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Various models describing the motion of two-dimensional electrons in a magnetic field in the 
random point potential of substitutional impurities are considered. Analytical expressions are 
obtained for the averaged electron density of states (p (E) ) . The asymptotic forms of (p(E) ) in 
the limits of a strong field, a low impurity concentration, or low energies are investigated in detail. 
A comparison is made with the expressions obtained for (p(E) ) in the absence of a magnetic field. 

1. INTRODUCTION 

The discovery of the quantum Hall effect has stimulat- 
ed the appearance of a large number of experimental and 
theoretical papers devoted to the investigation of the density 
of states of two-dimensional electron systems in a transverse 
magnetic field. A detailed review of these investigations is 
contained in Ref. 1. Starting from the work of Wegner,' ana- 
lytical expressions have been found in many theoretical pub- 
lications for the density of states, with structural defects 
modeled by the potential of a random field or by Poisson- 
distributed point potentials (see Refs. 3-7 and other pa- 
pers). It is important to note that exact results have been 
obtained only for the lowest Landau level and for limiting 
cases of the correlation of the random field-white noise and 
fully correlated potentials (an exception is the case of the 
Lorentzian distribution, in which the restrictions indicated 
above are not necessary). It is clear that the models consid- 
ered in the papers listed above describe extreme disorder in 
the two-dimensional structure. Clearly, it is of interest to 
investigate models (not yet considered in the literature) of 
systems of two-dimensional electrons with weaker disor- 
der-substitutional disorder. In view of this, we consider in 
this paper the motion of a two-dimensional electron in a stat- 
ic field formed by an infinite system of isolated short-range 
random potentials located in the plane perpendicular to the 
magnetic field. 

We note that in the cited papers two cases of the distri- 
bution of the random potentials were investigated-the 
Gaussian and the Lorentzian. The Gaussian distribution 
permits one to find either an exact expression for the aver- 
aged density of states in the ultraquantum limit or the 
asymptotic form for the high Landau levels. The Lorentzian 
distribution (the Lloyd model) makes it possible to obtain 
an exact analytical expression for the averaged density of 
states in the general case. This is why, in the present paper, 
the main attention is paid to the Lloyd model. This model is 
widely applied in the study of disordered systems (Refs. 8- 
1 1, etc.). When using the Lloyd model one must keep in 
mind the presence in it of a "long tail" of the density of states 
p (E) ,  requiring renormalization of p (E) when the number 
of states 

N ( E )  = J p ( E )  dE 

is calculated; this question, however, lies outside the scope of 

our work. Incidentally, it will be seen from the following that 
the features of interest to us in the behavior of the function 
p ( E )  in various limiting cases for the Lloyd model are analo- 
gous to results for the Gaussian distribution, which is free 
from the above-mentioned defect. 

Below, the investigation of the averaged density of 
states of two-dimensional electrons in a transverse magnetic 
field and in the static field of isolated random impurities is 
carried out for the following cases: 1 ) for the Lloyd model 
with an arbitrary arrangement of independent random point 
potentials; 2)  for the same model, but with independent 
point potentials located at the sites of an aribtrary lattice 
(substitutional impurities) ; 3 for independent random 
point potentials with an arbitrary distribution function in 
the limit of a strong magnetic field or a low impurity concen- 
tration; 4) for completely correlated random point poten- 
tials distributed arbitrarily and located at lattice sites. For all 
cases except 3) the limit of zero magnetic field is considered. 

2. THE HAMlLTONlAN AND GREEN FUNCTION 

The models to be considered are specified by the Hamil- 
tonian 

where the unperturbed Hamiltonian H, is the energy opera- 
tor of a two-dimensional electron moving in thexy plane and 
in a constant and uniform magnetic field directed along the z 
axis: 

For the vector potential A we choose the symmetric gauge: 
A = 4 B X r. The random potential U has the form 

u= Z e A v ( r - k ) ,  (3)  
AeA 

where V(r) is a nonrandom short-range potential concen- 
trated near the origin (the potential of a single impurity), 
and A is the set of points at which the impurities are concen- 
trated. The coupling constants E, are assumed to be identi- 
cally distributed random quantities (not necessarily inde- 
pendent ) . 

In the following we denote the cyclotron frequency by 
w,, the magnetic length by I,, and quantum of magnetic 
flux by @,. We denote the quantity eB /2dim, by 6; 16 I is the 
number of quanta of magnetic flux through unit area. Later 
we shall need an expression for the Green function 
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GgO(r, rr)=(rl  (Ho-E)-'[r') 

of the operator H,. For A#O we have1': 
m 

GEO (r, rr) =-I? ('la-Elho,)exp[-in~(xy'-yx') 
2nAZ 

-31 1 E 1 (r-rt)'/21 Y (LIz-EIhoe, 1; x I El (~- r ' )~) .  (4)  

Here T(x)  is Euler's gamma function, and * ( a ,  c; x )  is the 
confluent hypergeometric function. For A = 0, as is well 
known, 

m 
GE0 (r, rr) -- - KO[ (-2mE/ha)'lr-rr I 1, 

nh2 ( 5  
where K, is the MacDonald function. 

1 

Here $ = (In T) '  and x is a parameter of dimensions 1 2 ,  
characterizing a zero-range potential (the "effective depth" 
of a well of zero radius; for the physical meaning of the corre- 
sponding quantity in the three-dimensional case, see Ref. 
14). In (6),  T is a diagonal matrix T =  [T,S*~] ,,,,,, in 
which 7, are identically distributed random quantities. It 
can be assumed (by renormalizing the quantity x, if this is 
required) that (7, ) = 0 (the angular brackets here and be- 
low denote averaging of the random quantity). 

To find the elements of the inverse matrix (Q + T) -' 
we shall make use of the so-called "supersymmetry 
trjckfl15.16. 

In formula (8)  z, are complex (commuting) variables and 
0, are Grassmann (anticommuting) variables. 

The expression (8)  in the case of independent r, makes 
it possible to perform the averaging over the random realiza- 
tions of the potential in explicit form: 

( IQ ( E )  + T l r - ' > = i I  z&*z. exp[ iz QAr (E) (zi8z. 

Here, 
OD 

g ( x )  = I eikp (t) 

is the characteristic function of the probability distribution 
p ( t ) d t  of the random quantity rA .  

It is convenient to consider (and this will be done be- 
low) the limiting case V(r) -+S(r)  ; for the existence of a 
nontrivial limit for H i t  is necessary that the coupling con- 
stants E, be infinitesimals of the order of (In R )  -' as R -0 
[R is the effective range of the potential V(r) ] .I3 In this case 
the expression for the Green function GE of the operator H 
can be obtained in explicit formI3: 

).,@-A 

(6) 
In the equality (6)  the infinite matrix Q(E) 
= [ Q,, (E l  I has the form 

AZO, 

3. THE LLOYD MODEL 

We shall consider the case of the Lorentzian distribu- 
tion 

(10) 

In this case the formula (9 )  takes the form 

< [ Q ( E ) + T ] , ~ - ' > = ~ ~  h . z . e x p [ i x  (Q* (E) +ia6,,,) 
A. 

We seek the density of statesp(E) from the formula 

p (E) = (nS)-' Sp Im GE+io, (12) 

where S is the area of the system. We note first that for the 
unperturbed Hamiltonian H, the density of states, as is well 
known, is equal to - 

where El = ( I  + 1 )&I, are the Landau levels. From (6), 
( l l ) ,  and (12) we find that for E #El 

<p (E) ) = 5 [ Q 2  (E) +dl,;' .f GEO (r, 1) GgO (P, r) dr. 
XS A , P E ~  8 

Since for real E the matrix Q(E) is Hermitian, for a > 0 
the matrix [Q2(E) + a2]  exists and is positive-definite. 
Consequently, taking into account that the functions 
G (r,R) form a Riesz basis," we find that (p(E))  > 0 for all 
E #El .  By virtue of the analytic dependence of Q and Gon E, 
the function (p(E))  is analytic in E. These conclusions 
agree with the results of' Wegner' for a white-noise potential. 
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A more detailed analysis of the expression ( 14) is possi- 
ble if we assume that A is a lattice (not necessarily rectangu- 
lar) constructed on vectors A, and A,; thus, A consists of 
points of the form A = n,A, + n,A,, where n, and n, are 
integers. We shall denote by S,, the area of a unit cell of the 
lattice A. In addition, we assume that the system of coordi- 
nates x, y is chosen so that the vectors ex and A, are collin- 
ear. In order that group-theoretical arguments can be in- 
voked in the analysis of ( 14) it is convenient to assume that 
the number of flux quanta of the field B through a unit cell of 
the lattice A (i.e., 7 = S,, 6) is a rational number: 77 = N / M  
(Refs. 18, 19). Below we shall discuss in detail the case 
M = I; i.e., 77 = N  is an integer. The case of arbitrary M  can 
be reduced to the case M = I by coarsening of the lattice A 
(Ref. 19); the formulas obtained for an integer flux 77 can be 
carried over, with certain modifications that will be dis- 
cussed in the Conclusion, to the case of any rational 77. We 
note that in the limit of large fields B or low impurity concen- 
trations ni = S T  ' it is obvious that 77 can be assumed to be 
an integer. 

First let N  # O  (i.e., B #O); ifthis is so, wecan go over to 
the so-called qk-representation of Zak," which, by analogy 
with the case N  = 0, we shall call simply the quasimomen- 
tum representation. The states in this representation are de- 
scribed by quantum numbers q,e[O, 1 ), q,€[O, IN I - ') [the 
vector q = ( q , ,  q,) is the quasimomentum], the Landau- 
levelnumberI=O, I ,..., andthenumberj=O,l, ..., IN1 - 1. 
These numbers essentially coincide with the quantum 
numbers of Wannier." In the quasimomentum representa- 
tion the averaged Green function has the form 

Here we have used the notation 

A (z, I) = (lash1,n"2'1!) -'" exp ( iz2Eh2h2,/2N2) 
UI (5) =exp (-x2/2) HI (x) , (18) 

where H, is a Hermite polynomial. The derivation of formu- 
la ( 15) from (6)  and ( 1 1 ) is analogous to that of the formula 
(3.21) in Ref. 22 [in which a slightly different normalization 
of the function d(q,l, j) was used]. We note that in Ref. 22 
only the case of a rectangular lattice was considered, with 
A,, = 0 and with A(z, I) independent of z. The Landau ei- 
genfunctions used in the sum ( 17) and possessing the neces- 

sary translation properties under magnetic translations 
through vectors of the lattice A are indicated in Ref. 23. 

We shall der6te by G, (q)  the operatorwith the kernel 
(15), acting for a fixed q on the variables I and j; also, let 

p (q, E)  =n-' Sp ImGx+ro (9). (19) 

Obviously, 

where Cis  a normalization constant independent of the pa- 
rameter x. In the limit x-0 we obtain 

Gg-tGpO(ql ll j ;  q', l' ,  j ' )  =(EL-E)-'6 (9-9') 611,60., 

where GO, ( ... ) is the quasimomentum representation of the 
Green function G O,. Since 

we have 

The constant Cis determined from the equality 

c j po (q, E )  &=PO (E) . 
from which, taking ( 13) and (22) into account, we obtain 

Now, from ( 15 ) and (20) for E # E, , we derive the for- 
mula 

1 l/lNl 

Since Q ( q , ~ )  is a function period in q, with period IN I -', 
summingoverj=O, ...,I N 1 - 1 we obtain ( E  #E l )  

(24) 
where the function d(q, 1) is defined by the equality 

To investigate the behavior of (p ( E )  ) for E # E, we consider 
the quantity 

i i 

Using (IS) ,  (25), and the orthogonality of the Hermite 
functions, we easily obtain 
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Since 

we have 

Since the function 2, is periodic and continuous in q, the 
following bounds are valid: 

ci(E)GIQ(q, E)  IGcz(E), ( 2 9 )  
where O<c, ( E )  <c , (E)  < w and ci ( E )  depends only on E. 
Using ( 2 4 ) ,  ( 2 8 ) ,  and ( 2 9 ) ,  we obtain forE #El the bounds 

a 4n3fi' 1 N I a 
f (p(E))G- 

a2+c,Z (E) mz$' ('/2-E/fia,) a2+clz(E) ' 

We recall that 

where ni is the concentration of impurities. From ( 4 )  and 
( 16) we obtain the asymptotic form 

In ( 3 1 )  we have assumed that one of the following condi- 
tions is fulfilled: 

1 ) E  #El  and ni are fixed, and B-. w ; 
2 )  E  #El  and B are fixed, and ni -0; 
3 )  B and ni are fixed, and E-. - w . 
Taking into account the equality 6 = B@; I ,  from ( 3 0 )  

and ( 3  1 ) we obtain the following asymptotic form, valid in 
each of the cases 1 )-3 ) : 

A ms 
n { d  + -[lp(%-~/fio.) + ln (nu 1 E I I' ) 

4n2fi' 

( 3 2 )  

In particular, by fixing the value E  = Zh, lying midway 
between the Landau levels El - , and E l ,  we obtain 

<p(E)>-(B(-l(lfconst ln(BI)-Z ( B -  w ,  n, fixed) ; 

(p(E))-ni (n ,  -0, B  fixed) . ( 3 4 )  

In the limit a - 0  the Lloyd model goes over into a de- 
terministic model of the Kronig-Penney type, describing the 
motion of a two-dimensional Landau electron in a periodic 
point potential. In this case the energy of the I th Landau 
level lies near the root El of the equation 

(g l  is the root of this equation nearest to and to the left of 
El ), and spreads into a band lying between the levels E, -, 
and El (Refs. 13, 22) .  From the formula ( 2 4 ) ,  taking the 
limit a - 0  we find that the density of states in the determin- 
istic model for E  #El is given by the expression 

[in complete correspondence with the fact that the bands of 
the spectrum in this model are determined by the equation 
G(q, E )  = 01. We note that the presence in ( 3 3 )  of the fac- 
tor ( 1 + const .In I B 1 ) -' is explained precisely by the shift 
of the Landau level to E l .  Having fixed El in ( 3 2 ) ,  we obtain 
the asymptotic form 

The question of the behavior of ( p ( E )  ) at the points El 
requires special investigation and, because of the presence of 
the 6-function singularities in p , (E) ,  cannot be solved by 
taking the limit E- E l .  The analysis performed in Ref. 22 for 
the deterministic model shows that for each fixed quasimo- 
mentum the multiplicity of El in the spectrum of H, is equal 
to IN 1, and decreases by unity when the potential of one 
point impurity, placed in each Wigner-Seitz cell, is added to 
H,. From the method given in Ref. 13 for constructing the 
eigenfunctions of the operator H, that occur simultaneously 
in the spectrum of H i t  follows that they are the same for any 
distribution of the parameters x over the sites of the lattice 
A. From this and from ( 2 1 )  it follows that the complete 
form of ( p  ( B )  ) is 

The coefficient of the Dirac comb in ( 3 7 )  agrees with the 
analogous coefficient in Ref. 3, obtained for point impurities 
with a Poisson distribution. Finally, we note that the com- 
plete form of ( p ( E ) )  in the deterministic model is obtained 
by replacing the second term in ( 3 7 )  by the expression in the 
right-hand side of ( 3 6 ) .  

We note one further interesting consequence of the for- 
mula ( 3 2 ) .  Since $(z) has simple poles at the points 
0 ,  - 1 ,  ..., and the residues at these poles are pairwise differ- 
ent,24 the limits of ( p ( E )  ) at El and El +, are also different, 
indicating asymmetry of the graph @ ( E ) )  about the Lan- 
dau levels. 

4. LIMITOF A LARGE FIELD OR LOW IMPURITY 
CONCENTRATlONS 

Even when the quantities T A  have a Gaussian distribu- 
tion, the direct application of formula ( 9 )  leads to complica- 
tions analogous to the difficulties in the calculation of corre- 
lation functions in the p lattice model. However, when the 
limit B- w (or n, - 0 )  is taken the calculations are simpli- 
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fied. In this case we can neglect the off-diagonal elements of 
the matrix [Q + TI - ' and for E #E, obvious transforma- 
tions give for (p (E) )  the expression 

x 1 Gxo (r, l) G.O (l, r) dr. (38) 
8 

The integrals in formula (38) do not depend on A, and calcu- 
lation of them in the quasimomentum representation leads 
to the expression (28). Since the result of dividing the num- 
ber of terms in the sum (38) by S i s  the impurity density ni,  
and 

oe=2n5l B IJm@o, 

we have 

m2@,ni m 
( p  ( E )  )= -($ ('/2-E/hme) 

4nzS I B I P [ 2nR2 

(39) 

We note that in the derivation of the formula (39) it was not 
assumed that the quantities rA are independent. If the T, 

have a Lorentzian distribution, (39) obviously coincides 
with (32). 

We shall consider, in particular, a Gaussian distribu- 
tion for rA : 

p ( t )  =(2nw)-"' exp( - t2 /2w) .  (40) 

In this case the density ofstates (p(E) ) has sharp peaks near 
the shifted Landau levels El .  With increasing (but small) 
1 E - El 1, (p (E)  ) falls in accordance with the law 

where 

For E-. E, 

< p  ( E )  > a  (E-El)-' exp [ - c ~ n s t ( E - E ~ ) - ~ ] ,  (41 
i.e., (p(E) ) -0. At the same time, here too theasymmetry of 
the spread-out Landau level is preserved, since El;,, generally 
speaking, does not lie at the midpoint of the interval 
E l  E l  Using the z- + w asymptotic form 
$(z) a In z, we see that for E- - w the tail of the function 
(p(E) ) has the asymptotic form 

( p  ( E )  >- ( ' / , - E / i t i ~ , ) - ~  exp {-const[ln ( i / 2 -E / l i o , ) ]  ' ) .  

(42) 

If E = El ,  for any distributionp(t) the following asymptotic 
forms are valid: 

( p (E) )a lBI - ' ,  B+-;  <p(E))mn{ ,  ni-.O. 

With allowance for the z- - asymptotic form of 
$ ( z )  (Ref. 24) the formula (39) shows that the form of the 
spread-out Landau levels with large values of l depend only 
on the distribution of the random quantities T, and does not 

depend on their correlation. For a Gaussian distribution this 
property was noted in Ref. 1. 

5. CASE OF FULLY CORRELATED POTENTIALS 

For centered random quantities T, having a second mo- 
ment, this case implies that r, are equal random quantities 
(r, = 7); we shall use this in the following. In addition, we 
assume that A is a lattice and that the flux 7 is an integer: 
7 = N. From the quasimomentum representation of the 
Green function G,  [see formula ( 15 ), in which ia must be 
replaced by r ] ,  we immediately obtain 

We note that for the Lorentzian distribution we again 
arrive at the formula (24); the lack of dependence of (p(E) ) 
on the correlation in the Lloyd model in the general case was 
noted in Ref. 1 1. Analysis of the expression (43) in the limit 
of large B (or small n i )  returns us to the formula (39), 
which was discussed above. 

For the unperturbed Hamiltonian H, in this case, as is 
well known, the density of states p,(E) has the form 

In the case of the full Hamiltonian H the function (p(E) ) is 
also given by different analytical expressions for E > 0 and 
E < 0. For simplicity we shall confine ourselves to the case 
E<O, making it possible to investigate the behavior of 
(p (E) ) for B - 0 in the tail of the lowest Landau level. 

Suppose first that the T, are independent and have a 
Lorentzian distribution (the two-dimensional Lloyd model; 
for three-dimensional electrons this model was investigated 
in Ref. 9) .  Then, as before, the formula (14) is valid. For a 
more detailed investigation of this formula we go over to the 
quasimomentum representation. We denote by r the lattice 
dual to A: For YET and AEA the quantity y*A is a multiple of 
2 ~ .  We denote by S,  the area of the Brillouin zone (the unit 
cell of the lattice T). In analogy with the three-dimensional 
case,2s.26 for the quasimomentum representation of the aver- 
aged Green function (GE ) we obtain, after simple but cum- 
bersome transformations, the expression 

Here q is the quasi momentum, YET, k ' = - 2mE / f i2 ,  and 
the function Q ( q , ~ )  is given by the equality 
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From (45 ), taking into account that S,  = ( 2 ~ ) '  ST ', we 
obtain 

Taking into account the z- cu asymptotic form of K,(z) 
(Ref. 24) and the formula (7) ,  for E-+ - cu we obtain 

Making use of the z- + cu asymptotic form $ ( z )  CI In z, 
from (32) and (47) we easily find that for arbitrary B the 
corresponding density of states (p (E) )  satisfies the relation 

Thus, the tail of (p(E) ) in the Lloyd model is asymptotical- 
ly independent of the quantities B and n, . 

In the case of a low concentration of impurities and 
arbitrarily correlated 71, all distributed by the same law with 
probability density p( t ) ,  the analog of the formula (38) is 
the following expression: 

By virtue of the resolvent identity dR,/dE = R 2, and the 
translational invariance of the function GO, (r,rl), all the in- 
tegrals in (50) are equal to the expression 

lim dGEO (r, 0)ldE. 
r-0 

Using the equalityz4 

lim aKo (ax) Ida=-a-', 
i -0  

we obtain 

J GX0 (r, L) GEO (L, r) L=m/2nR2 I E I .  
Hence we have 

which agrees with (39) for B - 0 and large 1 E 1 (E < 0). 
Finally, for completely correlated T~ we obtain the fol- 

lowing analog of the formula (43) for the case B = 0: 

mz J J P [Q (q7 E)  I dq, dqz. <p (E)  >= - 
nZfi'Sa -_ q2+k2 

(52) 

Comparison of the expressions (52) and (43) shows that the 
density of states (in the case of point potentials) in contin- 
uous in B down to zero. We note that the continuity ofp(E) 
in B for B # O  for a broad class of potentials was proved by 
Simon." 

7. CONCLUSION 

First we shall discuss the changes that must be intro- 
duced into our formulas for the lattice potentials in the case 

of an arbitrary rational flux through a unit cell of the lattice: 
7 = N / M  (M> 1 ). With the use of the technique of Ref. 22 
the expression (37) is modified as follows: 

(53) 
where & q , ~ )  is a matrix of order M x M, the elements of 
which are given by the expression (s, t = 0, 1, ... , M - 1 ) : 

?at(% E) = exp{ -2ni[ (g,+ Ns) n,+N~,n, 

while the functions d, (q, I )  are determined by the formula 

The factor multiplying the Dirac comb in (53 ) , in agreement 
with Refs. 13 and 22, shows that Landau levels appear in the 
spectrum of the Hamiltonian H only for 1771 > 1; in this case 
the multiplicity of each of the Landau levels for a fixed quasi- 
momentum decreases by unity in comparison with that for 
the unperturbed Hamiltonian H,. Crudely speaking, "weak- 
ness" of the point potential leads to the result that for 177 1 > 1 
some of the states are split off from the Landau level and the 
energy corresponding to them is spread out into a band. For 
/ 77 1 < 1 all the Landau levels are spread out into a band con- 
sisting of M magnetic sub-bands. This has been discussed in 
more detail in Refs. 13 and 22. We note that, as shown in Ref. 
3, in the case of Poisson-distributed point scatterers with a 
Gaussian random coupling constant, the first term of the 
formula (53) also appears in the expression for (p(E))  at 
the lowest Landau level. The condition 171 > 1 for Landau 
levels to appear in the spectrum of H was, in fact, noted by 
 and^.'^ 

As shown by the formulas obtained above for (p(E)) ,  
this function depends analytically on E between Landau lev- 
els i fp( t )  depends analytically on t. In this case (p(E))  can 
vanish only at isolated points (in the examples given in the 
paper, (p (E))  > 0 even for E f E, ). In the models consid- 
ered, this eliminates the physically unreal steep declines of 
the density of states, with a peak of semielliptical shape, that 
have been obtained by numerical calculations using the 
method of the self-consistent Born approximation.29 

Finally, it is interesting to note that for a single-point 
Lorentzian random impurity, situated at the point r, the 
averaged Green function has the form 
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From this, as in the case of the three-dimensional model 
without a magnetic field,9 it follows that for two-dimension- 
al electrons (even in the presence of a magnetic field) the 
behavior of the tail of the function (p(E) ) as E- - oo in the 
Lloyd model is the same as for a single Lorentzian impurity. 
For a Gaussian random impurity this statement is no longer 
true [see formula (42 ) 1. 
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