with respect to @ in (6), and
using (14) and (15), we obtain the following expression for
p’((S +) (r) .

(84) € _am—
— dm 2m. 7,
on (1) "l '; r (16)
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[(m+1)/2] 2m—2n+1

E ZI enim(@Z) 2+ p (r) mtm+?

n={ lm=q

(17)

where e,;,, are rational numbers that can be expressed in
terms of C,,,, p(r) = r*(r* + k2 — 1/4) ~". The first few
terms of the expansion for p{* *’(r) are

e(aZ) 16 (64 688
o ()= L {15 (35 21 ”‘64”2)71:‘
142 5464, 37072 . 130048
3B 157 15 LT 15
64 p?
168p* + — ZZ]—+...}.
+7168p 31 (auZ) = (18)

Substituting (16) and (17) in (2) and summing over kK term
by term with the aid of the well-known Euler-Maclanrin
formula [it is convenient to use the expansion (13) for plT)
to calculate the derivatives in these expressions], we finally
obtain

o [(m+2)/2]

ptH (r) = _._Zl Z (m!)*(2m+4)

n=1

(az) 2n+1

X (2m=+5) frn ey

(19)

We also supply an analytic expression for the potential
V3+)(r). Since the induced charge must be zero, i.e.,

oo

T )
]
we have
r’ N
V<3+)(r)=—4n5r’(—;——1)p(3+)(r)dr . (21)

r

Substituting (19) in (21), we obtain the following expres-
sion for the energy of an electron in the potential ¥ ¢+

U(3+) (r) _._.__eV(3+) (r)

o [(m+2)/2]

=ﬁ_2 2 (1)) o (@ Z) 0+ tp=2m=s, (22)
T o n=1

The first few terms of this expansion are

U (r) = a(aZ)’ [ 2 59 1977+20(aZ)?
225r°  1323r 4725r°
12 586034 144 (aZ)?
190 5751
1960420 032+93 618 070 (22)*+96 096 (22)*, ]
12 297 2851+ 1

Table I lists the higher-order coefficients f,,, for m = 5-12,
n = 1-4. We note that earlier papers reproduce only the first
term of the asymptotic form of U ¥ (Ref. 14; see also Ref.
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TABLE 1. Values of the coefficients f,,,.

n
m
1 2 3 4
5 0,3812769 0,0266795 0,0000860 0
6 0,4946161 0,0458093 0,0002918 6-10-8
7 0,6150374 0,0707397 0,0007216 5-10-7
8 0,7412290 0,1014082 0,0014705 23-10-7
9 0,8721898 0,1376368 0,0026288 69-10-7
10 1,0071432 0,1791838 0,0042776 167-10-7
1" 1,1454776 0,2257770 0,0064866 346-10-7
12 1,2867042 0,2771342 0,0093134 643-10-7

15), which can be interpreted in terms of the Lagrangian for
the uniform electromagnetic field.

4.NUMERICAL DETERMINATION OF CHARGE DENSITY AND
POTENTIAL

The functions p®*'(r) and ¥ ®*'(r) were calculated ac-
curately using (2)-(7) and (21). The function M, , (x) was
calculated either by expanding it into a series or by using the
asymptotic expansion in terms of x. The function W, , (x)
has a range of intermediate values of x in which both these
expressions yield values of low precision. It is then more
effective to use the g-algorithm' for the asymptotic expan-
sion for W. There is some loss of precision for small Z when
the difference g, — gi" in (6) is evaluated because (g,

—gi") /8« ~(@Z)?. The calculations were therefore per-
formed only for Z>10.

The integral with respect to @ in (4) was evaluated nu-
merically, using Gauss quadratures between 0 and w,, and
analytically between w, and oo, using the asymptotic expan-
sion for g, (w,r), obtained from (10). It is important to note
that the integrand in (6) is a smooth function of w that
changes sign only once on the interval (0, « ), but the total
integral with respect to w is found to be 3—7 orders of magni-
tude smaller (as a function of r) than the integral of |g,

— gi"|, and this means that the final answer is accurate to a
smaller number of significant figures.

This evaluation of p> *’(r) was performed only for
k = 1-7. For k>8, the function p{’ * ’ (r) was calculated us-
ing the asymptotic expansion (16). For r~k~15, up to
twelve expansion terms had to be included to achieve a rela-
tive precision of 10~”. For r> 15, the required precision is

B 2

g J i r

—_ N E

U NS S S S

FIG. 1. The ratio & = kp{**’/p"**’ as a function of r for Z = 82. The
traces are labeled with the values of k.
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obtained with (19) for p®*+)(r). The summation over k in
(2) presents no difficulty. For small 7, the terms in the sum
over k fall rapidly, whereas for large  the main contribution
is provided by the region k~r [it follows from (16) that the
expression for kp{®*’(r) has a maximum at k=r/{15].
Figure 1 shows the relative contribution of kp{’*’(r) to
pBH)(r) for k = 1-4 and Z = 82.

The above procedure was used to calculate the func-
tions p®*'(r), ¥®*)(r) throughout the interval 0 <7< «
and Z<137 with relative precision of 107° or better. The
valuea ™' = 137.036 was used in the numerical calculations.
An additional check on the precision was made by verifying
that the total induced charge was

[ 10 () dr+Q=0, e—+0,

where Qs the induced point charge calculated from the ana-
lytic formulas.”® Figure 2 shows the » dependence of the
function

f(r, Z)=rU®"(r)|a(aZ)?

for several values of Z. We note that the f(r, Z =0) curve
corresponds to the potential ¥, calculated from the formu-
las given in Ref. 6, and that f(r =0, Z) = Q/a(aZ)’.

5.CONTRIBUTION OF VACUUM POLARIZATION TO THE
ENERGY-LEVEL SHIFT INHYDROGEN-LIKE IONS

The energy shift is calculated in the usual way:
AE,;=(nlj | UY+UCH [ nlj>=AE,,) +AES (23)

where we have taken into account the contribution of the

0.0
N7

130
70

0.02

§2

FIG. 2. The radial function f(r,Z) = rU"®**"/a(aZ)?>. The traces are la-
beled with the values of Z.
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Uehling potential AE " and of the terms nonlinear in Z. We
begin with the case @Z < 1. The matrix elements of U‘" can
then be evaluated by replacing the bispinor W, () with its
expansion for »—0. In the lowest order in aZ, we have

AE), (aZ—0)

_ (2GZ)“+‘ (n_'_l)!(“)z
“\7 8 (2131 [ (2IF1) 11 (n—l—1)1
2 (20H1) (1+1)
20+5 40 Busen ] (24)

We note that the expression for AE {;) (aZ —0) givenin Ref.

13 (Page 77) does not include the term containing &, ; , 1,2,

due to a small component of ¥,,;;. It follows that, when the
contribution of the Uehling potent1a1 is estimated, we cannot
use the nonrelativistic hydrogen wave functions even to low-
est order in aZ. For small Z, the quantity AE {;*’ is deter-
mined exclusively by the term ¥ in the potential ¥+, and
can be obtained by recalling that, for small Z, the Bohr radi-
us a, is significantly greater than the characteristic length
for a change in ¥®(r). For /=0, the quantity AE {}*’
(aZ—0) is determined by the behavior of the wave function
for r~ 1 <a,, whereas for />2, it is determined by the region
r=a,>1in which we can use the asymptotic form of ¥ ¢+
For /=1, we must take into account the contribution of
both regions (7~ 1 and r~a,). The expression for AE {;*’
foraZ-0is

J
4a (aZ)®
__n_s_)_ by 1—=0,
ba(aZ)¥n2—1); 2 2aZ 9
A5 (02— 0) ={ B g (<0 S Cu— o bt b, | =t (25)
1280 (2Z)® (5n% — 312 — 31 4 1) (21 =3 o,
2257n5 (2 + 4)1 r T
-
where C,=0, C;= —17/16, C,= — 147/200, C;= — 77/80,
and C = 0.57721566... is the Euler constant. The results of
numerical calculations are conveniently written in the form
b, = ( 7y 5 U (r) dr=0,0045105564, Bym
,‘I

2a(aZ)’®

Jor]

b= a(a Z)aHr U (r)dr + f( RO (r) —

aESP=(1+ ) Fos(a2) AESY (aZ0), (26)

[1—(aZ)*]"

where F'is a smooth function of Z. Table II lists the values of

225nr F for states with n = 1-5, / = 0,1,2.
The calculated energy levels of hydrogen-like ions with
allowance for radiative corrections, and also for recoil and
= 0,004252588 nuclear structure effects, are gathered together in Ref. 3,
® where the potential ¥ was used to estimate AE ®*). Com-
i ; B3
C.= 5 " M:,.,, (r) —r-te-7)dr, pa(glf?n with our results shqws that the use of V" instead of
° V' 3+ leads to a result that is too low. Thus, for Z = 82, the
TABLE II. Values of the function F,, (aZ).
VA
nlj
10 20 82 100 110 130 137
15y, 0,4328 0,3896 0,3479 0,4073 0,4749 0,9135 2,4351
281, 0,4336 0,3931 0.4315 0,788 0,7464 1,9541 6.7830
3sy, 0,433.3 0,3929 0,4285 0.5709 0,7310 1.8360 5,8460
4s-/, 0,4334 0.3925 0,4205 0,5528 0,6997 1.6737 4,9360
5sy, 0,4333 0,3921 0,4139 0.5382 0.6751 1,5585 4_3697
20y, 0.4825 | 04786 | 08339 | 1.2782 | 1,7866 59115 27.862
3p:, 0,4822 0,4779 0,8149 1.2205 1.6745 5,0967 20,575
4pv, 0,4820 0,4772 0,7936 1,1663 1,5750 4,5016 16.536
Spy, 0,4819 0,4768 0,7779 11279 1.5064 4.,1289 14,319
2p . 0,9550 0,9166 0,9081 0,9936 1.0708 1,3589 1,6509
3p:. 0,9554 0,9187 0,9574 10778 1,1835 1,5717 1,9485
4p, 0,9555 09191 0.9682 1,0966 1.2091 1.6218 2,0197
3p. 0,9554 0,9191 0,9699 1,0996 1,2133 1,6302 2,0321
3d-. 1,0942 1,3001 4,2302 5.9125 7,1949 11,319 14,594
4dy, 1,1052 1,3355 4.6060 6,4957 7,9411 12,611 16,342
5d .. 1,1096 1,3493 47415 6.6965 8,1904 13.014 16,874
3ds, 14,0341 1,1020 1.7385 1,9898 2,1592 2,6502 3,0625
4ds/, 1,0385 1,1152 1.8570 2.1622 2,3707 2,9804 3.4865
5ds), 1,0402 1,1205 1,9037 2.2301 2,4542 3.1119 3,6564
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TABLE III. Values of the corrections AE", AE", and AE®*), AE™®
_a(aZ)! o
=222 FOme.

T

z
55 82 | 92 100
F -0,2584 —0,3409 —-0,4064 —0,4890
F& 0,0060 0,0142 0,0194 0,0252
F+) 0,00628 0,01587 0,02245 0,03027

uncertainty is 10%, but for Z = 130 it reaches 30-60%. The
corrections AE ®* are small in comparison with AE ', but
they are much greater than the contribution AE ) of the
radiative corrections which are of order a?. Thus, for the s
stateand Z = 100, the ratio AE :AE ®*):AE (2) is 400:20:1.
In previous publications, the uncertainty in the estimated
AE®*) was one of the main sources of uncertainty in the
theoretical values of the energy levels.® This uncertainty is
removed by the data given in Table II, so that the principal
uncertainty in the calculations is now related only to the
finite size of the nucleus.

In general, the finite size of the nucleus must be taken
into account in the calculation of vacuum polarization as
well. This is important for estimates of AE ", but can be
omitted from AE ®*) because AE ®*isitself small (the con-
tribution due to the finite size of the nucleus to ¥+ was
estimated in Refs. 10 and 12). Of course, as Z approaches
137, the results obtained for the j=1, which diverge for
aZ =1 [see (26)], will not be valid for real ions.

In conclusion, we reproduce the corrections AE'",
AE"™, and AE®*) corresponding to the Uehling potential
V'V, the Blomqyvist potential ¥ (Ref.6),and our calculated
potential ¥ ®* for the ground state of ions with Z = 55, 82,
92, and 100 (Table III). We note that the values of AE®
given in Table I1I of Ref. 3 were used as estimates for AE © ),

APPENDIX

The derivatives
' d
Mt‘b,k (.1:) = d—Mn:'/:,k (.1:) I =0,
n
, d
W:t‘la,h (z)= d'_ Wasion () ln-o
n

were calculated using the following expansions:

oo

My, (z)=€"*

m=1

(n+k) mxm+k+'b

Gy L) —p(tkm) ],

(A1)
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(—1)H+n
(k—n+1),

(k+n) zm+r+h
(2k+1) m!

Wi () =e'=/2{

m=0

x [lnz—p(m+1)

+(kt+ntm)—p(2k+2m+1) ]

""i (k+n)m(k—n—m+1)

mlxn+m—'lz

[y (k+n)

+p(k—n+1)—p(m+1)]

k4+n—2

+ (A2)

(_1)mm!xm-n+ﬁ }
S (k—nt1) mpy (kHn—m—1) pmy)

where (a), =T'(a+n)/I'(a).

The formulas given by (A1) and (A2) were obtained
by term-by-term differentiation of the expressions for M and
W with an integer parameter.'* For large x, we used the
asymptotic expansion

E (ktn)m(k—n—m+1)

m'x'ﬂ+m—‘h

Wiewa(@) ==

m=0

1 1
x| X ) 0]
; P e A

(=)= (k+n)m(k—n)! }

(m+n—k) R—n+ mn=h

+

m=k—n+1

(A3)

and also the expressions for M in terms of W' and W:
M"lz-n.k (x)

—1)*+n(2k) ! ’
= _(”—(%In—;v_')_ (Wimnp (@) = (k—n+1) Wy, _pu(z) ]
e I
B S_()?-m_*i)(yil Woin (—=2) —p(k+n) Waya(—2) ].
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Whenever the upper limit of summation is smaller than the
lower, the corresponding sum is omitted.
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