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The asymptotic behavior ofthe pair correlation function of defects produced in a three- 
dimensional atomic-collision cascade is obtained for r smaller than the characteristic size of the 
cascade. This asymptotic form of the correlation function is used to find the cascade efficiency, 
&,, i.e., the share of defects that survive athermal annealing. 

INTRODUCTION 

In the kinetic theory of linear atomic-collision cascades 
it is customary to consider single-particle quantities, such as 
the momentum distribution function of the moving atoms or 
the associated densities of the particle number, energy, and 
momentum, at one point of space.' In a number of cases, 
however, this information is insufficient. For example, to 
consider the first post-cascade stage, the athermal annealing 
of the defects, i.e., the spontaneous annihilation of close va- 
cancies and interstices, we must know the pair correlation 
function K,, (r).  This function describes the distribution of 
the defects generated by the cascade, for times in which the 
energy of the moving atoms becomes lower than the thresh- 
old energy E, ( - 10 eV) for Frenkel-pair formation, i.e., 
after the conclusion of the cascade. The form of this function 
should be obtained from the solution of the corresponding 
kinetic equations that describe the cascade stage. 

A close asymptote of the correlation function of the va- 
cancies was obtained in Ref. 2 for a model one-dimensional 
case. The purpose of the present paper is to calculate the 
asymptotic form of K ,  ( r )  in the three-dimensional case for r 
smaller than the characteristic cascade size I(&") [I(&) is the 
mean free path of an atom of energy E, and E, is the energy of 
the atom initiating the cascade], and to obtain with the aid of 
this asymptotic form the cascade efficiency &,, i.e., the frac- 
tion of the defects that survive athermal annealing. A close 
asymptote K, ( r )  suffices to find &,, since the size R of the 
spontaneous annihilation zone satisfies the relation 
a, 5 R <1(~ , ) ,  where a, is the interatomic d i~ t ance .~  

GENERAL EQUATIONS 

Consider a collision cascade produced by a particle hav- 
ing a momentum p, and appearing at a point r = 0 at the 
instant of time t = 0. We assume the primary-particle mass 
to be equal to the target-atom mass, and neglect the loss to 
ionization and electron excitation when the atoms collide, 
and also the scattering-probability anisotropy relative to the 
crystallographic axes. The atom motion is assumed classical. 
The number of moving atoms per unit volume is small, and 
the collisions between them can be disregarded (linear cas- 
cade). Under these conditions, the averaged (over the fluc- 
tuations) single-particle distribution function (f(p,Jp*rt)) 
satisfies the kinetic equation4s5 

where 

Here w P _ , ,  is the probability (per unit time) that a moving 
atom with momentum p will be scattered by an immobile 
one, acquiring thereby a momentum k, and that a new mov- 
ing atom with momentum q will be produced; 

We put 

The equation for the diagonal part of the correlator g, an 
equation specially introduced in Ref. 6 for a linear cascade 
process by comparing the balance control equations, is 

Note that Eq. (5)  can be obtained, by linearization over a 
small number of moving particles, from a more general equa- 
tion for the correlator of the distribution function of a gas 
with paired interatomic collisions.' 

We k n ~ w ' . ~ , ~  that the Green's function ( f )  of the kinet- 
ic equation satisfies, besides Eq. ( 1 ), also the equivalent "in- 
verse" (adjoint) equation 

where 

Using this fact, and recognizing also that the general solu- 
tion of (5 )  is a convolution of three single-particle Green's 
functions, we can likewise rewrite (5 )  in an equivalent "in- 
verse" form6 
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where 

[we have changed in (8)  from tke diagonal part to the 
total correlator GI. The action of L+ on G is defined in anal- 
ogy with (7). 

h 

The "inverse" collision integral L+ is not a cdllision 
integral in the usual sense, i.e., tke divergence of the flux in 
momentum space. The operator L+ therefore does not van- 
ish upon summation with the additive collision invariants 1, 
p and E ~ .  This circumstance makes it possible to obtain from 
( 6 )  and (8) equations for the hydrodynamic quantities 
(particle-number density, energy, momentum) and their 
correlators in closed form, something impossible by using 
Eqs. ( 1 ) and (5), since upon summation over p with appro- 
priate weight these equations reduce to unclosed conserva- 
tion laws." 

PAIR CORRELATION FUNCTION 

To solve the athermal-annealing problem we must 
know the density correlator for times when the cascade 
proper has already terminated, i.e., no more atoms are 
knocked out. This value can be taken to mean as the limit, as 
t -  , of the corresponding nonstationary correlator. When 
taking the limit with respect to t, however, we encounter a 
problem which we illustrate using as the example the corre- 
lator of the knocked-out atoms 

4 i i  (PO 1114) = lim )= G (p. I pir.p,rzt). 
I -+_  

(10) 
P,,P2 

Summation over pl and p, projuces in the right-hand side of 
Eq. (8) for G-in the source Q-a product of the mean val- 
ues (ni): 

The summation in ( 11 ) should be carried out from values 
E, = E,. Introduction of a threshold energy in the equations, 
however, would greatly complicate the problem and prevent 
derivation of the self-similar solutions which we intend to 
find. On the other hand, if we let E, -0, then (n, ) will have 
no finite limit as t- CO,  for in the absence of a threshold the 
number of knocked-out atoms would increase without limit. 
In the classical problem with a total cross section that di- 
verges at small momentum transfers this unpleasant situa- 
tion sets in even earlier: the value of (n, ) at E~ = 0 turns out 
to be indeterminate at any instant t > 0, since the sum in ( 11 ) 
diverges for small p [this can be verified by summing Eq. ( 1 ) 
over p]  . It is readily seen that a similar problem arises also in 
the calculation of the cross correlators of the interstice and 
vacancy densities. 

To get around the foregoing difficulty, it is necessary to 
consider, in lieu of the density, a quantity, firstly, having a 
finite limit as t- co and at E, = 0, and secondly, represent- 
ing correctly the spatial distribution of the defects. Such a 
quantity is the energy density 

That ( E  ) has the necessary properties is attested to by the 
following considerations. As a rule the atom%mean free path 
I(&) decreases with decrease of e. Therefore the energy con- 
centrated in a volume dVat an instant t such that E < E ~ ,  and 
hence I(&) will not "spread" out of dV, but will be 
consumed in knocking out atoms inside dV. On the basis of 
these considerations it is proposed in Ref. 1 that there exists 
a finite limit 

and the limiting value of the vacancy density as t- co is 

where co = const - 1 is chosen such as to ensure the correct 
known value of the total number No of the vacancies: 

It follows from the same considerations that the knocked- 
out atom cannot move away far from the vacancy it leaves 
behind. It can therefore be assumed that 

where (Tii) is the limiting value of the interstice density. The 
assumptions ( 13) and ( 14) can be proved by using the 
asymptotic forms obtained in Ref. 5 for the Green's func- 
tions of the kinetic equation (see the Appendix). 

Relation ( 16) means that we neglect the existence of 
depleted and enriched bands, i.e., regions with predominant 
content of vacancies at the center and of interstices on the 
periphery of the cascade, respectively.1° Disregarding the 
crowdion mechanism that forms these bands1' (i.e., exit of 
interstices to the periphery along chains of the substituting 
collisions), which we are not in a position to take correctly 
into account within the framework of the isotropic-medium 
model, we note that spatial separation of vacancies and inter- 
stices takes place also for a cascade in an isotropic medium." 
It follows from the results of Ref. 11, however, that the de- 
gree of this separation decreases as E, is increased, i.e., as the 
number of atoms present in the cascade increases. We can 
therefore regard ( 16) as the limiting high-energy case. 

We define K,, ( r )  so that 4r?K,, ( r )  is the number of 
interstices with pair-component separation in the interval 
(r, r + dr) .  Assuming next that (14) and (16) are valid for 
both the averaged and exact (fluctuating) quantities, we 
have 

where 

as2 
8 ( e ,  1r) = lim 5 dj d3r1 c p ~ , , G  (pa 1 prprrr+rt), ( 18) 

1- m 
P,P' 

and fl, =r/r. Note that the threshold energy E, enters in 
( 17) only in the form of a scale factor that is not contained in 
8. 

The problem has thus been reduced to finding the radial 
correlation function of the energy density %'(E,, lr) at 
E ,  = 0. The determination of its asymptote for r<l(&,) in 
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the three-dimensional case does not differ in principle from 
the one-dimensional case., 

Carrying out in Eq. (8)  for G all the transformations 
indicated in ( 18), we obtain an equation for %': 

We turn now to the case of a power-law interaction po- 
tential V(r) cc r - ", n > l .  The differential (with respect to 
the energy transfer w )  scattering cross section takes then the 
form1, 

where @, (x) is a function with known a ~ ~ m ~ t o t e s . ' ~ , ~  The 
energy path I(&) takes for the cross section (20) the form 

where N is the number of atoms of the medium per cm3. 
We seek 8 ( E ~  ( r )  in the self-similar form 

where, by virtue of the energy conservation law, 

We expand the mean value (E(plr) in a Fourier integral: 

tE(pl r ) )=(2n)- '  j ~ k e ' ~ ' t ~ ( p ) ) ~ .  (24) 

We express the Fourier transform (B(p)  ), likewise in the 
self-similar form: 

where, by virtue of the energy-conservation law, 

The dependence of (E(  lr ) ) on r in the three-dimensional 
case, in contrast to the one-dimensional, is not known even 
asymptotically. To find a close asymptote for the correlator, 
however, the properties (26) alone are sufficient. The reason 
is that both the correlator of 8 and ( E )  contain the same 
inhomogeneity scale 1 ( ~ ) ,  so that when r is much less than 
the inhomogeneity scale the actual form of (3 ) is of no im- 
portance. 

Using (22), (24), and (20) we obtain an equation for 
the self-similar function g(() : 

where P([) is the self-similar representation of the source Q 
in (8): 

m 

where - e 

B'Qk'~0S(pr, k),  a n e - k ' ~ ~ ~ ( p N ,  -k) , 

p' and p" are the momenta of the scattered and knocked-out 
particles, respectively, where p, = p' + p" and p'p" = 0; 
(8,q,), (8 ',q, '), and (8 " ,q, " ) are the angular coordinates of 
the vectors k, p', and p", respectively, with q, " - q, ' = a. 

Proceeding as in Ref. 2, we apply to (27) the Mellin 
transformation. For the Mellin transform of g( f ) :  

c= 

we obtain 

where ?(s) is the Mellin transform of P(4-), and 

The poles ofg(s) coincide with the poles of p(s)  and with the 
zeroes of T(s). A zero of T(s) is located at the point 
s, = - 1/2m + 3 (it is easy to verify that this zero is of first 
order). It follows from (26), (28), and (29) that 
P(() + const as 6- 0.   here fore ?(s) has a first-order pole at 
the zeros, = 0. Form > 1/6 the asymptote ofg(() at 5-4 1 is 
determined by the residue of the function c -'g(s) at the 
pole s,. For m = 1/6 the points s ,  and s, coalesce into one 
second-order pole with residue In( I/{). If m < 1/6, the pole 
s, predominates. Thus, for c 4 1, 

where c , , ~ , ~  = const - 1, the determination of which calls al- 
ready for knowledge of the actual form of (E(  p 1 r )  ). 

It is seen from (33a) that at m > 1/6 the function K,, ( r )  
increases as r decreases. In our approximation, the inter- 
stice-interstice and vacancy-vacancy correlators behave 
similarly. This indicates that the defects tend to cluster at 
short distance from one another, i.e., form nonoverlapping 
subcascades. At m < 1/6 the atoms are uniformly distribut- 
ed over the volume of the cascade. Relation (33) confirms 
thus the subcascade-formation criterion previously obtained 
from the treatment of the cascade as a sequence of succeed- 
ing generations of knocked-out atoms.I3 At the same time, 
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the criterion proposed in Ref. 14, according to which the 
critical exponent for subcascade formation is m = 1/3, is not 
confirmed, since the value m = 1/3 is not critical in Eq. 
(33). 

CASCADE EFFICIENCY 

We consider the simplest athermic-annealing model," 
according to which a vacancy and an interstice recombine 
with unity probabilty under the influence of elastic attrac- 
tion forces if the distance between them is less than the size R 
of the spontaneous-annihilation zone. The duration of the 
recombination act is of the order of the atom oscillation peri- 
od ( 10-'3-10-'2 s),  while the time of cascade evolution is 
usually much shorter, - 10- l4 s (Ref. 16). It can therefore 
be assumed that all the defects in the cascade are generated 
instantaneously and enter the recombination stage simulta- 
neously. The recombination during the time of the cascade 
can be neglected, inasmuch as for E $ E ~  the probability of 
capture of a moving atom by vacancy is low. The tempera- 
ture is assumed to be so low that the defects do not diffuse. 

Let q(r)dr be the probability of finding the nearest 
accessible vacancy at a distance (r,r + dr)  from a given in- 
terstice. By "nearest accessible" is meant that at distances 
0 < r' < r from the given interstice there are no other vacan- 
cies, and at a distance 0 < r' < r from the chosen vacancy 
there are no other interstices." The quantity q( r )  is used in 
the theory of tunneling electron-hole recombination in dis- 
ordered from which we borrowed its 
definition. The number of annihilated interstices (vacan- 
cies) is 

and the cascade efficiency is 

Strictly speaking, q ( r )  can be calculated only ifone knows at 
least the four-particle correlator for two interstices and two 
vacancies. It can, however, be stated that when the number 
of vacancies landing in the instability zone of a given inter- 
stice is small, viz., 

R 

N ,  = 5 drRli(r) al, (36) 
0 

where 

His (r) =4nrZK,,(r) / N o ,  (37) 

we have 

q(r)=Rir(r), (38) 

i.e., any vacancy landing in the instability zone of the given 
interstice is automatically also the nearest accessible one. 
We obtain then for {,, 

Expression (39) can be generalized for NR values that 
are not small compared with unity, by calculating q ( r )  by 
the following equation proposed in Ref. 17: 

The right-hand side in (40) is a product of two probabilities: 
that of encountering some vacancy at a distance (r,r + dr)  
from a given interstice, and the probability that this vacancy 
is the nearest accessible in accordance with the definition 
above. From (35) and (40) we get 

which agrees with (39) for NR 4 1 [we have neglected in 
(41) small terms of type N ,  ', which are small compared 
with unity]. Although (40) is not rigorous (the probabili- 
ties in it are not independent".19), it agrees splendidly in the 
case of a uniform particle distribution with the results of 
computer simulation, all the way to N, =: 1, and remains of 
the correct order of magnitude for NR 2 1 (Ref. 18). 

Let us compare our results with the expression for {,, 
obtained in Ref. 15 for uniform distribution of the effects 
over the cascade volume: 

where ii is the defect density averaged over the cascade vol- 
ume. For fiR 4 1, Eq. (42) is of the same order as (39c). For 
larger iiR 3, on the other hand, expression (42) predicts an 
exponential decrease of ce, with increase of R, while (41) 
predicts a power-law decrease. The cause of this difference is 
that (42) is derived by assuming the fact that the given inter- 
stice can recombine with a vacancy "occupied" by an even 
closer interstice, i.e., (42) describes the recombination of all 
the neighbors, not only the nearest accessible ones. This as- 
sumption corresponds to replacing the exponent of the 
expression in square brackets in (40) by unity," and it is this 
which leads to the exponential result (42). Clearly, this ap- 
proach decreases ge, substantially. 

Two conclusions follow from (39) and (41 ) . First, for a 
non-uniform defect distribution in the cascade volume 
(m > 1/6) the athermal annealing is more intensive than for 
a uniform distribution (m < 1/6), a manifestation of the 
"cumulative" singularity of the correlator. Second, le, is 
independent of energy if m > 1/6, since I(&,) a E:~. The ef- 
fective value of m depends on E, and on the atomic number Z 
of the colliding particles (in the case of equal masses), with 
m increasing as E, increases and as Z decreases.'.20 Follow- 
ing the knownz0 method of estimating m, we can verify that 
the case m < 1/6 can be realized only in heavy targets with 
Z2 70; in lighter ones, however, it is preferable to use m > 1/ 
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6 for practically all values of E,. Starting from the foregoing, 
the independence of leff of E, explains qualitatively the re- 
sults of some actual computer experiments. 

When Cu and Ag are bombarded by ions2' and Mo by 
neutrons (see Ref. 22 and the citations therein), the effi- 
ciency saturates, as manifested by an initial decrease gee 
from values close to unity when E, increases, followed by a 
tendency to a constant value for larger E,. In Refs. 2 1 and 22 
is discussed only the initial ceff decrease, which is ascribed to 
the recombination-stimulating action of the thermal peak. 
This action, however, is effective only at high energy per 
atom in the region captured by the cascade, corresponding 
E, 5: 10 keV (Ref. 23). The constancy of fe, at E, > 10 keV 
can therefore be attributed to the above singularity of the 
athermal annealing. 

Let us mention also the results of a computer simulation 
of the cascade and athermal stages in a-Fe and Cu (Ref. 24), 
which show that the fractions f,, and Cdi of vacancies and 
interstices coalescing into divacancies and di-interstices re- 
main practically constant as E, ranges over the entire inter- 
val in question, from 0.5 to 20 keV. By divacancy (di-inter- 
stice) is meant in Ref. 24 two vacancies (interstices) 
separated by a distance shorter than the lattice constant. An 
estimate for f,, and c,, can be obtained in our approxima- 
tion by proceeding just as in the calculation of Se,, and there- 
fore, just as le,, the values of &,, and {,, are independent of 
E, for m > 1/6. 

Equation (41) leads to 

where a = (2m)-' for m > 1/6 and a = 3 for m < 1/6. 
Equation (43) with a z 2 / 3  describes satisfactorily the 
ge, ( R  ) dependence deduced from the computer simulation 
of cascades in Cu for E~ 5 8 keV and U(r) in the form of the 
Moliere approximation of the Thomas-Fermi-Firsov po- 
tential.3 This attests to a non-uniform distribution of the de- 
fects in the cascade, with an effective value m* z3/4. As 
expected, the dependence of ge, on E, in Ref. 25 is quite 
weak. 

The author is grateful to I. B. Levinson for posing the 
problem and for numerous discussions, to V. N. Mordko- 
vich for a discussion of the experimental data, to V. G. Ka- 
pinos for pointing out Ref. 22, and to V. V. Shekhtman for 
helpful discussions. 

APPENDIX 

Let us prove relations ( 13) and ( 14). It is shown in Ref. 
5 that over long times, when the number of atoms participat- 
ing in the cascade is large, the solution of Eq. ( 1 ) takes the 
following asymptotic form: 

Here P(E) is the density of states per cm3, p(&) is a self- 
similar function, 

M is the particle mass, p ( ~ )  = Mu(E), and (P) is the mo- 
mentum density. The quantities ( E  ) and (P) satisfy the sys- 

tem of quasihydrodynamic equations5 

+ .? (t) div(P)=O, 
at 

where s( t )  has the meaning of speed of sound in the cascade: 

Let us consider the case m < 1/4. Assuming that as 
t- co the derivative il (E)/dt-0, it follows from (A3) that 
(P) a t. We get then from (A2) 

and our assumption is justified. The case m > 1/4 is similarly 
considered. Thus, 

where b = (2m + 1/2)a. This proves (13). [For m > 1/4 
the cascade evolves within a finite time t, which replaces in 
this case the w in Eq. ( 13) 1. 

To prove (14) we define a quantity F(p,I&r) such that 
d 3rFis the average number of atoms knocked out of a volume 
element d 3r near r, with energies in the interval (E,E + d ~ ) ,  
during the entire lifetime of the cascade (Fis  called "recoil 
density" in Ref. 1 ) : 

and rn 2 1/4. Then 

( f&(p.~r) )=S deF(poIcr). 

Substituting ( A l )  and (20) in (A6) and recognizing that 
( E  ) varies slowly with time compared with p({) (Ref. 5) 
and can be taken outside the integral, we get 

de' cp(E') E 
~ ( p ~ l e r ) = t E ( p ~ l r ) )  d t f  .fF--mm(7) , m s  ' / r r  

0 e a(&') 

where f ' = (to f ~) /T(E ' ) .  Interchanging the integration 
with respect to t ' and E' for E g~~ we get 

c.2 

where it is taken into account that5 

From (A9) and (A7) we obtain relation ( 14) with c, evalu- 
ated: - 

CO = J d ~ ~ c p  (F'). ( A l l )  
0 

[The constant c, in (A1 1) differs from that used in Ref. 1 
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since, in contrast to Ref. 1, we did not replace.@, ( x )  by its 
small-angle asymptote.] 
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