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Resonance states generated by unstable closed classical trajectories are discussed. In the 
framework of the parabolic-equation method it is shown that in the asymptotic limit f i-0 these 
states form series equally spaced along the imaginary energy axis. The physical meaning of these 
states in the case of the discrete spectrum becomes clear when one introduces a certain parameter 
determining the potential of the system in the vicinity of a closed trajectory. A characteristic 
pattern of pseudocrossings of levels arises, this pattern being connected with the diabatic 
quasistationary states. If the parameter varies rapidly with time the evolution of the system can be 
described as the decay of a quasistationary state, and this justifies the term "diabatic". 

There exist three (not entirely independent) types of 
quasistationary states: a shape resonance, associated with 
tunneling through a potential barrier, a Feshbach resonance 
(quasibound states in the field of an excited core, e.g., auto- 
ionized states of the helium atom), and resonances associat- 
ed with unstable closed trajectories. The latter type of reso- 
nance is the least well known and is associated with 
singularities (Lorentzian profiles) of the density of states in 
the theory of Gutzwiller' and Balian and B10ch.~ These re- 
sonances are presently the subject of intense debate. In par- 
ticular, in Ref. 3 it is shown that the Gutzwiller expansion 
for the density of states along closed trajectories (when cor- 
rected in accordance with Ref. 4) does not have a rigorous 
mathematical meaning and only relatively narrow reson- 
ances can be manifested physically. 

Fundamental in this connection is the question of as- 
signing a meaning to the quasistationary states in a system 
with a compact configuration space. We shall consider a 
one-dimensional system with the potential energy shown in 
Fig. 1. The state with energy E,, localized in the region A, 
becomes quasistationary in the limit L-. co :E = E ,  - iT/2. 
We shall assume that the problem contains a parameterA, on 
which E depends. If L is finite, instead of the quasistationary 
state there arises a characteristic pattern of levels: A band of 
levels is crossed by a sloping term, and the pseudocrossing 
parameters Vare directly related, by virtue of "Fermi's gold- 
en rule", to the density of states dn/dE and the width I': 

This relation is physically transparent: With comparatively 
rapid change of A, when the system in region A has time to 
follow this change adiabatically but the time of the motion of 
the particle outside A is large, the evolution of the state local- 
ized in the region A can be described in terms of adiabatic 
passage through the pseudocrossing points in Fig. 2, but it is 
more natural to speak of the decay of a quasistationary state 
under the conditions L -+ a. A similar method for calculat- 
ing a charge-exchange process was proposed by Chib i~ov .~  
The mutually consistent character of these two descriptions 
is seen particularly clearly in the exactly solvable model of 
Demkov and Osherovh (see also Ref. 7).  It is necessary to 
note the connection between this question and the problem 
(discussed intensively in papers of K. F. Fred, M. Bixon, and 
J. Jortner; see Ref. 7)  of "practical irreversibility" in the 
theory of nonradiative transitions in complex systems. The 

picture described here makes it possible to introduce the 
concept of a diabatic quasistationary state (DQS). It ap- 
pears to us that such states possess substantially greater 
"structural stability"" than stationary states with compli- 
cated irregular wavefunctions that are unstable against 
small external perturbations and inaccuracies in the poten- 
tial of the system. It is also important to bear in mind that an 
expansion in such stationary states presupposes that the ob- 
servation time is long. 

The principal condition that makes it possible to intro- 
duce the concept of a DQS is the existence of a small region 
of configuration space in which the particle spends a consid- 
erable time and in which its motion depends weakly on the 
behavior of the potential outside the region. In the frame- 
work of classical mechanics such conditions are created not 
only in the case of the above-mentioned shape resonance but 
also in the neighborhood of a point of unstable equilibrium 
or of an unstable closed trajectory (a  hyperbolic limit cycle). 
The special role of closed trajectories in the analysis of non- 
integrable systems was noted by Poincare (see Ref. 8)  in 
connection with the three-body problem. By virtue of the 
well known returh theorems,' such trajectories form a very 
representative set, but only short-period and weakly unsta- 
ble trajectories are capable of giving rise to a resonance 
structure of the density of states.' In quantum mechanics, 
closed trajectories were brought into consideration in Refs. 1 
and 2, but the analysis here was carried out in terms of the 
density of states without consideration of the wavefunctions. 
As shown in papers of Heller"' and Bogolmol'nyi, in the 
immediate vicinity of a closed trajectory one observes an 
appreciable increase of the wavefunction ("scars" appear), 
this being connected with the increase of the time spent by 
the particle in this region. Below we shall give a simple quali- 
tative description of the behavior of the wavefunctions of 
resonance states and determine their width. 

We begin with a simple remark. It is clear that in classi- 
cal mechanics a particle with energy close to the top of a 
barrier remains in the vicinity of the top for a considerable 
time. In quantum mechanics this region can be described in 
terms of states with purely imaginary energy. In fact, after 
the change of variables 

(x, p) = ( X I ,  p') exp (in141 

the Hamiltonians of the problems for one- and two-dimen- 
sional barriers (A ,  is the two-dimensional Laplacian opera- 
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FIG. 1. Potential in a one-dimensional model. Bound states in the central 
well become quasistationary as L- pi .  The parameter A, which is dis- 
cussed in the text, can characterize, e.g., the depth of the central well. 

h 

tor, L, is the operator of the corresponding orbital angular 
momentum, p are cylindrical coordinates, and a  and p  are 
parameters) 

and 

go over into oscillator Hamiltonians, while their eigenfunc- 
tions, containing only outgoing waves, go over into the de- 
caying solutions of the self-adjoint problems that arise. 
Therefore, the radiation condition for the Hamiltonians ( 1 ) 
and (2) gives the spectrum 

It is important to stress that the eigenfunctions constructed 
for the Hamiltonians ( 1 ) and (2)  play the role of the basis in 
the description of the decay of an initial state of the Gaussian 
type. 

FIG. 2. Characteristic dependence of the energy levels (terms) on the 
parameter A. 

We shall consider now the case of a hyperbolic limit 
cycle. We introduce a natural system of coordinates, tied to 
the trajectory. In such a coordinate system the problem re- 
duces in the limit fi-0 to the time-dependent Schrodinger 
equation in the subspace orthogonal to the trajectory, and it 
is possible to approximate the Hamiltonian of this Schro- 
dinger equation by a quadratic Hamiltonian. This assertion 
constitutes the basic content of the parabolic-equation meth- 
od,'* which generalizes the semiclassical approximation of 
Keller and Rubinov (see Ref. 13). In the framework of this 
approach the wavefunction $ describing a state with energy 
E (differing from the energy E, of the motion along the 
trajectory) has the form 

where S , ,  and v , ,  are the action and the velocity of the mo- 
tion along the trajectory, q, are the coordinates in the trans- 
verse space, and t is a parameter having the meaning of the 
time of the motion along the trajectory. The closed character 
of the trajectory leads to periodicity of the Hamiltonian in 
the parabolic equation, and this makes it possible to charac- 
terize the functions $ by a definite quasi-energy E .  The re- 
quirement that the wavefunction $ be single-valued after 
passage around the trajectory gives the quantization condi- 
tion2' 

where T is the period of the motion around the trajectory. 
The parabolic-equation method assumes that the motion 
along the trajectory is semiclassical, i.e., that S,<, (T ) / f z>  I .  

The spectrum of the quasi-energies E is determined by 
the eigenstates of the evolution operator over a time equal to 
one period. To find these states it is necessary l4 to diagona- 
lize the classical monodromy matrix A. We shall assume 
that the eigenstates of this matrix are nondegenerate. The 
following sets of eigenvalues are possibleI4: exp( f iwT), 
exp( + a T ) ,  exp( ipT + a T )  (in the latter case there are 
four values). It should be noted that for a unique determina- 
tion of the parameters o it is necessary to supplement the 
definition of the logarithm of the monodromy matrix: 

where 9 is the fundamental matrix of the classical system. 
Obviously, the parameters a  are directly related to the expo- 
nents of the Lyapunov linear instability of the trajectory. 
The proper subspaces of each set give rise to a set of canoni- 
cal normal coordinates. In each subspace the evolution oper- 
ator Tver one perkd can be representedt4 in the form 
exp(iHT), where H is a quadratic Hamiltonian. For the 
above-described eigenvalues of the operator this will be, 
respectively, a Hamiltonian of the oscillator type (with a 
certain frequency w, ) or else a Hamiltonian of the form ( 1 ) 
or (2)  with certain parameters a, andp,. Therefore, by vir- 
tue of (3)  we obtain for the operator of the quasi-energies of 
the system 
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where n, and m, are integers, n ,  being non-negative, and the 
summation is taken over all the eigenvalues of the matrix A. 
The eigenfunctions @ can be expressed in terms of Hermite 
functions. 

The formulas ( 5 )  and (6)  constitute the main content 
of the paper. Turning to the discussion of the results ob- 
tained, we stress that the quadratic approximation re- 
quiresi2 localization of the wavefunctions in the vicinity of 
the trajectory, while the resonance functions constructed 
above do not possess this property. Therefore, we must con- 
sider the problem after making a transformation 
q = q1exp(i.rr/4) in the transverse space, after which the res- 
onance wavefunctions become decaying. (The method of ro- 
tation of the coordinates in the complex plane in order to 
determine the resonance states is well known and can be 
applied to the analysis of rather complicated systems. 1 5 )  The 
relationship of such states to the problem of the decay of the 
initial state was indicated above. 

The formula (6 )  assumes that the n ,  are not large, since 
otherwise the solution lies outside the limits of applicability 
of the quadratic approximation. Nevertheless, it should be 
stressed that resonance states of the type discussed form a 
series with equal spacing along the imaginary axis of the 
complex energy plane. Therefore, these resonances differ 
fundamentally from shape resonances and Feshbach reson- 
ances. In particular, in the absorption curves associated with 
resonances of this type, due to unstable trajectories, simple 
Lorentzian profiles will not always be observed. I t  is more 
natural to expect structures in the form of Fano contours, 
analogous to the structures in the curves for sub-barrier ab- 
sorption for a Coulomb center in a uniform electric field." 

The question arises of the possibility of going beyond 
the framework of the quadratic approximation that we have 
used. In principle, the passage from a time-independent 
quantum problem to a time-dependent problem in a space of 
fewer dimensions is well known in collision theory'' and 
does not require the assumption that the Hamiltonian in the 
transverse subspace is quadratic. Thus, our approach, which 
reduces the problem of finding the resonance states to the 
problem of determining the quasi-energies, can be applicable 
to considerably more-general situations. However, such 
problems require special, and far from universal, analysis. 

It is also interesting to apply this approach to problems 
in which unstable classical trajectories have been found. 
There are quite a few such problems, lh31X-20  but we shall not 
analyze them here. We note only that our approach is most 
convenient in application to nonintegrable systems. In this 
case, a particle that has left the neighborhood of an unstable 

trajectory returns to the vicinity of the trajectory, intersects 
the trajectory, and does not experience recapture (we recall 
in this connection the homoclinic structure that arises upon 
splitting of separatrices9). Therefore, the resonance struc- 
ture can be destroyed as a result of interference phenomena 
only after a very long time. In integrable systems, on the 
other hand, the repeated captures are repeated in a regular 
manner, and this destroys the resonance structure. There- 
fore, in the analysis of integrable systems we must monitor 
the fulfillment of the principal condition for the formation of 
a DQS: The time of the motion in the outer part of the config- 
uration space should exceed the times associated with the 
DQS. If the configuration space is noncompact, the differ- 
ence between an integrable and a nonintegrable system is less 
important. 

" 1.e.. these states make it possible to use ordinary perturbation theory for 
the calculation. 

" Strictly speaking, in the framework of the parabolic-equation method of 
Ref. 12 the object of quantization in (5)  is the Planck constant. 
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