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A regular chain of tunnel junctions with linear ohmic dissipation is investigated. Account is taken 
in the electrostatic energy both of the capacitance of the superconducting grains making up the 
chain and of the mutual capacitance of the neighboring grains. The instanton-gas concept is used 
to draw the zero-temperature phase diagram. It is shown that the line separating the regions of 
existence ofcoherent (superconducting) and incoherent states of the chain as a whole is 
subdivided by singular points into four segments. The zero-temperature superconductivity is 
destroyed at arbitrarily low temperature and manifests itselfonly in a power-law decrease of the 
chain resistance R with temperature (R cc p as T-0). In the semiclassical approximation this 
decrease can be attributed to a quantum-fluctuation phase slip at the tunnel junctions. The values 
of the exponent A are obtained in various regions of the phase diagram, including the universal 
values assumed by the exponent on various segments of the phase boundary. Two auxiliary phase- 
transition lines, on which the exponent becomes discontinuous, are present in the region of 
existence of the coherent state. 

1.  INTRODUCTION 

The simplest model that can be used to describe a regu- 
lar chain of tunnel junctions can be specified by the Hamilto- 
nian 

where the first term is the energy of the electrostatic interac- 
tion between the grains making up the chain and the con- 
ducting substrate (E, = 4 e 2 C ' ,  C - '  is the diagonal ele- 
ment of the reciprocal-capacitances matrix), while the 
second is the Josephson-interaction energy of the neighbor- 
ing grains (E, = +iIc/2e, I, is the nonrenormalized critical 
current of a single junction). The variable n, , which has the 
meaning of the charge ofthejth grain in 2e units, is conjugate 
to the order-parameter phase 9, at the same grain: 
i, = - id /dp, .  

The model ( 1 ) can be described by a single dimension- 
less parameter" x = n-(E,/E, ) "'. When x is varied at zero 
temperature, a phase transition takes place in the model ( 1 ) 
between the coherent (superconducting) and incoherent 
states of the chain as a whole.'.' This phase transition be- 
longs to the same universality class as the Berezinskii-Kos- 
terlitz-Thouless phase transition3-' in the two-dimensional 
classical XY model since, as shown in Ref. 1, the partition 
functions of these models are isomorphic. 

It is possible to retain in ( 1 ) only the diagonal element 
of the reciprocal-capacitance matrix solely in the presence 
of a conducting substrate. ' In the opposite case the Coulomb 
interaction of the remote grains destroys the superconduc- 
tivity at all ratios of the model parameters.' In the presence 
of a conducting substrate the appearance of induced charges 
causes a more rapid decrease of the electrostatic-interaction 
energy of the remote grains with increase of distance, and 
leads now only to small quantitative (but not qualitative) 
differences from the model ( I ) , so that it can be discarded. 
Allowance for the nonadiabaticity of the alignment of the 
induced charges would correspond to consideration of fre- 
quency-dependent corrections to the first term of ( 1 ), which 
are likewise immaterial. 

At finite temperatures, the zero-temperature supercon- 
ductivity of the chain as a whole is disturbed and is manifest- 
ed only via a power-law decrease of the linear resistance R of 
the chain with temperature2: R cc p ( T-+ 0). In an analysis 
within the context of the semiclassical approximation (to 
which we propose to adhere here for the most part) the ap- 
pearance of finite resistance in the chain can be due to the 
finite probability of slippage of the phase P i n  the absence of 
an external current I. In these case, for small external cur- 
rents, a phase slip by f 277-, accompanied by a chain-energy 
change E = ,2n-Ifi/2e, will have a probability ( 1 - E/T)P, 
leading to an average rate of phase loss: 

corresponding to a linear resistance of the chain (per junc- 
tion) equal to 

Here and henceforth the Boltzmann constant is included in 
the definition of the temperature. It is shown in Ref. 2 that 
P ( T )  has a power-law dependence as T--0, and the expo- 
nent A of the temperature dependence of the resistance takes 
on for x 2 the value A = 2% - 3 .  As the transition point is 
approached, A tend to unity. 

At zero temperature the phase-slip probability in the 
coherent state turns out to have a nonlinear dependence on 
the current, meaning a nonlinear current-voltage (IV) char- 
acteristic: Ucc I* + ' . 

The purpose of the present paper is an investigation of 
the influence exzrted on the position of the phase-transition 
point and on the temperature dependence of the chain resis- 
tance by the dissipative properties of the chain junctions. 

It was shown in the papers of Ambegaokar et a/.,' de- 
voted to a macroscopic derivation of an effective Euclidean 
action that determines the partition function of a single tun- 
nel junction 
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(where B is the phase difference at the junction), that exclu- 
sion of the electron variables leads to the appearance in S, 
besides the terms corresponding to the Coulomb and Joseph- 
son energies, also of a nonlocal term of the form 

S, = JJ dT d < ~ ( ~ - - d )  [sin O(T) -O(T ' )  1: 
4 ( 3  

whose periodicity corresponds to single-electron tunneling. 
Electron tunneling between the superconducting banks 

of the junction leads to a short-range kernel K(T) that per- 
mits, with good accuracy, to replace (3 )  by a local term 

whose form is equivalent to renormalization of the intrinsic 
capacitance of the junction7 (here R ,  is the tunnel resis- 
tance of the junction in the normal state). 

In Sec. 2 we consider the influence exerted on the prop- 
erties of a superconducting-junction chain by the mutual ca- 
pacitance of neighboring grains; this capacitance, as we have 
noted, can be strongly renormalized by quasiparticle tunnel- 
ing. 

The bulk of the paper, however, will be devoted to an 
investigation of a chain of junctions with linear ohmic dissi- 
pation, introduced by Caldeira and Leggett8 from semiphen- 
omenological considerations and described by the quadratic 
nonlocal term in the Euclidean action: 

the form of which corresponds to presence, in the junction, 
of a shunting normal resistance R,, = RQ/v not connected 
with the direct tunneling of the quasiparticle between the 
junction banks. 

Zero-temperature phase diagrams of regular d-dimen- 
sional (d = 1,2,3) lattices of superconducting junctions 
with different dissipation mechanisms have been the subject 
of many earlier studies."-" However, the methods used 
there, e.g. variational approximation9~10~'8 and mean-field 
theory 1 l-lS,19-~0 provide answers that depend only insignifi- 
cantly on the dimensionality. Understandably, for these 
methods to be applicable to a description of the low-dimen- 
sionality ( d  = 1) systems of interest to us an additional ver- 
ification with adequate allowance for quantum fluctuations 
is necessary. 

We analyze in the present paper the question of the 
zero-temperature phase diagram of a chain of superconduct- 
ingjunctions with linear ohmic dissipation, starting from the 
properties of topological excitations of the effective action of 
the system. We investigate also the temperature dependence 
of the chain in the low-temperature limit. We shall deal 
throughout only with the case when a conducting substrate 
is present and leads to the existence of a zero-temperature 
phase transition and in the absence of dissipation. The main 
results are contained in the concluding section. 

2. ALLOWANCE FOR THE MUTUAL CAPACITANCE OF 
NEIGHBORING GRAINS 

We consider in the present section a chain of supercon- 
ducting junctions described by a dimensionless Euclidean 
action 

where m = fi/E, = (fi/4e2) C,, V = E,/fi = Ic/2e, and 
M = (fi/4e2)C, is connected with the effective mutual ca- 
pacitance C ,  of neighboring grains and can be due, in partic- 
ular, to quasiparticle tunneling. 

If at least one of the following conditions 

is met, the quantum fluctuations of the variables 
Oj = q, - qj -, turn out to be small compared with period 
of the cosinusoidal potential, so that a semiclassical approxi- 
mation can be used. The decisive role in the zero-tempera- 
ture partition function corresponding to the action (5 )  will 
be played in this case by instantons-extremal trajectories 
on which one of the variables, Oj ,  passes through the maxi- 
mum of the periodic potential, and the action has a local 
minimum. In addition to trajectories corresponding to single 
instantons and constituting exact extrema of the action, it is 
natural to consider also trajectories corresponding to a su- 
perposition of several instantons located at different points 
of space-time. 

The case M = 0 [corresponding to the Hamiltonian 
( 1) 1 was considered in Ref. 1 and it was shown that the 
space-time distribution of the field p on the extremal trajec- 
tory turns out to be the same as in a vortex in the classical 
two-dimensional XY model. Accordingly, the interaction of 
the instantons is found to be logarithmic, and when the fac- 
tor 2 r ( m  V)Il2 preceding the logarithm changes, a Bere- 
zinskiY-Kosterlitz-Thouless phase transition takes place- 
instanton depairing that leads to loss of phase coherence. 

According to Kosterlitz's renormalization-group anal- 
ysis,' the phase transition occurs when 

where y has the meaning of the chemical activity of the in- 
stanton and is a pre-exponential factor whose calculation 
requires allowance for the fluctuations in the vicinty of the 
trivial and instanton extremal trajectories. 

The finite M leads even in the limit M >  m to no qualita- 
tive changes whatever. Instanton interaction at large dis- 
tance in space-time remains logarithmic as before, with the 
factor preceding the logarithm remaining the same (and 

FIG. 1. Phase diagram of a chain of tunnel junctions with account taken of 
the mutual capacitance of neighboring grains: Sand Nare respectively the 
existence regions of the coherent and incoherent states. 
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hence independent of M).  As the same time, the chemical 
activity y decreases exponentially with increase of Mso that, 
according to (6), the critical value of (m V) ' I 2  tends to 2/37 
as M /m - w . The corresponding phase diagram is shown in 
Fig. 1. 

To illustrate the statements of the preceding paragraph, 
we can transform to a single-particle effective action.' Only 
one of the variables 6, (say, 0, ) deviates substantially on the 
instanton trajectory from its equilibrium value and passes to 
the neighboring minimum of the periodic potential. The re- 
maining variables 0, with j f l  do not deviate very signifi- 
cantly from their equilibrium values and remain near the 
bottoms of the corresponding potential wells. This makes it 
possible to replace the cosinusoidal potential by a harmonic 
onein the calculation of the action on the extremal trajectory 
for all the variables 0, except 6, ,  and then eliminate them 
from the action by using Gaussian integration, going over 
thus to a single-particle effective action: 

where the Fourier transform of the propagator G,, (7)  takes 
in the case of the model (5)  the form 

which describes a particle with an effective mass 

moving in a medium with linear ohmic dissipation corre- 
sponding to an effective-viscosity coefficient 

qer,= lim-' 1 o 1 Getf (o) =' /a  (mv)'". 
B-0 

Such an approximation works fairly well also if M = 0, 
and becomes practically exact for M>m, since the smaller 
the ratio m/M the smaller the deviations of the variables 6, 
with j #  I from equilibrium. For M >  m we can assume that 
me, ,-- M. 

After these transformations we can use the properties, 
investigated relatively in detail, of systems with linear ohmic 
dissipation and with a periodic potential. According to Refs. 
2 1 and 22, in the limiting case me, V> v:, , corresponding in 
our problem to satisfaction of the condition M s m ,  the 
preexponential factor can be calculated without allowance 
for the effective viscosity and is equal to half the hopping 
frequency of a particle of mass m,, in a potential - V cos 0: 

At the same time, long-range interaction of instantons in 
imaginary time is determined completely by the effective vis- 
cosity and takes the form 

For widely spaced instantons it is necessary to replace Vr2 in 

the logarithm of ( l o )  by Vr2 + mR '. 
In Refs. 11 and 15 the phase diagram of the model (5)  

was investigated in the mean-field approximation (or in the 
approximation of the auxiliary field introduced with the aid 
of the Stratanovich-Hubbard approximation). This yielded 
for the phase transition an equation in the form 

and a conclusion, at variance with our results, that as M / 
m - the critical value of the product m V tends to zero. 
Such an approach, unfortunately, cannot identify a region in 
which the fluctuations can be disregarded. Our method, on 
the other hand, becomes more accurate the smaller the ratio 
m/M and the less important the corrections proportional to 
higher powers of y. 

As already mentioned, at finite temperature the phase- 
slip probability P becomes different from zero. For a system 
with effective action ( 7 )  and me, V%T;,, the phase-slip 
probability, i.e., the probability of incoherent tunneling of 
the variable 6 to a neighboring minimum of the periodic 
potential, depends at low temperatures on the temperature 
1jke22-24 

which yields, in conjunction with (2) ,  a resistance tempera- 
ture-dependence coefficient /1 = 2 r ( m  V) "* - 2. Expres- 
sion ( 11 ) corresponds to a periodic extremal trajectory of 
the action ( 5 ) ,  on which one of the variables 6 passes 
through the potential maximum and then returns. 

This approximation is quite adequate in the tempera- 
ture interval 

which exists only under the condition (m V) 1'2%m,,/m. 
To-fiQ, is the temperature of the transition to the thermal- 
activation regime, for which the classical Arrhenius law is 
valid: P or exp ( - 2E, /T)  . For T < TI it is necessary to con- 
sider also configurations corresponding to spatially separat- 
ed instantons2; at T& To and T <  TI this leads to multiplica- 
tion of ( 1 1 ) by a factor of order T,/Tand correspondingly to 
a decrease of the exponent A to 

The combination 237(m V)"' in (12) is the pre-loga- 
rithmic factor in the nonrenormalized interaction of zero- 
temperature instantons. In a more rigorous approach Eq. 
( 12) will contain for this factor a renormalized value that 
assumes on the transition curve a universal value equal to 4. 
This means that on the transition curve (Fig. 1) the expo- 
nent /2 becomes equal to unity, and /Z > 1 for the entire region 
in which the zero-temperature coherent state exists. 

3. JUNCTION CHAIN WITH LINEAR OHMIC DISSIPATION 

Having investigated the influence of the mutual capaci- 
tance of neighboring grains on the properties of a regular 
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chain of tunnel junctions, we now take into consideration 
linear ohmic dissipation, i.e., we consider a system described 
by the Euclidean action 

where S, {B(T)} is of the form (4) .  
The phase diagram of the model ( 13) was investigated 

for the case M = 0 in Refs. 9 and 10 by using a variational 
analysis corresponding to replacement of the Josephson 
term in the energy by a harmonic one (see Fig. 2). This 
procedure can be used with equal success for a finite ratio 
M/m, which leads to a shift of the nonuniversal (curved) 
part of the interphase boundary (Fig. 2) .  Since, however, in 
the limiting case m-0 (corresponding to breakup of the 
chain into individual junctions) this method leads to patent- 
ly incorrect results (cf. Refs. 21 and 22), the question of the 
shape of the phase diagram for finite m requires a more thor- 
ough investigation. 

The phase diagram of the very same model (including 
finiteM/m) was investigated in Refs. 14 and 15 in the frame- 
work of the mean-field theory. We have verified in the pre- 
ceding section, with the nondissipative case as the example, 
that this approach is also not reliable enough for one-dimen- 
sional systems. 

Since in the absence of dissipation, when the partition 
function of the chain is isomorphous to the partition func- 
tion of the classical two-dimensional XYmodel, the junction 
can be adequately described only by using a recursive 
allowance for the renormalization of the interaction of topo- 
logical excitations5 (and not in the context of the mean-field 
theory or in the variational approximation for the field vari- 
ables themselves), we shall eschew even in the presence of 
ohmic dissipation the concept of an instanton gas. We em- 
phasize that the semiclassical approximation is valid in a 
wide range. In particular, if the condition MVS1 is met it is 
valid for all values of the parameters m, V, and 7. 

Just as in the nondissipative case (Sec. 2),  the exact 
form of the extremal trajectory can be obtained only by re- 
placing the cosinusoidal potential by a harmonic one: 

and by a piecewise-parabolic potential for that variable 8, 
which undergoes tunneling to the neighboring minimum: 

V 
-V cos 01 3 min (0,-2np) '. 

FIG. 2. Phase diagram of chain of tunnel junctions with linear ohmic 
dissipation (for M = 0 ) ,  obtained in Refs. 9 and 10 by a variational analy- 
sis. The arrows indicate the direction the displacement of the curved sec- 
tion of the interphase boundary with increase of M. 

The extremal trajectory takes in this case the  form 

where 1 and T, are the coordinates of the instanton center, 
v = f 1 is its topological charge, and 

is the propagator for the field 6' in the absence of a potential. 
Substituting (14) in ( 13) (with allowance for the 

change of the form of the potential) we arrive at the logarith- 
mically diverging expression 

where the Green's function 

4na 
Go(ky oYV+oZg0 (k, o) 

determines also the law governing the interaction of widely 
spaced instantons: 

a 0 

dk d o  
A S  (R, r )  = 5 - - Go (k, w) exp i(kR-or) , 

-n 
2n -_ 2n 

which is valid (in the leading orders in R and T) also when 
the initial cosinusoidal potential is retained (cf. Ref. 25). 

The first term in (16) corresponds to a logarithmic 
space-time instanton interaction that has the same asympto- 
tic form and is characterized by the same constant 
2 r ( m  V) ' I 2  as in the nondissipative case. The second term, 
on the other hand, determines the dissipation-induced addi- 
tional instanton interaction which is diagonal in the site 
number and is logarithmic in time (with a prelogarithmic 
factor 4777). The chemical activity of the instantons, just as 
in the nondissipative case, turns out to be exponentially 
small in (MV)'I2 as M +  cc and has a finite limit as M-0. 
Neither constant of the logarithmic interactions depends on 
M. 

The problem has thus been reduced to an investigation 
of the phase diagram of a two-dimensional Coulomb gas 
with an additional strongly anisotropic (diagonal in the 
sites) logarithmic interaction. 

4. STABILIZATION OF COHERENTSTATE IN THE CASE OF 
LARGE DISSIPATION 

We recall once more that in terms of an instanton gas 
the coherent state of a chain corresponds to a dielectric 
phase in which all the instantons are bound into neutral 
pairs, while the coherent state corresponds to that of a plas- 
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ma and is characterized by a finite density of the free un- 
bound instantons. 

As the simplest approximation in which the existence of 
a phase transition is possible in the system considered, we 
use the Debye-Hiickel approximation, according to which a 
finite free-instanton density c leads to a Green's-function 
renormalization that reduces to the appearance of a self-en- 
ergy part that is independent of k and w and is equal to c. In 
turn, c is determined by a renormalized Green's function, so 
that we can write the self-consistent equation2' 

G-' (k, o) =G0-l (k, o ) + 2 y  esp[-'/,G(R=O, r=O)]. ( 17) 

Solution of (17) shows that for small y there exist two pa- 
rameter ranges, in one of which Eq. ( 17) has a unique solu- 
tion G(k,w) = G,(k,w) (corresponding to coherent state of 
the chain), and in the other this solution turns out to be 
unstable to the onset of a finite self-energy part. For G,(k,w) 
in the form (16), the boundary between these regions fol- 
lows the line 

the position of which at small y does not depend on y. 
Undoubtedly, this approximation calls for further re- 

finement, since it takes into account the influence exerted on 
the instanton-interaction renormalization only by the free 
instanton, and the effect due to neutral pairs is neglected, so 
that G(k,w) has the same form in the entire region of exis- 
tence of the dielectric phase. Since the neutral-pair polariza- 
tion also weakens the interaction between remote instan- 
tons, one can expect the true phase separation boundary to 
be shifted, compared with ( IS), towards larger values of the 
parameters. 

In contrast to the case considered in Sec. 2, the addi- 
tional logarithmic instanton interaction which is diagonal in 
the sites causes a pair of instantons of unlike sign to have a 
finite action only if both instantons are at the same site, oth- 
erwise the action turns out to diverge logarithmically also 
for the instanton pair. Thus, at sufficiently large 7 the in- 
stantons will be present in the system only in the form of 
bound one-site pairs. We consider now the influence of such 
pairs on the renormalization of the interaction of widely 
spaced instantons. 

The correction to G,,(k,w ) of principal (first) order in 
the bound-pair density (i.e., of second order in y )  takes the 
form26 

where 

Since we are dealing here with one-site pairs, the summation 
over R can be omitted (terms with R # O  vanish all the 
same), making Z ,  ( k , a )  independent ofk: I:, (k,w) r Z,  (w). 

Summing the infinite series of corrections of degree 
higher than y2 we arrive at the self-consistent equation 

G-' ( k ,  o) =Go-'(k, o) +Zl{G), (20) 

whose solutions must be investigated by using a renormal- 

ization-group analysis.' For G,(k,w) in the form ( 16), the 
appearance of a self-energy part that depends only on w can 
be described as a renormalization of V: V-+ V(w), so that Eq. 
(20) can be simplified to 

6)r-l 
o2 a2 z a + z n [ ~ i i ~ ( o ) ] ' l g  

-=- + 212 1 dr ( I  - cos w r )  
V (0)) v t 

7" 

where z a y and T, is the short-time cutoff parameter for the 
correlator G,(R = 0 , ~ ) .  

Breaking up in traditional manner the integral in the 
right-hand side of (21) into two and changing to an analo- 
gous equation with a shifted value of the cutoff parameter," 
we obtain renormalization-group equations that can be con- 
veniently written in the form 

where 6 = In( l/wr,) and Z = 7;z2. 
The system (22) has a continuous set of stable station- 

ary points 

Investigating (22) we note easily that as 6-- cc the solutions 
take on stationary values V, -- V( cc ) > 0, and Z (  cc ) E O  if 
the parameters of the initial model correspond to the region 
above the curve 

In this case the self-energy part has for small w the asympto- 
tic form Bl(w) a w2. 

For parameters corresponding to the region under the 
curve (23) but to the right of the line a = 1, VP1(6)  will 
increase as 6- w like exp(3-2a)g, corresponding to a self- 
energy part in the form 

which leads to screening (at large distances in space-time) of 
the isotropic logarithmic interaction of the instantons. The 
interaction diagonal in the sites, however, not only remains 
long-range in this case, but also keeps the value of the pre- 
logarithmic factor 2a non-renormalized. For a < 1 and 
4 - n-(m V) 'I2 the limiting growth law of V- ' (6) will cor- 
respond to a change of the character of the behavior of 
G(R = O,T = 0)  - G(R = 0 , ~ )  as r- C C ,  and Eqs. (22) 
now cease to be valid in the limit of large 6. 

An instanton-interaction renormalization that leads to 
the onset of a self-energy part of form (24) occurs also in the 
case of a single junction with linear ohmic dissipation (for 
1 < a < + ) . "  

The phase-separation boundary [the boundary of the 
region where a self-consistent solution of Eq. (20) exists] 
obtained in the present section is shown by the thick line of 
Fig. 3. We have terminated this line at a = 1/2 because at 
smaller a it would turn out to lie lower than the prior line of 
absolute instability of the coherent state of the chain with 
respect to spontaneous creation of free instantons. This 
points out the insufficiency of our analysis and requires, 
when a is decreased, consideration also of the possibility of 
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FIG. 3. The dash-dot line is the phase-separation boundary for a chain o f  
tunnel junction with linear ohmic dissipation in the Debye-Hiickel ap- 
proximation. The solid lines are the boundaries o f  regions where various 
types o f  solutions o f  ( 20 )  for M / m -  oo exists. 

formation of spatially separated instanton pairs; this will be 
done in Sec. 6. 

5. CHAIN RESISTANCE IN THE INCOHERENT STATE 

It is worth while emphasizing that the position of the 
vertical section of the phase-separation boundary obtained 
in the preceding section has turned out to be universal (inde- 
pendent ofy ) . A similar vertical section is present also on the 
phase diagram obtained in Refs. 9 and 10 with the aid of a 
variational calculation. 

This form of the phase diagram means that for a > 1 the 
chain will be in a coherent state at arbitrarily small V. To 
verify additionally this universal behavior as V+O, when the 
semiclassical approximation and with it, naturally, the in- 
stanton-gas concept, no longer holds, we can use another 
method-perturbation theory in V. Just as in the case of a 
single j~nction,~'~' '  separation of the quadratic part of the 
action ( 13 ) and representation of 

by a power series allow us, after integrating with respect to 0, 
to go over to a two-dimensional (1 + 1) logarithmic gas 
with chemical activity V/2 and interaction g,(k,w), which 
coincides with the correlation function (0(k,w) 0 * (k,w) ), 
calculated for V = 0 [see ( 15) 1. 

In contrast to the instanton interactions ( 16), only the 
component diagonal in the sites diverges logarithmically 
(with a coefficient 2/a) in the interaction ( 15) after a Four- 
ier transformation, while the off-diagonal component de- 
creases like 

Nonetheless, the divergence of the diagonal part suffices for 
the corresponding charges to be bound at a < 1 into neutral 
pairs. In the representation considered this corresponds to 
an incoherent state of the chain (in contrast to the instanton- 
gas representation, for which the opposite is true). 

Considering the self-consistent equation having the 
same structure as (20) for the nonrenormalized interaction 
function g(k,w) (this function coincides with the correlator 
(0(k,w)0 * (k,w) ) ), we find that for small V the self-energy 
part U ( W )  has at low frequencies the form 

and the region of existence of the self-consistent solution is 
bounded by the straight line a = 1 (exactly). 

Both the a(@) frequency dependence and the position 
of the transition line turned out to be the same as for a single 
junction." Recall that for 1 <a < 3/2 - ~ ( m  v)"' the fre- 
quency dependence of the self-energy part Z(o) of the in- 
stantons has the same form as for a single junction (see Sec. 
4).  It can thus be stated that the properties of the phase 
transition on the line a = 1 are determined by the properties 
of the individual junctions, and their interaction (via the 
capacitive interaction with the conducting substrate) turns 
out to be insignificant. 

At zero temperature, the chain resistance (per junc- 
tion) can be obtained from the relation 

therefore the presence of a self-energy part in the form (25) 
does not lead to a difference between R and R,,, i.e., the 
chain resistance will be equal to the shunting resistance. 

Let us show that, for an incoherent state of the chain, 
(T( k,o) will have similar properties also in the region where 
the instanton-gas concept is applicable. In the semiclassical 
approximation the correlation function g(k,w) can be re- 
garded as consisting of two terms,','' of which the first 

(V+g,-' ( k ,  o )  ) -' (27) 

is connected with small oscillations near the minima of the 
potential, and the second 

x x  JI dr ,  ~ T ~ E ( R - R , ,  T - T , ) S ( R - R , ,  r - r )  

with instantons. Here 

(29) 
is the instanton trajectory ( 14) displaced to have its symme- 
try center coincide with the point R = 0, r = 0, and 

is the correlator of the instanton charges v. If only instanton- 
pair interaction is taken into account, F(k,w) specifies the 
connection between the unrenormalized G,(k,w) and renor- 
malized G(k,w) instanton interaction functions in the 
f ~ r m * ~ . ' ~  

G ( k ,  W )  =Go ( k ,  a )  - G o z ( k ,  o ) F ( k ,  a )  1 

whence 

F ( k ,  o ) =  {Go ( k ,  w)+Z- '  ( k ,  o ) ) - ' .  (30) 

Substituting (29) and (30) in (28) and adding to (27) 
we arrive at a form g(k,w) that corresponds to 
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For H(k,w), which has as k-0 and w -0 a finite limit or 
which decreases like wY (y  < 1 ), substitution of (3  1) in (26) 
against leads to R = R,, . 

We have thus shown for different limiting cases that in 
the parameter region corresponding to an incoherent state 
the chain resistance at zero temperature equals the shunt 
resistance. The same holds also for a single point contact 
with linear ohmic d i s ~ i ~ a t i o n . ~ ' . ~ ~  

The result means that for a = 0 the incoherent state is 
simultaneously also dielectric. The latter can also be verified 
for arbitrary values of Vby calculating the average fluctuat- 
ing charge of a chain segment of length L: 

which tends as L + w exponentially to a finite limit. 

6. ADDITIONAL PHASE TRANSITION AT a = 1 /2 

In an investigation of a generalized d-dimensional 
(d = 1,2,3) version of the model (13), Zaikin and Panyu- 
kov16 have pointed out that in the presence of dissipation 
instantons describing tunneling through + 271 phases of 
each of the grains (we shall explain later their connection 
with the instantons introduced by us) will interact logarith- - 
mically (with coefficient 4za, where 22 is the number of 
nearest neighbors in the lattice). Neglecting logarithmic in- 
teraction of such instantons on neighboring sites, they have 
changed over to an effective single-particle problem isomor- 
phous to that of a single point contact with effective viscosity 
2z7. This led them directly to the conclusion that there exists 
at a = 1/2z a phase transition between states in one of which 
the phase of each grain is fixed (does not execute + 271 
jumps), while in the other it fluctuates strongly, i.e., the 
correlator 

diverges as t - t,,- . 
The same result was later duplicated in Ref. 10, with the 

same neglect of the instanton interaction that is not diagonal 
in the sites. By way of an historic aside, we mention that, 
from among the models with planar symmetry, a phase tran- 
sition connected with instanton depairing of this form was 
investigated in Ref. 30 for the quantum XY model with a 
nonstandard kinetic term, with the model used to describe 
the free surface of a quantum crystal. The instanton interac- 
tion in this problem was substantially different from that in 
the model (13). 

In the case of a one-dimensional chain, each of the in- 
stantons considered by Zaikin the Panukov (tunneling of q7, 

by + 271 while preserving the remaining q7, with j # I )  will 
correspond, in terms of our instantons ( I ~ I  271 tunneling 
with 8, = p, - p, - , ) to a pair of instantons of opposite sign 
located on neighboring sites. It becomes clear that the phase 
transition can then be described as the appearance of free 
non-single-site pairs of instantons2' (recall that at high vis- 
cosity only single-site instanton can exist in free form), i.e., 
of screening of an instanton logarithmic interaction that is 

diagonal in the sites. It is doubtless of interest to investigate 
this phase transition by methods more adequate than the 
reduction, used without foundation in Refs. 16 and 10, to a 
single-particle problem. 

The form of expression (29) for Z,{G) shows that 
when free non-single-site pairs appear in 2, (k,w) it is neces- 
sary to add to the term 2, cc w2, which leads to the renormal- 
ization of V [we discuss everywhere in this section the region 
above the curve (23) 1, a term 8; (k,w) having as k-0 and 
o - 0 the form 

Elr ( k ,  o )  =uk2.  (32) 

For m V$ 1 it can, in particular, be assumed that 

for any k. Substituting B,(w) + 2; (k,w) in (20) and solv- 
ing this self-consistent equation, we find that u = 0 for 
a > 1/2 and u c y2'" - 2a' for 1-2a 4 1, i.e., the phase-transi- 
tion line does indeed coincide with a = 1/2. 

Substitution of the expression used by us for 2, (k,w) in 
the expression for G(k,w) shows that the appearance of a 
term in the form (32) in the self-energy part leads to screen- 
ing of the logarithmic instanton interaction which is diag- 
onal in the sites for times 7-7, - 1/qu, and only to a small 
quantitative change of the constant of the isotropic logarith- 
mic instanton interaction: 

after which, over time scales exceeding T,, the instantons can 
be regarded as a Coulomb gas with isotropic logarithmic 
interaction and with renormalized chemical activity: 

If the line a = 1/2 is crossed at x, > 2, this Coulomb 
gas turns out to be in the dielectric phase. When V is de- 
creased to a value corresponding to x, = 2, the usual Bere- 
zinskii-Kosteritz-Thouless transition will take place in it to 
the plasma phase that corresponds to incoherent states of the 
chain and is characterized by a finite correlation radius r, . 

On the other hand, if we cross the line a = 1/2 at 
1 < x, < 2, we find ourselves immediately in an isotropic- 
Coulomb-gas plasma phase for which r, has, in the limit as 
Y- 0, a dependence on the parameters Yand x, in the form5 

On substitution of (33) in (34) it turns out that when the 
line a = 1/2 is crossed in the discussed region a finite corre- 
lation radius will occur in a continuous fashion: 

but the dependence of r, on the distance to the transition 
curve turns out to be substantially different from that ob- 
tained by Kosterlitz5 for a phase transition in an isotropic 
Coulomb gas. 

We can verify additionally that the phase transition due 
to the appearance of free non-single-site pairs takes place 
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exactly at a = 1/2 when approached from the direction of 
large a. Since the transition is manifested by the appearance 
of a term that depends strongly on in the self-energy part of 
2 (k,w ), while the term 2, (k,w ) does not depend on kin this 
region, the approach to the plane transition should be mani- 
fested in the behavior of the 2(k,y) terms of higher order in 
Y'. 

The correction to G,(k,w) of fourth order in y takes in 
general the form 

where 

and G , ,  =G(Ra - R,, T, - 7,) .  IfmVS 1 and G,(k,w) is 
given by ( 16), the main contribution to the momentum-de- 
pendent part of 2, (k,w ) is made by charge configurations 
[whose coordinates enter in (36) ] of the type shown in Fig. 
4. This leads to 

Substituting (37) in the self-consistent equation 

we see that it has a solution only if a > 1/2, while on the line 
a = 1/2 it becomes necessary to take into account additional 
terms in 2 (k,w), thus confirming the foregoing conclusion 
concerning the position of the additional-phase-transition 
line. 

FIG. 4. Typical arrangement of the instantons corresponding to that con- 
tribution to Z; ( k , o )  which is singular in w. 

FIG. 5. Phase diagram of a chain of tunnel junctions with linear ohmic 
dissipation in the limit as MV- m .  With decrease of M the lines AB and 
CG shift upwards. The dashed lines are those of the additional phase 
transitions on which the exponent /1 of the temperature dependence of the 
resistance has discontinuities. 

7. GENERAL FORM OF PHASE DIAGRAM. EXPONENT OF 
RESISTANCE TEMPERATURE DEPENDENCE 

The results of Secs. 4-6 are summarized in Fig. 5, which 
shows the phase diagram of the chain of tunnel junctions 
with linear ohmic dissipation in the limit as y-0 (MV- m ). 
The boundary between the coherent and incoherent states is 
the line ABCDE, which is subdivided by the singular points 
into four sections. With increase of y (decrease of M)  the 
lines AB and CG move upwards and remain straight, while 
the segments BC and DE lie, as before, on the straight lines 
a = 1/2 and a = 1. 

It follows from a computer simulation of the classical 
XYmodels3' that when y reaches a value y,,, corresponding 
to M = 0 the relative displacement of the point A is of the 
order of 75%. The displacement of the line CG is due to the 
same cause as that of the line AB, viz., instanton-interaction 
renormalization due to neutral pairs. One can thus expect it 
to be of the same order or even smaller, since we are dealing 
in this case with single-site pairs. The fact that the points B 
and Ccorrespond to different values of V,  leads to preserva- 
tion of the straight-line section BS on the phase transition 
curve also in the limit as M = 0. The phase diagram obtained 
by variational calculation will not have such a segment, re- 
gardless of the ratio M /m. 

Zaikin and PanyukovI6 have advanced the hypothesis 
that the phase transition that takes place in the upper part of 
the phase diagram at a = 1/2 is in fact a transition from a 
coherent to an incoherent state. Analysis has shown that this 
assumption is valid only for the lower part of the H C  line. We 
shall be able to propose a lucid physical meaning of the phase 
transition that takes place on the upper part of this line only 
after we discuss the behavior of the chain resistance at con- 
stant temperature. 

Investigating the phase diagram of the model ( 13) ,  we 
have shown that, in the region to the right of the HCG line 
and designated S, in Fig. 5, contributions to the partition 
function are made only by single-site bound pairs of instan- 
tons, the presence ofwhich leads only to a small quantitative 
renormalization of one of the constants contained in the in- 
stanton-interaction function. This region is therefore most 
favorable for the approximation used in Sec. 2, wherein the 
phase-slip is described with the aid of the effective single- 
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particle action ( 7 ) .  In the case of the model (13) the propa- D T  is the continuation. On tending to the universal value 
gator in ( 7 )  takes the form il = 1, the exponent A will have a square-root singularity, 

il - 1 K ti'/' ( 6  is the distance to the phase-transition line), 

G,: ( O ) = ~ ~ ~ ~ + { ~ [ V + ~ / O ~ + ( Y + ~ ) O ~ ] } ' ~  the same as in the nondissipative case.2 It must be borne in 
mind, however, that the critical-behavior region of A is nar- 

Xlol+(~+;)02, rower the smaller the ratio m/M. We emphasize that in the 
region S, the value of A is not renormalized and is indepen- 

which corresponds to an effective viscosity 
veff = 7 + i ( m  V )  "* and to the same effective mass (9) as in 
the absence of dissipation. 

For a particle with parameters ve, and me,, located in a 
sinusoidal potential of amplitude V, the phase-slip probabili- 
ty for me, Vsv:, is determined for T&fi(V/me,)"2 by 
expression ( 1 ) (Refs. 23 and 24), and in the opposite limit- 
ing case it takes, at temperatures up to the point of transition 
to the thermal-activity regime, the form27,32 

In both cases the temperature dependence of P corresponds 
to the exponent il = 2 r ( m  V) + 4 a 7  - 2 of the tempera- 
ture dependence of the resistance. 

These results of the reduction to an effective single-par- 
ticle problem are rigorously valid in the limit as M /m - a. 
For finite (or zero) M it is necessary to replace Vin them by 
the renormalized value V, (which, however differs less 
from V the larger the exponent il itself). 

In the remaining regions of the phase diagram the tem- 
perature dependence of the resistance is not so clearly de- 
fined, and account must be taken both of the change of the 
Green's-function structure upon normalization, and (in the 
S, region) of the contribution from the non-one-site instan- 
ton pairs. 

To find the limiting value ofil at T- 0 we can substitute 
in the expression for the phase-slip probability,2s26 

dk T 
X exp{- j-- [ l - c o s ( k ~ - - r ; r )  ] ~ ( k ,  o ) } ,  

- X 2n f i  s=-m 

the Green's functions obtained for T = 0. Doing so for var- 
ious regions of the phase diagram we find that 

h=2x (mVR)'"-3 in the region o f  S,, (38) 

h=2n (mVR)"+2a-2 in the region of S,. (39 

h=2a-2 in the region of S,. (40) 

As the phase-transition line is approached from the su- 
perconducting side, the exponent il tends, independently of 
the M / m  ratio, to a universal value 1 in the case of segments 
AB and CD, to a universal value 0 for the D E  segment, while 
lim il (as 1/2 + 0 )  varies along the segment BC smoothly 
from 1 (at point B )  to 3 (at the point C).  When the DG line is 
approached from the regions S , ,  the exponent il tends to the 
same universal value il = 1 as on the segment CD of which 

dent of &, M, and V. 
For a = 1/2 (on the HB line) the exponent il has a 

jump discontinuity of universal value AA = 2, and on the DG 
line the jump has a nonuniversal value that reaches a maxi- 
mum equal to 1 at the point D. Although strictly speaking 
the exponent A is discontinuous, the temperature interval 
0 < T g  T, in which Eqs. (38) and (40) are valid narrows 
down without limit ( T. - 0) as HB and DG are approached 
from the regions S,  and S,, respectively. In this case the 
R ( T )  dependence is described at T2  T, by the exponent 
(39). 

Concluding the list of the results, we recall also that the 
critical properties of the phase transition on theDE line turn 
out to be the same as for a single junction with ohmic dissipa- 
tion, while the critical behavior of the correlation radius on 
crossing the BC line is described by Eq. (35). In the region of 
stability of the incoherence zero-temperature state (desig- 
nated N in Fig. 5) we have R -R,, as T-0. 

In summary, our method of changing to the instanton- 
gas representation has disclosed a much more elaborate 
structure of the phase diagram of a chain of junctions with 
linear ohmic dissipation than is possible by other methods 
(Refs. 9-1 1 and 14-16). Furthermore, its use to investigate 
the temperature dependence of the chain resistance in the 
low-temperature limit has made it possible not only to reveal 
universal properties of the various segments inot which the 
singular points break up the phase boundary, but also to 
elucidate clearly the physical meaning of two additional 
phase transitions that take place in the system and that turn 
out to be connected with the jumps of the exponent of the 
temperature dependence of the resistance. 
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