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The coefficient of reflection accompanied by a frequency change is calculated for a metal with 
impurities. It has a maximum at a frequency transfer determined by the condition that the 
excited-diffusion wavelength be equal to the electromagnetic-field penetration depth. The effect 
of anisotropy and of the electron interaction is considered. 

Interest in Raman scattering of light by electrons has 
recently revived, since its observation permits the energy gap 
A to be determined, particularly in high-temperature super- 
conductors, by a contactless method. In Refs. 1 and 2 we 
considered light scattering by superconductors with large as 
well as small correlation lengths <,-u/A (compared with 
the penetration depth S of the light into the metal). The 
limiting case of a normal metal A - 0 was investigated in Ref. 
3. This case is of interest also because, in view of the small- 
ness of the scattering effect in superconductors, the corre- 
sponding value for a normal metal prior to the supercon- 
ducting transition is usually subtracted in  experiment^.^ 

Raman scattering in pure metals was considered in all 
the preceding studies. Impurities, however, seem to play an 
important role in contemporary high-temperature super- 
conductors. The present paper is devoted to the effect of 
impurities on Raman scattering in a normal metal. 

As shown in Ref. 1, Raman scattering is determined by 
the Fourier component of the density correlator 

where the angle brackets denote averaging over the ground 
state. In the case of a metal with impurities it is necessary, 
furthermore, to average over the impurity locations. To use 
for this purpose the known cross technique,%e relate, with 
the aid of the Landau theorem, the resultant correlator to 
retarded and advanced Green's functions: 

where t = x,, - yo  is the time difference, x = (x,x,), 

@ +  = w + q,/2. The remaining averaging is only over the 
impurities. 

Since the impurity potential is independent of time, the 
frequency variable is conserved on a line that represents ei- 
ther of the Green's functions. In Fig. 1, for example, where 
the first impurity correction to the product GR GA is shown, 
the upper line pertains only to GR that correspond to the 
frequency w+ and there is no diagram with the product 
GR (m+)GA (m+), while the lower pertains only to GA with 
frequency w-; Go denotes Green's functions in the absence 
of impurities. 

The equations that sum the influence of the impurities 
are similar to those obtained in a study of electric conductiv- 
ity5: 

wherep, = (p+,w + ), while the Green's functions averaged 
over the impurities have, as is well known, the form 

For a pointlike interaction with the impurity, 
u(p - p') = u,, Eq. (2)  can be easily solved. Introducing 
the notation 

and integrating both sides of (2)  with respect top, we get 

ARA(o,  q, q0)=[1+AEA(o, q, qo)IIRA, (3) 

where 

The integral with respect to the momentum can be rep- 
resented, as usual, in the form of an integral with respect to 
the energy variable 6 and a variable s located on the equal- 
energy surface: d 3p = dcds/u, where u is the velocity. In the 
final expressions u = u,. Next, since we are interested in val- 
ues of q and q, that are small compared with the Fermi mo- 
mentump, and energy E, (the answer will contain a value of 
q not exceeding the reciprocal S-' of the light-penetration 
depth), we expand <(p + ) : 

E (P*) = E  (P) *vq/2. 

We obtain 

It is seen from (4)  that integration with respect to causes 
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FIG. 1. First impurity correction to the electronic correlator. 

IRR and IAA to vanish, and with them also ARR and AAA,  
since the poles of the corresponding Green's functions lie in 
this case in the same complex 6 half-plane. 

The integral IRA is easily calculated in two limiting 
cases-small and large q. For 

"q 1z1<1, where z=- 
qo+i/r 

we obtain accurate to terms quadratic in q  

i lr  

The Fourier component of the density correlator is ex- 
pressed in terms of rI with the aid of ( 1  ) : 

After determining A from (3)  and using the asymptote ( S ) ,  
we obtain for small q  

It is clear from (6)  why it was necessary to retain small 
terms of order q2: the principal term, which does not contain 
q, is pure imaginary and does not contribute to the correla- 
tor. In addition, terms of order q2, while small increments in 
the numerator of (61, are not small in the denominator at 
large l/q,r, where a diffusion pole appears. 

At large lzl)  1, the term with A in the correlator turns 
out to be a small correction of order l / r vq .  Leaving it out, we 
obtain the value corresponding to the pure metal 

POmqO pornqO 
f ( ! I )  = --7- dQ6 (vq-qo) = - . 

(2n) (23-4 2uq 

The scattering cross section is obtained by integrating, 
with respect to q, the density correlator with a factor that 
takes into account the electromagnetic-field distribution in 
the metal. Since greatest interest attaches to the optical fre- 
quency region of the incident radiation, and the frequency 
change is assumed small compared with the initial frequen- 
cy, it can be assumed that the normal skin effect obtains for 
both the incident and scattered radiation. The factor de- 
scribing the field distribution can then be written in the 
form' 

where 6 is the field penetration depth at the incident-light 
frequency. In the integral with respect to q it is necessary to 

use for the density correlator either expression (6)  or (7),  
depending on the region where the integrand is located. 

In an extremely dirty metal, the electron mean free path 
is small compared with the skin-layer depth, i.e., vr<S. The 
main contribution to the integral comes from the region of 
small q  (61, but the result depends also on the relation 
between the transferred frequency and l / r .  

If q,4 1 / r ,  neglecting go compared with i /r ,  we need 
retain terms with q2 only in the denominator of (6).  We have 
then 

mpO (q/qd)' 
f ( q ) = - ; -  

n l+(qlqdb' 
where q, = ( 3 q o / v 2 ~ ) " 2  is the value of the wave vector of 
the diffusion and corresponds to frequency transfer go. The 
scattering cross section du is proportional to the integral 

r / n  

where the upper limit can be extended to infinity The cross 
section has thus a maximum at the transferred frequency 
determined from the condition that the wavelength of the 
excited diffusion be of the order of the skin layer q, -2/S 
(see Fig. 2 ) .  On the two sides of the maximum, S is given by 

The upper bound on the diffusion wave vector is due to our 
previously assumed condition q,r < 1. 

At large transfers we have go)  1 / r .  The terms with q2, 
in both the numerator and denominator of ( 6 ) ,  are small 
increments that should be retained simultaneously. Expand- 
ing (6)  in terms of q2, we obtain 

The cross section is proportional in this case to the integral 

In investigations of light scattering in a pure metal with 
large mean free path, v r )S ,  it is also necessary to distinguish 
between small and large frequency transfers. The result for 
q,) l / r  was obtained in Refs. 1  and 3. We arrive at this 
result by using Eq. (7)  for the density correlator. The cross 
section is then proportional to the integral 

FIG. 2. Scattering cross section vs the transferred frequency for a dirty 
metal ( ~ ~ 4 6 ) ;  the numbers in the parentheses correspond to the numbers 
of the equations in the text. 
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which has the following asymptotes 

At small frequency transfers, however, account must be tak- 
en of the contributions of both small and large wave vectors. 
Small q give rise to a contribution determined by Eqs. (8)  
and (9 ) .  The contribution of large q is given by the integral 
( 12), whose lower limit is obtained from the condition that 
the short-wave asymptote be applicable (Eq. 7) ,  i.e., it is 
now equal to l / rv .  Noting that in this case 6 4 m, we obtain 
for this contribution 

Joining the two contributions, we obtain the cross section in 
the region q o g  1 / r  for the considered case of a pure metal 
TV) 6 :  

The prefactor of the logarithm is here smaller than the first 
term, but the large value of the logarithm can offset this 
smallness. The dependences ( 13)- (  15)  of the scattering 
cross section on go for a pure metal are shown in Fig. 3. 

preserves the anisotropy: the scattering cross section ( 16) 
contains in lieu of l/m2 the quantity 

where m, -' is the reciprocal-effective-mass tensor, the 
short bar denotes averaging over the Fermi surface, and the 
long one averaging over that strip on the Fermi surface in 
which the velocity component normal to the surface vanish- 
es. 

In Ref. 6 was considered a pure superconductor, and its 
results apply to a pure normal metal, i.e., to Eqs. ( 1 3 )  and 
( 14 ) .  If, however, the long-wave asymptote of the density 
correlator is used, it is necessary to take into account also the 
influence of the impurities on the electron interaction. This 
is in essence the question of Coulomb screening in a dirty 
metal. An answer to it is given in Ref. 7.  The dielectric con- 
stant is in this case &(q,,q) = 1 - n ( q 0 , q )  V ( q ) ,  where 
V ( q )  = 4?re2/q2 is the Coulomb potential, II(q,,q) is the 
electron polarization operator 

tt, is the reciprocal Debye radius, and D is the diffusion 
coefficient. In the anisotropic case the product D q 2  should be 
replaced by Dik qi qk . 

Repeating the calculations of Ref. 6, we find that the 
reciprocal effective mass mi, -'A ,iA ,, , which enters in the 
interaction with the magnetic field is replaced in the case of a 
dirty metal as follows: 

We present finally the connection between the value of 
Substituting here the equations given above for V(q)  and S calculated above and the reflection coefficient du, which Il (qo,q), we see that for the small frequency and wave-vector represents the fraction of incident photons reflected in a fre- 
transfers of interest to us, meaning that so long as tt, )6-' quency interval dm' into a solid angle do':  - 
and x, $9, the replacement m,, - '  - m,, -' - mtk 

( 16) takes place in the vertex. Thus, the expression for the scatter- 
u ing cross section is subject to the same replacement as in the 

where a = 1/137 is the fine-structure constant, 

n and x are the refractive index and the extinction coefficient 
at the frequency w, and q, is the angle between the polariza- 
tion planes of the incident and reflected waves, assumed to 
propagate in a direction normal to the surface. 

We have so far paid no attention to the question of fun- 
damental character-the role of electron interaction. This 
interaction is known to suppress the density fluctuations. 
However, as shown in Ref. 6 for Raman scattering, the effect 

case of a pure metal, except that all the averagings of the 
quantity 

are carried out on the entire Fermi surface. 
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FIG. 3. Dependence of scattering cross section for a pure metal ( ~ 7 %  6 ) .  
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