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Low-frequency noise with a near- l / '  ( l/w ) spectrum is considered in structurally disordered 
materials and also in tunnel junctions and microjunctions with amorphous surrounds. It is shown 
that the cause of this noise in such systems can be the presence, in the disordered regions, of slowly 
relaxing excitations induced in the atomic system by the motion of atoms (or atom groups) in soft 
anharmonic two-well potentials. Such a model, previously used successfully to explain a number 
of thermodynamic and kinetic properties of glasses, is used to analyze the low-frequency noise 
spectrum in a wide temperature range in situations when the excitation relaxation is due either to 
tunneling or to activation. The estimates obtained for Hooge's constant are of the same order as 
the experimentally observed values. 

INTRODUCTION 

It is well known that in practically all systems there is 
present a low-frequency (If ) noise whose spectrum is close 
to l/f (Ref. 1) (flicker noise). While the spectrum form is 
quite universal, the quantitative characteristics of the flicker 
noise differ substantially from system to system. 

For charged-particle systems the correlator of the fluc- 
tuations of a quantity A in flicker noise is usually described 
by Hooge's empirical relation2 

where N is the number of particles and a is called Hooge's 
constant. The values of a for various physical systems under 
various conditions range from lop9 to lop3. Note that in a 
spatially homogeneous system proportionality to N - ' is tan- 
tamount to inverse proprotionality to the volume V,. 

A widely used hypothesis that explains this behavior 
was proposed by McWhorter3 for the case of electron inter- 
actions with surface traps in semiconductors. It states that 
the scatterers have internal degrees of freedom with an ex- 
ponentially broad scatter of the relaxation time. 

This assumption seems natural and is apparently appli- 
cable to systems other than for which it was initially formu- 
lated. It is therefore appropriate to mention a number of 
brilliant e ~ ~ e r i m e n t s ~ - ~  performed on various small-area 
semiconducting (inversion channel of MOS transistor4) and 
non-semiconducting (tunnel junctions536) systems. A com- 
mon feature of these experiments is that in systems with 
small geometric dimensions the low-frequency noise spec- 
trum at low temperatures is not of the l/f type, but com- 
prises a Lorentzian line (or a sum of several such  line^).^ 
Increasing the temperature or the geometric dimensions 
causes the spectrum to assume a more complicated flicker 
form. The authors of Ref. 5 introduced the concept of an 
elementary fluctuator responsible for the individual Lorentz 
line, but did not specify its nature. 

From our viewpoint, the exponentially wide scatter of 
the elementary-fluctuator relaxation time, needed for for- 
mation of flicker-type noise, is an inalienable property of 
disordered systems in which transitions between metastable 
states are due to tunneling or activation processes in which 
random barriers are surmounted. Favoring this assumption 
are, for example, experiments7 demonstrating that introduc- 
tion of a relatively weak disorder, which does not increase 

the resistance noticeably, increases the If noise substantially. 
The slowest processes in the systems of interest to us are 

connected, obviously, with motion of atoms or groups of 
atoms. Motion of this type is possible in structurally disor- 
dered materials, with the greatest degree of disorder reached 
in glasses. It has turned out that allowance for such motions 
is essential in principle for the understanding of the low- 
temperature properties of glasses; these were explained by 
Anderson, Halperin, and Varma8 and by Phillips9 by a two- 
level system (TLS) model formulated by them. According 
to this model, an atom or a group of atoms moves in an 
effective two-well potential, and transitions between the 
wells are by tunneling; the transition probability depends 
exponentially on the barrier strength. 

The authors of Refs. 10 were the first to point out that 
TLS can act as sources of l/f noise. A detailed theory of the 
corresponding phenomenon as applied to tunnel junctions 
and microjunctions, in both the normal and superconduct- 
ing state, was developed by one of us,"-'4 and the estimates 
of Hooge's constant turned out to be realistic. 

It must be noted, however, that the TLS concept in the 
form used in Refs. 10-14 is applicable only at sufficiently 
low temperatures (see Refs. 15-1 7). 

One of the reasons is the broadening of the TLS levels by 
interaction with phonons. According to Ref. 15, the mini- 
mum relaxation time of a TLS with distance Ebetween levels 
can be represented in the form 

where E, is a certain characteristic energy - 10-30 K. Thus, 
for E 2 E, the spectrum of the most rapidly relaxing TLS is 
smeared out by collisions. 

Another cause was indicated by Karpov, Klinger, and 
Ingat 'e~, '~." who have shown that TLS are the result of soft 
atomic potentials. The characteristic distance W between 
the atom levels in such potentials is of the order 10-30 K. 
Therefore for E 2 W the spectrum is no longer two-level. 

We wish to show in the present paper that the properties 
of low-frequency noise can be interpreted in the context of 
the notion of two-well potentials in the entire temperature 
range of practical interest, irrespective of the adequacy of the 
TLS model. The point is that contributions to If noise are 
made by objects with long relaxation times ( - f -' ), which 
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can be achieved through high and wide barriers. The pres- 
ence of more than one level in each well should in this case 
have practically no effect on the If noise, since transitions 
between such "intrawell" levels take place in sufficiently 
short times. Obviously, over long times each well is de- 
scribed by characteristics averaged over the levels. 

We shall see ultimately that the properties of elemen- 
tary fluctuators with long relaxation times differ little from 
those considered in Refs. 10-14 in the framework of the TLS 
model. What is actually sensitive to the model is the distribu- 
tion function of the relaxation times of the fluctuators and 
the temperature dependence of these times. The above group 
of questions is the subject of the present paper. 

In the first section we formulate the problem. In the 
second we construct, on the basis of the model of soft poten- 
tial~,'~"' a theory of If noise in bulky systems with structural 
disorder; this theory takes into account tunneling and acti- 
vation processes. In the third section is considered If noise in 
tunnel junctions and microjunctions, and the connection be- 
tween the results and the experimental data5v6 are discussed. 

1. FORMULATION OF PROBLEM 

Consider a conductor in which the electrons are scat- 
tered by impurities or phonons, and which contains in addi- 
tion defects with internal degree of freedom. Assuming that 
the relaxation times of these defects is much longer than the 
electronic quantum times, one can describe the electron ki- 
netics by a Boltzmann kinetic equation in which account is 
taken of the integral of collisions with the indicated de- 
fec t~ ." - '~  This integral has the standard form 

Here F, is the electron distribution function, and W:; is the 
probability of transition via scattering by the ith defect. 

Assume now that the defect can exist in two configura- 
tions, 1 and 2, and the probabilities of filling these configura- 
tions are n, and n, = 1 - n,. 

The probability of transition to the ith center can then 
be written in the form 

W "'- W;;f' 
pp' - nii' +w:,':' ( ~ - n , ' ~ '  ), 

where W:iz2) are the transition probabilities in configura- 
tions 1 and 2 respectively. 

Let now an electric field be applied to the sample and 
produce an average current of density j,,. We calculate the 
correction to the current for the fluctuations of the probabil- 
ity of filling the configurations. This can be done by iterating 
the kinetic equation in powers of the ratio a?,,/&, where 

and j, is the nonfluctuating part of the collision operator. 
Note that we have confined ourselves here only to elastic 
scattering by the defects. The reason is that we are interested 
in defects with long relaxation times (see the analysis of a 
specific model of defects below). 

IJerating the kinetic equation with respect to the ratio 
S~,,/I, as in Ref. 12, we get 

where oifi are the effective scattering cross sections for the 
configurations 1 and 2, lis the mean free path of the electron, 
and V, is the sample volume. 

As a result we have the following expression for the 
current-densities correlator: 

The object of the theory is thus the occupation-number 
correlator ( (Sn, ),), . It is expressed in standard fashion in 
terms of the equilibrium occupation numbers no, and their 
relaxation times T:  

We get ultimately 

where 

is the "strength" of the ith fluctuator. 
The procedure that follows consists essentially of sum- 

ming the contributions of various fluctuators, for which we 
must determine the distribution functions of S, and 7'". 

2. CURRENT FLUCTUATION IN STRUCTURALLY 
DISORDERED CONDUCTORS 

We assume that the elementary fluctuators are local de- 
fects described by two-well anharmonic potentials. 

We describe the latter within the framework of the 
model of Refs. 16 and 17. According to this model a defect is 
an atom or a system of atoms for which the dependence of 
the potential energy on the configuration coordinate x is of 
the form 

where 8 is an energy on the order of atomic and a is a char- 
acteristic atomic spatial scale. The coefficients 7 and t are 
random quantities indicative respectively of the stiffness and 
asymmetry of the random potential. It is assumed that the 
distribution function P(7,t)  of the random quantities 77 and t 
can be factorized in the form P(7, t )  = PI (7 )P2 ( t ) ;  typical 
plots of PI,, are shown in Fig. 1. 

The form of the distribution functions reflects the fol- 
lowing features of structurally disordered materials. The 
function P, is centered near 1, indicating that typical defects 
have rigidity of atomic order. The two-well potentials corre- 
spond to small absolute values of 7 in the region of the distri- 
bution "tail." It is shown in Refs. 18 and 19 that P 1 ( ~ )  
should have near 7 = 0 a singularity of type 171 (see Fig. 
la) .  As to the function P,(t), it is known that it must be even 
and decrease with increase of It 1 (see Fig. lb).  The charac- 
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FIG. 1. Schematic forms ofthe distribution functions P (7) ( a )  and P,(t) 
(b) .  

FIG. 2. Two-well potential with wide barrier 

this level through a parabolic barrier-deactivation in the 
right-hand well (Fig. 2).  We compare next this probability 
with the probability of activation through the barrier. 

The probability of tunneling along the indicated path is 
exp( - 2A, ), where 

teristic scales Sr] and St of the decrease of the functions P, 
and P, can be estimated from experimental data on the den- 
sity of states and on the bond lengths in glasses: Sr] = 0.1- 
0.2,St~0.3-0.5. We shall use hereafter the expression 

where P(r],t) is a monotonically decreasing function with 
scales Sr] and St. 

We are interested in potentials corresponding to wells 
separated by wide barriers, meaning long relaxation times 
(Fig. 2). 

In this situation the barrier height V, is much larger 
than the distance between the E levels, which is determined 
in turn by the asymmetry of the potential. In this case 

The gain in the activation probability on dropping to the 
level V - E is obviously e x p ( ~ / T ) .  Therefore the total prob- 
ability of transitions of this type is 

We see hence that when 

the main process is activation, and for T< T, the transitions 
are determined by tunneling. Note than an estimate of this 
type can be obtained by comparing the arguments of the 
tunneling and activation exponentials (2A = V/T), but in 
place of the number 0.32 we get in the estimate the number 
3 / 8 f i ~ 0 . 2 7 .  We shall not distinguish between these esti- 
mates; we recognize only that at T = To an abrupt transition 
takes place from tunneling to activation relaxation. Note 
that the presence of the abrupt transition and the estimate of 
T, follow from the parabolicity of the potential V ( x )  near 

We shall find it convenient to use the characteristic dy- 
namic parameterst7 

Here 

the barrier height is (see Fig. 2) the maximum. 
We proceed now to estimate the relaxation times. Given 

the temperature T, the total interval of variation of r ]  can be 
divided into two parts: 

and its width is 

where 

For r ]  < vT the principal role is assumed by activation, and 
the relaxation time can be represented in the form 

where x ,  and x ,  are the coordinates of the minima of the 
potential. It is taken into account in (17) that the asymme- 
try of the potential is E< V, in the case of wide barriers and 
actual EZ T. 

The first question that we must answer is that the rela- 
tion between the tunneling and activation. To this end we 
consider a transition from the left well to the right along the 
following path: activation to a level ( V - &)-tunneling on 

In the second region, the principal role is assumed by 
tunneling, and we have [according to ( 16) 1 
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In these expressions, T ~ - W ~ - '  is the period of the oscilla- 
tions inside the well. We are interested in the calculation of 
the distribution functions of the variables E and T from the 
known distribution function P(r ] , t ) .  We need therefore rela- 
tions inverse to ( 2 2 )  and ( 2 3 ) .  Taking these equations into 
account, was well as relation ( 14),  we have for the region 1 

4T 
'Co 

and for the region 2  

The boundary between the regions corresponds here to 
the value 

't='t. ( T )  ='to ~ X ~ { ( ~ / ~ ) ~ ( T I W ) ~ ) .  ( 2 6 )  

We point out that for an elementary fluctuator with a given 
value of r] the crossover from tunneling to activation relaxa- 
tion is at T = T, . Observation of a crossover of this type was 
reported in Ref. 5. For most random fluctuators the cross- 
over temperature depends on the observed noise frequency. 
Assuming, in accordance with ( 9 )  and ( l o ) ,  that the main 
contribution to flicker noise is made by fluctuators with 
r - w -  ', we find that the crossover from tunneling to activa- 
tion relaxation occurs at 

Using ( 2 4 )  and ( 2 5 )  we get the following expressions for the 
distribution functions of E and T: 

For T < T,  

E W 
X P ~ [ - ~ ~ ( $ ) ' ~ = ( ~ ~ L ) ' ~ ,  ' t o  (2qL)1hF(F) 

For T < T,  

We calculate now the current fluctuations. In the 
expression for the current density 

the quantity 

So(E, T ) = V ~ - " ~ [ U ~ ( E ,  ' C ) - U ~ ( E ,  7 )  1' 

is determined by the change of the electron-scattering cross 
section for an atomic-particle displacement Ax ( 13).  Substi- 
tuting in ( 1 3 )  the expressions ( 2 4 )  and ( 2 5 )  for r](T) and 
taking the smallness of r ] ,  into account, we can conclude 
that Ax/a< 1 for all parameters of practical interest. This 
gives grounds for assuming that 

Thus, 

where the constant a, is of the order of the geometric scatter- 
ing cross section. 

Analysis shows that the integration with respect to E is 
limited by the first factor, E 5 T. In fact, the characteristic 
values of T are of the order of w -  ', and at reasonable values 
of w  the second arguments of the function Po in ( 2 7 )  and 
( 2 8 )  turn out to be small. Furthermore, in the logarithmic 
functions contained in the arguments of Po, we can replace 
everywhere r by w -  '. We ultimately get 

where 

@=(T/WL~)"'P~[-~L(~TL/W)'", O I  for @'Cc>l, 

2  3L " ( 3 2 )  
a) = - p0[ -qL (F )  , o ]  for 0 ~ ~ c i .  

(3L) ' 

We have put here L = 1n(1/wr0) % 1 .  
We proceed to a discussion of the results. Bearing in 

mind a comparison with experiment, we introduce Hooge's 
constant a. Following tradition and Hooge's original paper,2 
we normalize the noise to the total number N = n, Vo, of 
electrons in the sample, where no is the electron density. We 
obtain then 

Pn, T '11 
a -- -( (a,-u,)'>- qL a) .  

2n W 

This expression can be rewritten in a different form for the 
case when the principal role is played by scattering from 
impurities having a density ni and a scattering cross section 

a t r  : 

n. ( ( ~ i - o r ) ~ )  T ~ : "  a=- - a). 
2nn: on2 W 

We see thus that in our model the Hooge constant a depends 
on temperature and is sensitive to the distribution function 
Po(r],O) of the fluctuators in the parameter r] ,  namely, to the 
law governing its decrease at negative values of r] with large 
moduli. 

By way of illustration, we have carried out calculations 
for three specific P( (r](,O) dependences. These dependences 
and the calculation results are listed in Table I, where 
L = ln( l / w r O ) .  

The frequency dependences of Hooge's constant a are 
the same as of the function a, and are logarithmic for most 
situations. However, for example in the case of a Gaussian 
function and in the activation relaxation regime, the main 
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TABLE I. The function @(o,T) for different models of the density of states. 
-- - 

dependence is a power-law: a a w - " ,  where s= ( q L /  
Sq) (4T/  W) . The temperature dependences of a differ 
from the corresponding dependences of @ by a factor T. In 
the tunneling regime a a T. In the activation regime, how- 
ever, the a( T) dependence should as a rule be nonmono- 
tonic, a reflection of the nonmonotonic character of the bar- 
rier-height distribution function, which is a property of the 
soft-potential model. Indeed, the function (qlP,(q) is non- 
monotonic, and V, = W(q/q, )2/4. Note that this circum- 
stance can explain also the presence of a relaxation absorp- 
tion peak in amorphous materials at relatively high 
 temperature^.^' 

Noise experiments at low frequencies offer thus in prin- 
ciple a choice between the three possibilities discussed 
above, and indicate, to a certain degree, the structure of the 
short-range order in disordered systems. 

We present now a rough estimate of Hooge's constant. 
We assume here that the arguments of the function P, in 
( 3 1 ) and ( 32) are small enough. The function Po (0,O) can 
then be connected, in order of magnitude, to the TLS density 
of state P known from low-temperature experiments by the 
relation (see Ref. 17) 

2 
1 

2 

3 

specifyingP = erg-'.cmp3, n, = loz3 cmP3, 1 = lop6 
cm, W- 30 K,T= 300 K, (u ,  - 0,) z lo-" cm2, w = lo3 
s-', and rO = 10-l3 S, we obtain according to (34) and (31) 

This estimate offers evidence in favor of the If noise mecha- 
nism discussed above. 

Po (Iql) /p.  (0) 

(1 + lql)-"' 

exp (- +) 

Gaussian centered 
about 7 = 1 

3.SlNGULARlTlES OF NOISE CHARACTERISTICS IN TUNNEL 
JUNCTIONS AND MICROJUNCTIONS. DISCUSSION OF 
EXPERIMENTS 

0 (m, T)IPe (0) 

arc > i activation I m r ,  < i (tunneling) 

2 1 

I 2 1 

As a a rule the dielectric interlayer of a tunnel junction 
is disordered. One can therefore expect this interlayer to 
contain the considered defects with internal degree of free- 
dom, which fluctuate with time. These fluctuations lead to 

modulation of the tunnel barrier, and hence of the tunneling 
probability. 

We assume, as above, that the state of the defect is de- 
scribed by a two-well potential, and the equilibrium occupa- 
tion numbers of the wells are n, and n,; transitions from one 
well to another can be by activation or tunneling. Proceeding 
as in Refs 11-14, we express the correction I'" to the tunnel 
current I, for the c Wribution of the centers of interest to us 
in the form 

where A is the junction area. In contrast to the equations of 
the preceding sections, u ,  and u2 denote here not the true 
scattering cross sections, but certain effective ones defined as 

where a is the distance between the atoms, U,, the tunnel- 
barrier height, d its thickness, 

hx=[2rnUo-pZ2]" 

the incilent-particle momentum component perpendicular 
to the surface W, = fi21t2/2m, and ( V, ) ,,, Fourier compo- 
nents ( q  = Jp  - p')/fizp,/fi) of the defect components 
normalized to the unit cell volume. 

As a result we get the following expression for the cur- 
rent fluctuations: 

where 

The rest of the calculation is exactly similar to the one 
above and leads, in the case of a large-area junction, to re- 
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placement of the factor ( 1 3 / ~ 0 ) 2 1 3 ~ 0  in (30) by 
( (u ,  - U ~ ) ~ ) / A  2. 

The If noise intensity is thus inversely proportional to 
the junction area. It must be noted here that in real junctions 
an effective contribution to the tunnel current is made by 
small sections of the junctions with minimum tunnel-barrier 
thickness. The effective junction area A can therefore turn 
out to be noticeably smaller than the geometric area. 

Of particular interest are the characteristics of small- 
area tunnel junctions and of microjunctions. Interest in 
these objects is due to their small intrinsic capacitances, an 
important factor in a number of technical applications. 

It may turn out here that only a few defects with inter- 
nal degree of freedom are located in the junction region. The 
sums such as (8) and (38) contain then only a few terms. 
What is produced then is not a l/f noise but a sum of Lorent- 
zian contributions whose widths are determined by the times 
.ri. In an investigation of an ensemble of junctions of differ- 
ent sizes one can expect, when the size is increased, the spec- 
trum to change from a sum of Lorentzian functions (in the 
time scale such a noise is an assembly of several telegraph 
processes) to one of the l/f type. A similar behavior can be 
expected also if the number fluctuators taking part in the 
considered phenomena is increased on account of an in- 
crease of the effective-energy region. This can be achieved 
either by raising the temperature or by increasing the junc- 
tion voltage. The latter circumstances can be attributed to 
local heating as well as to direct interaction of the electrons 
with two-well defects. 

It appears that the foregoing phenomena were observed 
in the  experiment^^.^ on If noise in tunnel junctions of area 

cm2 at various temperatures and junction voltages. 
When the temperature was raised in this experiment from 2 
to 80 K a change was observed from a frequency spectrum 
corresponding to an assembly of several Lorentzians to a l/f 
spectrum. The authors have attributed this behavior to the 
presence, in the junction region, of centers with broad relax- 
ation-time spectra. They have investigated the temperature 
dependences of the relaxation times of individual fluctuators 
and observed a transition from tunneling to activation at 
T = 15-20 K. This behavior agrees with the results of the 
theory above. A similar transition was observed also when 
the junction voltage was raised. If an attempt is made to 
estimate from the experimental results of Ref. 5 the cross 
section for the interaction between tunneling electrons and a 
fluctuator, using expression (38) and the junction geometric 
area for A, values 10-'"10'2 cm2 are obtained for a. These 
values exceed the square of the tunnel-junction thickness 
and are therefore unreasonable. From our point of view, the 
effective junction area is much smaller than geometric. The 

reason is that the tunnel current depends exponentially on 
the barrier thickness, which can fluctuate along the barrier. 
Assuming as a rough estimate that the barrier height does 
not fluctuate and the thickness has a Gaussian fluctuation 
with a variance 5, the ratio of the effective and geometric 
areas is of the order of exp( - x2i?). Another cause of the 
increase of the effective cross section may be the increase of 
the barrier transparency by a contribution from the fluctua- 
tor potential. Allowance for this circumstance can increase 
the effective cross section by exp[2 max ( 1  V,,lrom/fi2x)], 
where ro is the effective radius of the fluctuator potential. 

We see thus that the low-frequency noise of the junction 
depends unusually strongly on the presence, in the junction 
or in its vicinity, of defects with internal degrees of freedom. 
The noise should accordingly differ for different junctions. 
The distribution function of the corresponding Hooge con- 
stants can be determined with the aid of theory developed 
above. 
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