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An expression is obtained for the distribution function of the hopping conductance of a long one- 
dimensional chain of localized states. The random oscillations of the resistance of the chain with 
change of the position of the Fermi level are studied, and the correlator of the logarithms of the 
resistance, which is a quantitative characteristic of the oscillations, is calculated. 

1. INTRODUCTION 

Interest in the study of the conductance of one-dimen- 
sional systems, the electronic states in which are localized at 
zero temperature, has grown in recent years after these sys- 
tems were obtained experimentally. ' They were obtained us- 
ing silicon MIS structures, in which, by means of profiled 
doping by acceptors, a narrow ( -0.1 p m )  strip of n-type 
semiconductor, in contact with the oxide, was isolated. Be- 
cause of the presence of neighboringp-type regions, situated 
along the entire strip on both sides of the strip, space-charge 
regions were created inside the strip, so that almost all the 
donors within the strip were ionized. The electrons, how- 
ever, were localized only on donors situated in a much nar- 
rower electrically neutral strip, the width of which, accord- 
ing to the estimates, amounts to 100-150 A. The 
measurement carried out in Ref. 1 showed that the conduc- 
tance of this strip increases exponentially with increase of 
the temperature T. But the dependence of the conductance 
on the gate voltage displays random oscillations about the 
average value. For samples of length L - 10 p m  the ampli- 
tude of the oscillations reached one and a half orders at tem- 
peratures T-0.1 K and fell rapidly with increase of tem- 
perature. 

The first model designed to explain the dependences 
that had been observed was proposed in Ref. 2. Lying at its 
basis was the assumption that the passage of current in the 
strip is realized by tunneling of electrons from one contact to 
the other with virtual capture at localized states (LS) with 
levels near the Fermi level (resonance tunneling). Change of 
the gate voltage leads to change of the position of the Fermi 
level, and hence to replacement of the localized states 
through which the electrons tunnel. Since the transmission 
coefficient depends on the LS energies and on the arrange- 
ment of the LS about the middle of the strip, this rearrange- 
ment leads to oscillations of the conductance of the sample. 

An alternative model was proposed in Ref. 3. In that 
paper it was assumed that the passage of current is deter- 
mined by tunneling hops of electrons between localized 
states with emission and absorption of phonons. In this case, 
with each pair of LS we can associate a certain equivalent 
resistance linking them. With change of the position of the 
Fermi level some of the resistances increase exponentially 
and others fall, so that their contributions to the resistance of 
the sample are redistributed. Since the principal contribu- 
tion to the resistance of the sample is made by a few of the 
largest resistances (those which are not shorted by smaller 
resistances connected in parallel with them), this redistribu- 
tion is accompanied by oscillations of the resistance of the 
sample. 

The comparison of the results of Refs. 2 and 3 underta- 
ken in Ref. 4 showed that the first of the suggested mecha- 
nisms can determine the conductance of the system only at 
very low temperatures: T5; 10 mK. The experimental situa- 
tion corresponded to temperatures T? 25 mK, and so the 
authors of Ref. 5 invoked the mechanism of Ref. 3 to inter- 
pret the experimental results. The experiments performed 
made it possible to estimate sufficiently accurately such pa- 
rameters of the samples investigated as the decay length of 
the LS wave function, and also the one-dimensional density 
of states. On the other hand, the number of conductance 
maxima that were observed over the entire range of variation 
of the Fermi level was extremely large, and therefore the 
problem of the theoretical study of the fluctuations of the 
hopping conductance of a one-dimensional chain of local- 
ized states is timely. This problem is solved in the present 
paper. In Sec. 2 the general approach proposed in Ref. 6 is 
used to calculate the distribution function of the hopping 
conductance of the chain. Earlier, in Ref. 7, this function 
was found by computer modeling for two specific values of 
the chain length L. In addition, in Ref. 7 arguments are given 
that make it possible to estimate the position of the maxi- 
mum, and the width, of the distribution function for arbi- 
trary values of L. The analytical expression obtained in the 
present paper for the distribution function describes with 
great accuracy the results of the computer modeling in Ref. 
7. In Secs. 3 and 4 a quantitative theory of the oscillations of 
the resistance of a one dimensional chain upon variation of 
the Fermi level is constructed (in Ref. 3 these oscillations 
were studied by means of computer modeling). The depen- 
dence of the characteristic amplitude and period of the oscil- 
lations on the temperature and chain length is obtained, and 
the correlator of the logarithms of the resistance for different 
positions of the Fermi level is calculated (this correlator is a 
quantitative characteristic of the oscillations). 

2. DISTRIBUTION FUNCTION OF THE RESISTANCE OF A 
LONG ONE-DIMENSIONAL CHAIN 

We shall consider a one-dimensional chain of randomly 
positioned localized states and of length L. To calculate its 
hopping conductance we must associate with each pair of 
localized states i and j a resistance R, linking them8: 

21xi-xjl I E ~ - ~ I + I E ~ - ~ I + I E ~ - E ~ I  R,=R,  exp + 
2 T 

(1 )  

wherexi and E~ are the coordinate and energy of the ith site, a 
is the decay length of the LS wave function, p is the position 
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of the Fermi level, and R, is the pre-exponential factor. 
After this the problem reduces to calculating the total resis- 
tance of the equivalent electric circuit. For a chain of infinite 
length this problem was first considered in Ref. 9, in which it 
was shown that the resistivity of the chain is determined by 
"breaks"-exponentially rare segments within which there 
are no LS with energies close to the Fermi level (such a break 
is shown schematically in Fig. la) .  If breaks were absent, the 
resistance of the chain at low temperatures would be deter- 
mined by the Mott formula, which, in the one-dimensional 
case, has the form8 

where g is the density of localized states andP is a numerical 
coefficient. Despite the fact that breaks are exponentially 
rare, it is they which determine the total resistance of the 
chain, since their resistance exponentially exceeds the Mott 
resistance (2).  We note that such a situation is specific only 
to the one-dimensional case, since in this case the current 
lines cannot "go round" the breaks. 

It is clear that the resistance of a break is determined by 
its shape and size. We denote by p (u )  the concentration of 
breaks with a specifed resistance R, exp(u) ( u s  1) in a 
chain of infinite length. Since a break is a region free from 
localized states on the ( x , ~ )  plane (see Fig. l a ) ,  the proba- 
bility of its formation is proportional to exp ( - gA ), where 
A$l/g is the area of the region (the phase volume). The 
concentration p (u )  is determined by the regions of that 
shape for which the area A is a minimum for the given resis- 
tance R, exp(u) of this region. Using formula ( I ) ,  it is easy 
to show that this condition is satisfied by a rhombus with 
diagonals of lengths au/2 and 2uT, respectively (Fig. lb )  . In 
fact, as can be seen from formula ( 1 ), the resistance between 
any two LS positioned symmetrically on opposite sides of the 
rhombus (Fig. lb )  is the same and equal to R, exp(u), so 
that any decrease of the area of the rhombus (the dashed 
curve on Fig. lb)  leads to a decrease of the total resistance. 
Since the area of the rhombus is A = aTu2/2, for the re- 
quired quantity p ( ~ )  we obtain 

where p, is the pre-exponential factor and can be estimated 
asp, -gTu (the concentration of LS in the energy band uT) . 
Since breaks are exponentially rare and do not overlap, the 
chain can be replaced by a system of series-connected breaks 
of different types, and all the other resistances can be re- 
placed by low-resistance connecting wires. The resistance of 
the chain is then equal to 

0 

Taking into account that the integrand has a sharp maxi- 
mum at u = (gTa)- '  = To /T, we have 

where To is determined by formula (2).  
The expression obtained differs from the result of Ref. 9 

in having a numerical coefficient of 1/2 instead of 1/4 in the 
argument of the exponential. This is connected with the fact 

FIG. 1 .  (a)  Schematic representation of a break in a one-dimensional 
chain. The points correspond to localized states; (b) a break of optimal 
shape. The LS pairs that determine the total resistance of the break are 
connected by straight-line segments. 

that optimization with respect to the shape of the break was 
not carried out in Ref. 9." 

The formula (5)  is applicable only for a sufficiently 
long chain, since in its derivation it was in fact assumed that 
thenumber of optimal breaks with u = To /Tover the length 
of the chain is large, i.e., Lp(T, /T) 1. The latter condition 
can be represented conveniently in the form of a strict in- 
equality Y >  1, where the parameter Y is determined by the 
following relation2': 

In (LvSla)  2T Lv" 
Y = = 

]lnIp(T,/T)/p~l I 2'0 

For v < 1, optimal breaks are not to be found in a typical 
chain. The logarithm of the resistance of the chain in this 
case will be determined by a few breaks, with the largest 
resistance, from amongst all those present in the chain. 
Quantitatively, this corresponds to the fact that in the inte- 
gral (4)  the upper limit must be replaced by uf, where the 
quantity uf is determined from the condition Lp(u f )  - 1, 
whence uf = To vl"/T, where v is determined by the expres- 
sion (6)  (that such a simple expression is obtained for uf is 
due to the choice of definition of the parameter v ) .  As a 
result, we have 

The expression obtained agrees with the result of Ref. 7 to 
within the numerical coefficient, which was not found in 
Ref. 7. 

It is clear that for a sufficiently small length L (when 
Y < 1 ) there is a random spread of values of the resistance 
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between different.chains, so that one can speak only of the 
distribution function of the logarithm of the resistance over 
the chains. The expression (7)  determines the position of the 
maximum of the distribution function. To find the form of 
the distribution function it is necessary to take into account 
the contributions to the resistance from all the principal 
breaks present in the chain. The important point is that these 
contributions are independent. This is sufficient to make it 
possible to use the approach developed in Ref. 6, in which 
was studied the distribution function of the conductance of 
an arbitrary barrier of finite area, the local transparency of 
which experiences random exponential scatter. Just as the 
resistance of the chain is determined by the sum of the resis- 
tances of the segments with anomalously large resistance, 
the conductance of this barrier is equal to the sum of the 
conductances of the "punctures"-local regions with anom- 
alously large transparency. In effect, the barrier and the 
chain are mutually dual, i.e., quantitative descriptions of the 
two systems can be reduced to each other by formal replace- 
ment of the resistance by the conductance and of series con- 
nection by parallel connection. 

The distribution function of interest to us is defined as 
follows: 

where Ani is the number of breaks of the ith kind in the 
chain, and R, exp ( ui ) is the resistance of such a break. The 
averaging in formula (8)  is performed over all possible val- 
ues of Ani = 0, 1, 2, ... . This averaging was performed in 
Ref. 6, and for f(Q) an expression was obtained which, in 
application to a chain, can be represented in the form 

eQ 
f (9)- - J at exp{i te~+~ J du ( u )  ieXp (- i te .)  - 4 1  

2n- 0 

where the function p ( u )  is defined by formula ( 3 ) .  
This expression is analyzed in exactly the same way as 

was done in Ref. 6. It turns out that the distribution function 
has different forms in three exponentially wide ranges of 
variation of the chain length L, or, in other words, in three 
ranges of variation of the parameter Y (see formula (6)  ). 
For Y < 1, when in a typical chain there is no optimal break, 
we have 

m 
e A 

f (Q) = -- 5 dz erp n 2 
0 

i.e., the function f is centered near the value Q = V ' / * T ~  /Tin 
accord with the result (7 ) .  The expression ( 10) is simplified 
substantially for Y< 1 and takes the form 

It can be seen from this expression that the width of the 
distribution function for Y< 1 is of the order of 

and increases with lowering of the temperature and increase 
of L. The ratio of the width SQ to the position (7)  of the 
maximum is found to be of the order of In- ' ( L  T ' " / a ~  A") 
and depends weakly on the temperature. 

Another particular case in which the integral in for- 
mula ( 10) can be calculated analytically is the case v = 1/4. 
For this we have 

If the parameter Y lies in the interval 1 < v  < 4, in a typical 
chain there are many optimal breaks, so that the position of 
the maximum off( Q) is given by formula ( 5 ) . However, the 
distribution function is not Gaussian (although it is expon- 
entially narrow ), since its width is determined by entirely 
different breaks, the number of which in a typical chain is of 
order unity. The distribution function takes a Gaussian form 
only for v  > 4. 

Figure 2 shows graphs of the function f(Q) for the val- 
ues Y, = 0.2 and Y, = 0.25. These values of v  are chosen 
because they correspond to the chain lengths and tempera- 
ture for which the distribution function was found in Ref. 7 
by numerical modeling. We determined the values of v ,  and 

FIG. 2. Distribution function of the logarithm of the resistance of a one- 
dimensional chain of LS. The solid curves represent the results of calcula- 
tions using formula ( 10) for (a)  v = 0.2 and (b) v = 0.25; the circles 
show results of the numerical modeling from Ref. 7. 
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Y, by comparing the numerical values given in Ref. 7 for the 
variance D = - (b),  with the analytical expression 

which can be obtained with the aid of formula (10). The 
results of the calculations of Ref. 7 are shown in Fig. 2 by 
circles. It can be seen that they practically coincide with the 
curves plotted from formulas ( 12) and ( 14). We note, how- 
ever, that if we use formula (6)  to determine the values of Y l 

and Y,, substituting into it the values of T and L from Ref. 7 
we obtain Y, = 0.29 and v, = 0.34, i.e., values greater by a 
factor of approximately 1.4. In our opinion, this is due to the 
fact that the formula ( 3 )  for p(u)-the concentration of 
breaks with a given resistance R, exp(u)-is asymptotic in 
the parameter u ( T/T, ) I/' % 1. The relative correction to the 
expression (6)  for the parameter Y is, consequently, of the 
order of SY/Y- (To / T U ~ ) ' / ~ .  On the other hand, 
u- (T , /T)~~/~ ,so tha tSv/v-  (T /Tov)1 /2 - ln1 /2 (L  /a).  
This correction decreases very slowly with increase of L, so 
that, although in Ref. 7 the value of Y, corresponds to 
L /a  = 180, the ratio SY/Y is not sufficiently small. On the 
other hand, the form of the distribution function is universal 
and does not change when the parameter v is modified as a 
result of corrections in the logarithm of p(u) .  

3. RANDOM OSCILLATIONS OF THE CHAIN RESISTANCE 

The qualitative pattern of the oscillations of the resis- 
tance of a chain upon variation of the position of the Fermi 
level can be clarified conveniently with the aid of Fig. 3a. As 
already pointed out above, the principal contribution to the 
resistance is made by breaks which on the ( x , ~ )  plane can be 
depicted in the form of voids having the shape of a rhombus 
with sides of slope d ~ / d x  = T/a, with one of the diagonals of 
the rhombus coinciding with the Fermi level p .  We shall 
assume that the rhombus is symmetric about the straight line 
E = po.  Forp = po it is "balanced", i.e., the same resistance 
corresponds to all the LS pairs shown in Fig. lb. It is easy to 
see that when the Fermi level is displaced upward or down- 
ward the balance is destroyed. For p = p, >p ,  (more pre- 
cisely, p, -p, k T), the resistance will be determined by 
the LS pairs situated in the upper half of the rhombus, while 
for p = p I <pO it will be determined by the LS pairs located 
in the lower half of the rhombus. In both cases the resistance 
of the rhombus will fall as exp( - ( p - p, ( / T ) .  Thus, the 
resistance of the rhombus passes through a maximum at 
p = p,, as shown in Fig. 3b. We see, therefore, that for those 
values of p for which a given rhombus can determine the 
resistance of the entire chain, the rhombus undergoes an in- 
ternal switch from the "upper" to the "lower" resistances. 
After the switching, the resistance of the break falls with 
increase of p and, at a certain p =po + Spc, becomes 
smaller than the resistance of another break, centered at 
p = po + 2Sp,, the resistance of which, for p <p,  + 2Sp,, 
increases with increase of p. Upon this switching the total 
resistance of the chain passes through a minimum (Fig. 3b). 
With further increase of p the resistance of the new break 
passes through a maximum, and so on. Thus, the oscillations 
of the resistance of the chain are a sequence of internal and 
mutual switchings of different breaks. 

The characteristic period Sp, of the oscillations can be 

FIG. 3. ( a )  Scheme clarifying internal and mutual switchings of breaks 
upon variation of the Fermi level; (b )  oscillations of the logarithm of the 
resistance of a chain upon variation of the position of the Fermi level; the 
dashed lines show the variation of the resistance of individual breaks. 

estimated as follows. The resistance of the chain for each 
position of p is determined principally by two competing 
breaks, with their representative rhombuses shifted relative 
to each other along the energy axis by a certain random 
quantity 2Sp,. Far from the point of their mutual switching 
the characteristic difference of the logarithms of the resis- 
tances of these breaks is of the order of Sp,/T. On the other 
hand, it is obvious that this difference should coincide in 
order of magnitude with the width SQ of the distribution 
function [formula ( 13) 1, whence 

It can be seen that the period increases with increase of the 
temperature. The expression ( 16) differs from that given in 
Ref. 3 by the larger logarithm in the denominator. 

The above qualitative picture of the oscillations of the 
chain resistance is rather crude, inasmuch as we assumed 
that different rhombuses differ from each other only by their 
position on the energy axis. From this one might conclude 
that each minimum on Fig. 3b is located exactly midway 
between the two neighboring maxima. In reality, however, 
the sizes of the rhombuses have a random spread, such that 
the fluctuations of their resistances at the points of the maxi- 
ma are of the order of the width of the distribution function. 
Allowance for this circumstance leads to the result that the 
mutual location of the minima and maxima is random. 

An important conclusion from the above analysis is the 
fact that for any position of the Fermi level the dependence 
1nR (p) is of the activation type: d 1nR (p)/dp = + 1/T. In 
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other words, there should be no horizontal sections (pla- 
teaux) on the pattern of the oscillations (Fig. 3b). This con- 
clusion is not obvious, because, as can be seen from formula 
( 1 ), for any pair of LS with energies E, and E, the depen- 
dence of the resistance linking them onp  has a plateau in the 
interval E, < p  < E ~ .  In our case, however, the resistance of 
the chain is determined by specific configurations of local- 
ized states-rhombuses, and pairs of localized states located 
on opposite sides of the Fermi level (in Fig. lb  they are 
linked by a dashed straight line) make no appreciable contri- 
bution to the resistance of the rhombus. This conclusion 
agrees with experiment5 and with the results of computer 
m~del ing .~  A quantitative characteristic of the random os- 
cillations, making a comparison with experiment possible, is 
the correlator of the logarithms of the resistance for different 
positions of the Fermi level. This correlator is calculated in 
the following section. 

4. CORRELATOR OF THE LOGARITHMS OF THE 
RESISTANCE 

As shown in Ref. 6, the correlator of the logarithms of 
the resistance 

- 
K ( p 2 - ~ ~ ) = F ~ ( p , ) l n  ~ ( p . ~ )  - ( l n ~ ) ~  (17) 

can be expressed in terms of the pair density of breaks 
P ~ , ~ ,  (uI,u2), defined as follows: 

The averaging in (17) is performed over an ensemble of 
chains of LS with a given length L. The angular brackets in 
( 18) denote averaging over all possible configurations of lo- 
calized states forming a break, and 9? ( p) is the resistance of 
a break for a given position of the Fermi levelp. The quantity 
ppCp2 ( u ,  ,u2 ) is the dimensionless concentration of breaks 
for which the logarithm of the resistance is equal to u,  for 
p = p, and u, for p = p, in a chain of infinite length. This 
quantity can be represented conveniently in the form of the 
product 

where i i=  (u,  +u2)/2, S u = u 2 - u , ,  6 p = p 2 - p , ,  and 
the function p ( u) is given by formula (3).  In the case v < 1 
that we are considering, the expression for the correlator 
( 17) in terms of the function Pcan be written in the follow- 
ing form: 

where the quantity uf(v)--the average logarithm of the re- 
sistance of the chain-is determined by formula (7). The 
function p (v )  is defined as p ( v )  = - d(lnp(u) )/dul = .,. 

Using the formulas ( 3 )  and (7)  we obtain p ( v )  = v " ~ .  
Thus, to determine the correlator it is necessary to calculate 
the pair density of breaks ( 18). 

First of all, we note that in calculating the resistance of a 
break we can disregard pairs of LS with energies lying in a 
narrow band of width 6p  near the average position 
i= ( p I + p2 )/2 of the Fermi level, since the characteristic 
values of 6p are found to be much smaller than the size ufT 
of the rhombus (Fig. Ib). In addition, as already noted in the 
preceding section, we can neglect pairs of LS located on op- 
posite sides of the Fermi level (the dashed straight line in 
Fig. lb) .  Taking into account what has been said, we can 
represent the resistance of a break for the Fermi-level posi- 
tions p = p, and p = p2 in the form 

where X+ and 8- are the inverse resistances of the upper 
(E>;) and lower (E < i )  halves of the rhombus depicting 
the break, calculated at p = ;. Substituting (22) into (18), 
we rewrite the expression for the pair density of breaks as 
follows: 

The random quantities Z+ and X- appearing in the last 
two factors in (23) can be expressed in terms of the energies 
and coordinates of localized states belonging to opposite 
halves of the rhombus. Therefore, the average of the product 
of &functions decomposes into a product of averages, after 
which the double integral (23) is easily calculated. As a re- 
sult, we have 

where we have introduced the auxiliary function 
p(s)  = (S(lnX+ -s)),ands, andt, arethevaluesofsand 
t for which the arguments of the first two 6-functions in (23) 
vanish: 

s0=ii-ln [sh ($ - $) / ah $1, 

The function p(s )  is the dimensionless concentration of 
"triangular" breaks for which the equivalent resistance of 
the pairs of LS with ~ > i  is equal to exp(s). On the other 
hand, the function p (u )  (3)  is the concentration of breaks 
having the shape of a rhombus, which is composed of two 
such triangles. Therefore, the functions p and p are 
connected by the relation p (u )  = ( p(u)/p,) ' I 2  

= exp( - gTau2/4). Using this relation, and also substitut- 
ing (25) into (24), we obtain 
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K(r l /~  (0) where we have introduced the notation 

6~ - - v"= 
T - ( 2 9 )  

A straightforward analysis of the formula ( 2 7 ) ,  ( 2 8 )  shows 
that the characteristic scale of the variation of the correlator 
K  ( r )  is r - 1 both for v ( 1  and for v 5 1, corresponding to a 
scale Sp, - T / v " ~ .  This result agrees with the characteristic 
period ( 16)  of the oscillations of the logarithm of the resis- 

I 
a Y 8 tance which was obtained by a qualitative analysis. The re- 

t sult of a numerical calculation of the correlator K ( T )  for 
different values of v is presented in Fig. 4. 

FIG. 4. Correlator of the logarithms of the resistance for different posi- We are grateful t~ B. Z. Spivak, A. Fowler, and B. I. 
tions of the Fermi level; curves 1, 2, and 3 correspond to the values shklovskii for discussion ofthe results ofthe we also 
v1l2 = 0.9,0.5,0.2. 

thank P. Lee for drawing our attention to Ref. 7. 

Comparing ( 2 6 )  with ( 1 9 ) ,  for the function P, (Su,Sp) ap- 
pearing in the expression for the correlator we obtain 

where the constant C does not depend on Su, and, therefore, 
as can be seen from the formulas ( 2 0 ) ,  ( 2  1 ) , does not affect 
the form of the correlator. The final expression for the corre- 
lator can be written conveniently in the form 

ll* 
t 

I, (u) = d t  (ohT 
-'Is 

"For the expression (5) to be applicableit is necessary that the width Eof 
the energy band (in the vicinity of the F e m i  level) within which the 
density of states g does not depend on the energy be greater than the 
quantity To. The condition E >  To implies that the average distance 
between neighboring LS, equal to I/gE, is smaller than a-the radius of 
localization of the LS wavefunction. This leads to the result that at large 
distances the LS wavefunction will fall off as exp[ -x/(a + 6a)],  
where 6a-aI/To, I being the overlap integral of two LS situated at a 
distance a. For I- E- To we have 6a-a. 

2)The introduction of the parameter v in the argument of the logarithm in 
(6) is not important for the fulfillment of the inequality Lp( To / T )  S- 1. 
However, this particular definition of v turns out to be convenient in 
what follows. 
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