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A theory of the dynamic conductivity is developed for amorphous semiconductors containing 
deep centers with a strong electron-phonon interaction. The frequency dispersion of the complex 
conductivity at acoustic frequencies is investigated employing a two-site model of small polarons. 
A distinguishing feature of this model is an exponential dependence of the polarizability of a pair 
of point defects and of the parameters of a configuration barrier, governing the relaxation time of 
a dipole, on the distance between the centers. The real part o, a wsT"of the complex conductivity 
is calculated for a wide range of temperatures Tand frequencies w. A classification is provided of 
the regimes of small-polaron hopping and each of these corresponds to specific temperature and 
frequency dependences of the power exponents s and n and also of the dielectric loss tangent. A 
comparison with experimental data for several amorphous and glassy semiconductors 
demonstrates that the dynamic (ac) conductivity of a-Ge and a-Ge:H is due to hopping of small 
polarons. 

1. INTRODUCTION 

Investigations of the ac conductivity a ( w )  provide im- 
portant information on the nature of localized electron 
states in amorphous and glassy semic~nductors . '~~ At acous- 
tic frequencies and low radio frequencies in the range lo2 
< w < lo8 Hz the real part of the conductivity is a monotoni- 
cally rising function of the frequency and is described by a 
dependence of the type2 

Re a(o, T) =o, (o, T )  4 08Tn, (1 )  

wheres 5 1 and depends weakly on the frequency, whereas n 
is usually nonnegative. This dependence is normally inter- 
preted by the Debye model of dielectric 1osses"ue to reor- 
ientation of dipoles with a wide spectrum of relaxation times 
T (Ref. 4).  The role of dipoles in a disordered semiconductor 
or insulator may be played by close pairs of point defects 
with localized carriers. A periodic external electric field al- 
ters the populations of the centers forming a pair, which 
involves phonon-stimulated jumps of an electron from one 
center to another. We shall consider this specific relaxation 
mechanism, which should be distinguished from the reso- 
nance mechanism characterized by s z  2 (Refs. 1 and 5 )  and 
active at higher frequencies. 

The simplest explanation of the dependence (1)  is 
based on the concept of a sufficiently wide band of one-elec- 
tron localized states, which is partly filled with electrons. "' 
In this model the main contribution to o(w,T) comes from a 
pair of defects which correspond to states located on both 
sides of the Fermi level in a band of width T, much smaller 
than the width of an impurity band A,. The optimal size of 
the pairs r<, that dominate the conductivity at a frequency w 
can be found from the condition 

and the characteristic probability (per unit time) of a tunnel 
jump of an electron from center to center is 

where r is the distance between the centers; a is the localiza- 
tion radius of a carrier; v, z 10'0-10'2 s ' is of the order of 
the frequency of local phonons and depends weakly on rand 
T (Ref. 1) .  In this case the dynamic conductivity is de- 
scribed satisfactorily by the familiar Austin-Mott expres- 
sion'.' characterized by the following power exponents 

We can see that the value of s is independent of temperature 
and for typical frequencies of w =: lo6 Hz it is close to 0.8. 

In the case of amorphous and glassy semiconductors at 
low (usually helium) temperatures the value of o, ( w )  is 
practically independent of temperature, i.e., we have n -4 1, 
in the indexs is close to unity. On increase in temperature the 
power exponent s decreases somewhat and the value of n 
rises reaching a few units.2 Allowance for the Coulomb cor- 
relations of the level populations by ~fros'modifies the Aus- 
tin-Mott formula so that if T <  e2/?rr,, , where ?c is the per- 
mittivity of the material and e is the electron charge, the 
power exponents are given by 

whereas for T >  e2/?rr,, , we still have Eq. (4 ) .  This result in 
qualitative agreement with the dependences s( T) and n ( T) 
observed experimentally for a number of glassy semiconduc- 
tors,* but it yields s < 1 and n g  1. 

These dependences were explained by Elliott8 by 
developing the concept of thermally activated electron 
jumps from one attractive center to another across a Cou- 
lomb barrier separating the centers. The height of this bar- 
rier is 

where V,,, is the ionization energy of an isolated center, 
which decreases on the reduction in the distance r between 
the centers. The probability of a jump 
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then rises exponentially. In processes of this type the barrier 
height depends on the distance and the barrier is overcome 
by thermal activation called correlated barrier hopping 
(CBH) .2.8 In the case of the CBH models, we have2 

where 

is the optimal barrier for pairs that dominate the conductiv- 
ity at a frequency w. The barrier height is determined from 
the condition or( V, ) = 1. In this case the power exponent 
n describing the temperature dependence of a,  (w,T) in Eq. 
( I )  is 

Here the parameter m has the values 0, 1, or 2, depending on 
the statistics of the pair occupancy, on the width of the impu- 
rity band A,, and on correlations in the spatial distribution 
of the centers. For example, in the case of an uncorrelated 
distribution of impurities, forming a fairly wide energy band, 
it is found that at high temperatures e2/xr, < T< A,, when 
the Coulomb correlations between the populations of the 
centers are unimportant, we find that m = 2 (Ref. 2) .  At low 
temperatures such that T<e2/xr, A,, we have m = 1. Fin- 
ally, in the case of a narrow energy band with A, < T, we find 
that m = 0. We can demonstrate that the relationship ( 10) 
between the power exponentss and n is universal for all mod- 
els of the CBH type (see Ref. 2) and is indepenent of the 
actual form of V(r) . 

According to Eqs. (2) ,  ( 6 ) ,  ( 7 ) ,  and (9) ,  the optimal 
size of the pairs contributing to the conductivity at the fre- 
quency w in the Elliott model8 is 

In the case of amorphous and glassy semiconductors, 
for which the Fermi level is located near the middle of the 
band gap E, , we have V,,, =: Eg/2 z 1 eV. This means that 
V, < V,,, , and r, ~ 4 - 5  A. The characteristic size of a pair 
r, obtained in this way is of the order of the localization 
radius a of a carrier at a deep center. Therefore, the Coulomb 
correlations in the populations of the centers, as well as the 
quantum-mechanical tunneling effects7 and the electron- 
phonon interaction (if the latter is important) play a domi- 
nant role in such materials. It seems to us that a better ap- 
proach is that in which such close pairs of deep centers are 
described by a two-site model of small p~larons,~~ '~especial -  
ly as electrical and optical properties of amorphous and 
glassy semiconductors are governed mainly by the large 
number of deep centers with a strong electron-phonon inter- 
action which are present in these materials.' 

Our aim will be to analyze the dynamic (ac) conductiv- 
ity of amorphous semiconductors using such a two-site 
small-polaron model. We shall consider the approximation 
of the closest pairs, i.e., those with the shortest internal dis- 
tance, because it is known that this approximation is valid at 
sufficiently high frequencies when the size r, is definitely 
less than the characteristic distance between the centers. It 
should also be noted that the two-site small-polaron model 

can be generalized in a natural manner to the case of small 
bipolarons. 

2. TWO-SITE SMALL-POLARON MODEL 

We shall consider an isolated pair of centers 1 and 2 
separated by a distance r. We shall assume that one electron 
is localized at this pair. The Hamiltonian of such a system 
considered in the representation of the creation and annihil- 
ation operators a,+ and a, of an electron at the sites i = 1 or 2 
is written in the form9,I0 

+ J ( r )  (al+a,+a2+ a,), (12) 

where n,  = a,+ a, is the occupation number of a site i; p is the 
reduced mass of the atoms forming the investigated pair; w, 
is the frequency of a local phonon corresponding to an asym- 
metric mode Q interacting with the electron subsystem; 
P = - i m / d Q  is the momentum which is conjugate with 
the configuration coordinate Q; il is the electron-phonon 
interaction constant (deformation potential); J ( r )  is the 
electron transport (tunneling) integral; A = E ,  - E, is the 
difference between the one-electron energies. The energy of 
the system is measured from (E ,  + ~ , ) / 2 .  

We shall analyze the adiabatic potential E,(Q) of the 
ground state of a pair of size r in the symmetric case when E ,  

= E ~ ,  i.e., A = 0. We shall demonstrate below that these are 
the pairs that dominate the contribution to o(w). Introduc- 
ing a dimensionless configuration coordinate q = Qp&/2il 
and diagonalizing the electronic part of the Hamiltonian 
( 12), we obtain (Fig. I )  

where 

is the polaron shift and 

In Eq. ( 13) the energy E, (q) is measured from the mini- 
mum value of the adiabatic potential, i.e., E :'" = 0. 

In the case of very large pairs (those with very large 
internal distances), when lJ(r)  I 4 W, we have 5, z 1 and the 
adiabatic potential represents two shifted parabolas with 
minima near the points q,,, = f c, =. 1 separated by a 
barrier VZ V,,, = W / 2 .  As ris reduced, the tunneling inte- 
gral in the range r > a rises steeply in accordance with the 
law5 

FIG. 1. Types of adiabatic potentials in the two-site small-polaron model: 
1) r -  m ;  2 )  r > r  ,,,,, [Eq. ( 1 8 ) l ;  3 )  r<r  ,,,,. 
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J(r) =Ja exp (-ria), (16) 

where a is the localization radius of an electron at a center. 
Therefore, the height of a barrier separating minima of the 
potential located at the points qmin = f 6, decreases: 

Finally, if 
r<rmi,,=a In( 1 1 0  IIW), 

IJOl>W, 

where rmin is part of the condition 6(rmin ) = 0, the barrier 
between the minima disappears so that the adiabatic poten- 
tial becomes of the single-well type. (However, if IJ,I < W, 
then rmin = 0. ) 

If r > rmin , each of the two minima of the adiabatic po- 
tential shown in Fig. l corresponds to an asymmetric distri- 
bution of the electron density shifted toward one of the 
centers. This shift can be regarded as the localization of a 
small radius polaron at a center. According to H~ l s t e in ,~  
such localization cannot be described by the Hamiltonian 
( 12), but it appears because of the interaction of an impurity 
quasimolecule with the lattice phonons (thermostat) and 
this in fact ensures jumps of a polaron from site to site. How- 
ever, it is important to note that the change in the dipole 
moment of the system due to small-polaron jumps is 

p ( r ) = e l ~ , ~ ( r ) - a ~ ~ ( r )  Ir==eglr, (19) 

where a, ( r )  and a, ( r )  are the coefficients of the expansion 
of the wave function of an electron localized on a pair of 
centers at q = qmin = f c,, in terms of the wave functions 
of the centers 1 and 2. Therefore, the quantity e l ,  < e intro- 
duced by Eq. ( 15) represents the effective transferred 
charge, which is generally less than the charge of an electron 
e. The reason for this is a partial sharing of an electron 
between the centers because of the tunneling effect. There- 
fore, in particular, pairs of size r<r,,, with the dipole mo- 
mentp = 6, = 0 make no contribution to the dynamic con- 
ductivity. 

At high temperatures the jump of a polaron from the 
center 1 to the center 2 for a symmetric pair of size r > r,,, 
involves thermally activated overcoming of a barrier V de- 
scribed by Eq. ( 17). Depending on the nonadiabaticity pa- 
rameter 

it is usual to distinguish two types of jumps in the small- 
polaron theory: adiabatic (7 2 1 ) and nonadiabatic (7 < 1 ) 
(for details see Refs. 9-12). In the nonadiabatic case when 
the electron transport integral is very small and can be re- 
garded as a perturbation, the probability of a jump per unit 
time is 

~,~(r)=w~~(r)=w.(r)=~~v~q(r)exp(-W/2T). (21 ) 

In the adiabatic case, we have 

In contrast to Ref. 12, we shall describe the adiabatic case 
using the exact expression ( 17) for V(r) and not its limiting 
value V,,, = W/2, because in the case of deep intrinsic de- 
fects in amorphous semiconductors we have IJ,I 2 E, > W 
(we shall discuss this assumption in Sec. 6) .  

In the case of slightly asymmetric pairs with A -4 V, in 
the calculations we can assume (see Ref. 2) 

wi2(r)=w.(r)exp(-A/2T), w2,=w8(r)exp(AI2T). (23) 

3. CALCULATION OF u, (o). HIGH TEMPERATURES 

The expression for the complex ac conductivity can be 
obtained in the pair approximation by calculating the polar- 
izability of a pair of centers of size r with a scatter of unrenor- 
malized energies A (Ref. 7 ) .  After integration with respect 
to rand A, followed by averaging over the pair orientations, 
we find that 

wherep(r) is given by Eq. (19). If Tsfiw,, the relaxation 
time calculated using Eq. (23) is 

The function 

cP (r, A)=F(r, A)f(r) (26) 

is selected so that 47rr 'Q(r,A)drdA is the number of closest 
pairs (per unit volume) with sizes between rand r + dr and 
their scatter of the level energies from A to A + dA found on 
the assumption that only one electron is localized at each 
pair. The function f ( r )  in Eq. (26) allows for spatial corre- 
lations in the relative positions of the centers. [In the ab- 
sence of such correlations we have f ( r )  = 1 .] The function 
F(r,A) describing the Coulomb correlations of the occupied 
centers, is calculated in Ref. 7: 

where g (p )  is the density of one-electron states at the Fermi 
levelp. (We shall show later that the characteristic energy of 
the Coulomb repulsion of electrons localized at the nearest 
sites is e2/xr, > Tin the small polaron model.) 

We shall consider first the adiabatic hopping regime 
( 7 2  1). Using Refs. (15)-(17), (22), (23), and (251, we 
go over in Eq. (24) from integration with respect to r to 
integration with respect to V: 

Here and later we are ignoring the dependence T( A )  [see Eq. 
(23)] because the main contribution to the conductivity 
comes from pairs characterized by VS A zz T. Substituting 
Eq. (28) into Eq. (24), we obtain the following expression 
for the real part of the conductivity: 

YO' 
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where the upper integration limit V; < W/2 is found from 
the condition of going over to the nonadiabatic regime: 
y ( V ; ) z l  [seeEq. (20)l.  

A strong (exponential) dependence T( V) of the inte- 
gral in Eq. (29) is characterized by a sharp maximum at the 
point V = V, of Eq. (91, which was found from the condi- 
tion w ~ (  V, ) = 1. Consequently, bearing in mind that 
~ T / T  = d V/T, we could carry out integration with respect to 
V. Substituting Eq. (27) into Eq. (29), we can integrate also 
with respect to A. Consequently, allowing for the Coulomb 
correlations in the populations of the defects, which are im- 
portant when T <  e2/xr,, we obtain 

where 

(2V0lW)'"<1, VO=T ln(vo lo)<WJ2,  

and r, = r (  V, ) [see Eq. (28) 1. It follows from Eq. (30) 
that in the case of a random distribution of defects ( f = 1 ) 
the power exponent is 

The other power exponent n is given by Eq. ( 10) with m = 1. 
It should be pointed out that the universality of Eq. ( 10) in 
fact follows from the temperature and frequency depen- 
dences of the optimal barrier given by Eq. (9),  which is uni- 
versal for all the models of the CBH type. 

At sufficiently low temperatures such that 

we have y, < 1 so that 

if, of course the barrier can be overcome by thermal activa- 
tion at these temperatures. 

In the nonadiabatic regime for which 7 of Eq. (20) is 
much less than unity, the relaxation time is described by Eq. 
(25 ) with w, of Eq. (2 1 ) . Integrating Eq. (24) with respect 
to rand A and bearing in mind thatp(r) = er, we obtain (see 
also Ref. 2) the following expression for the conductivity if 
T <  e2/xr,, TI in Eq. (32): 

n2eba 
o1 ( o ) =  - orW3g2(p ) f  ( r , ) ,  

6% 
(34) 

where 

In the case of small polaron shifts h, < W <  2Tln(vA /a) if 
f = 1, these expressions reduce to the ~ f r o s  formula if we 
allow for renormalization of the constant v,. At very high 
temperatures we find that the substitution e2/?cr, +f.lr2T 
yields the familiar Austin-Mott expression. We can readi- 
ly see that 
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It follows from Eqs. ( 17) and (20) that at a fixed frequency 
w the adiabatic case characterized by 7 2 1 applies at tem- 
peratures 

"a')' ,/,;I T < T , . ( ~ )  Z T , ( ~ ) [  4 - (y In- - , (37)  

where TI (w ) is described by Eq. ( 32). However, the nona- 
diabatic case (7 4 1 ) is known to occur at temperatures 
T) T, (u).  Therefore, the transition from the nonadiabatic 
to the adiabatic case occurs at some temperature of the order 
of TI (w ) =: W[2 ln(vdw) ] - ' which increases logarithmi- 
cally on increase in the frequency w. We can easily show that 
in the case of a random distribution of defects the conductiv- 
ity a, (w) measured at a fixed frequency does not decrease 
on increase in temperature. 

4. CALCULATION OF a, (w). LOW TEMPERATURES 

At temperatures Tmuch lower than that corresponding 
to the energy of a local phonon h, the jumps of a polaron 
from site to site involve tunneling under the potential barrier 
E, (q) described by Eq. ( 13). If the height of this barrier is 
V)fiw,, then in the case of a symmetric pair in the semiclas- 
sical approximation the probability of a jump per unit time 
given byI3 

w i ~ = w ~ ~ = w . ( r )  =YO exp [ - 2 S , ( T ) / f t ] ,  (38) 

where 

is the semiclassical effect for a subbarrier transition, and the 
dependence q ( r )  is found from the Euclidean equation of 
motion14 

d 2 q  0 0 2  dE,(q)  ----- 
a t 2  W aq 

- 0. (40) 

Equation (38) applies to the adiabatic case when 

In the case of slightly asymmetric pairs characterized by 
A < Vat temperatures T S  fiw,, we have 

so that the reciprocal of the relaxation time is 

In the nonadiabatic case when 7 of Eq. (41) is much 
less than unity, Eqs. (38), (421, and (43) should be multi- 
plied by 7. At low temperatures the dynamic conductivity is 
described, as before, by general expressions given by Eqs. 
(24), (26), and (27). 

In the adiabatic case at low temperatures the main con- 
tribution to the conductivity comes from pairs with suffi- 
ciently low and narrow barriers. This makes it possible to 
represent the function E, ( q )  [Eq. ( 13) ] as a Landau expan- 
sion in powers of (q2 - 6 5 1 < 1. If we confine ourselvee to the 
first term of the series, we obtain 

(36) where {, is described by Eq. ( 15). Then, introducing 
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x = q / l ,  and 7' = wOr/T/JZ, we obtain 

where y = hol, / 2 n ~  and 

Then, using Eq. ( 4 0 )  we find that at low temperatures in the 
range 

where 

. 
we have 

S, (T )  mS, ( 0 )  = 
g(O)WE,S 2WE,3 =- 
o,YT 300 

Equation ( 4 8 )  for { ( w )  is obtained subject to the condition 
w r ( r ,  ) = 1. At high temperatures T >  T ,  [Eq. ( 4 7 )  ] it fol- 
lows from Eq. ( 4 5 )  that 

i.e., using the expression for the barrier height V ( r )  [Eq. 
( 1 7 )  ] at low values of c,, we again obtain from Eq. ( 3 8 )  the 
expression ( 2 2 )  for the probability of a subbarrier transi- 
tion. Therefore, Eqs. ( 3 8 ) ,  ( 4 0 ) ,  ( 4 5 ) ,  and ( 4 6 )  describe hf 
dynamics of small-polaron jumps at any temperature. 

Substituting Eqs. ( 4 3 )  and ( 2 7 b )  into Eq. ( 2 4 ) ,  and 
integrating with respect to r  and A, we find with the aid of 
Eqs. ( 3 8 ) ,  ( 4 2 ) ,  and ( 4 9 )  that at temperatures in the range 
T <  h o { ( w )  < e2/?tr, and at sufficiently high frequencies 
satisfying the condition l 2 ( w )  < 1, the real part of the con- 
ductivity is given by the expression 

where r,,, is described by Eq. ( 18 ) .  
Equation ( 5  1 ) corresponds to 

We can easily show that in this case, when the barrier is 
overcome by tunneling, the relationship ( 10) between s and 
n is not obeyed. 

It should be pointed out that the condition { ' ( w )  < 1 is 
necessary and sufficient for the use of the adiabatic potential 
E, ( q )  in the form given by Eq. ( 4 4 ) ,  which can be employed 
in an analytic approximation for an expression for a, ( w ) .  
We can easily show that the inequality 2 ( w )  < 1 is in fact 
equivalent to the inequality ( 4 1  ). Therefore, the adiabatic 
case corresponds to { ( a )  < 1 ,  i.e., it corresponds to 

o>a,=vo esp (-4W/3hoo). ( 5 3 )  

On the other hand, the condition of validity of the semiclas- 
sical description is 

where 5, is the frequency of a local phonon renormalized by 

the tunneling effect and this phonon corresponds to one of 
the equilibrium positions qmi, = + 6. The inequality of Eq. 
( 5 4 )  is known to be satisfied when 

We can easily see that in the case of materials with a suffi- 
ciently large polaron shift W >  2 h 0  the frequency integral 
w ,  < w  < w2 in which the adiabatic description is valid can be 
exponentially large. 

If w  < w  ,, we have the nonadiabatic case when the prob- 
ability of a jump is given by Eq. ( 3 )  and the constant is 
renormalized to9 

Therefore, in this case we can describe a, ( w )  by means of 
the   us tin-~ott-~fros formula ( 3 4 )  with the renormalized 
optimal size of pairs:. 

5. TANGENT OF THE ANGLE OF DIELECTRIC LOSSES 

The general expression for the complex conductivity of 
Eq. ( 2 4 )  makes it possible (see Ref. 2 )  to find its imaginary 
path a, ( w ,  T )  and to determine the loss-angle tangent: 

In particular, in the adiabatic case at low temperatures 
T <  T 2  defined by Eq. ( 4 7 ) ,  we have 

whereas at temperatures T >  T, ,  we find that 

It should be noted that Eq. ( 6 0 )  is derived on the assumption 
that T< T , ( w )  where the dependence s ( T )  is described by 
Eq. ( 3 3 ) .  

In the nonadiabatic case we have 

where Y o ( T )  is given by Eq. ( 5 6 ) .  

6. DISCUSSION OF RESULTS AND COMPARISON WITH THE 
EXPERIMENTAL DATA 

We analyzed above the frequency and temperature de- 
pendences of the ac conductivity in semiconductors and in- 
sulators characterized by a fairly wide band of localized 
states which is partly filled with small polarons. In other 
words, we assumed that the Fermi or quasi-Fermi level is 
inside the polaron energy band. This may occur in high- 
resistivity crystalline semiconductors compensated by deep 
impurities with a strong electron-phonon interaction15216 
and also inp- or n-type samples of amorphous hydrogenated 
silicon ( a -S i :H)  and germanium ( a -Ge :H)  . In the latter case 
the ac conductivity is due to jumps of small polarons 
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between vacant or singly filled states of dangling bonds in Si 
and Ge, which act as deep-level centers with a positive two- 
electron correlation energy.'22917 In the case of glassy chalco- 
genide semiconductors the very strong electron-phonon in- 
teraction ensures that the pairing of polarons at one center is 
preferred from the energy point of view, i.e., that small bipo- 
larons are formed.' Therefore, polarons contribute to the ac 
conductivity mainly at high temperatures or under strong 
equilibrium conditions, when bipolarons begin to dissociate 
effecti~ely.',~ Consequently, in order to ensure that the re- 
sults obtained describe the polaron conductivity in glassy 
chalcogenide semiconductors in the absence of excitation, 
the expressions for o (w)  must be multiplied by 
exp( - I U,, 1/2T), where U,, z - 1 eV is a two-electron 
effective correlation energy. 

A typical energy of local phonons ha in amorphous 
semiconductors and insulators is of the order of 0.02-0.04 
eV and typical values of the polaron shifts are W~0.1-0.5 
eV (Refs. 1 and 17). Therefore, the semiclassical description 
of the process ofjumps of a carrier from center to center used 
above is valid provided ha/ W< 1. 

The presence of a high configuration barrier (of the 
order of W/2) reduces strongly the probability of polaron 
jumps and, therefore, a typical length of a jump. Estimates 
indicate that at frequencies in the range w z lo3-10' Hz the 
characteristic dimensions r, of pairs governing a (w)  are of 
the order of 5-10 A. It follows that the energy of the Cou- 
lomb repulsion between two polarons localized at a pair of 
defects is given by e2/xr, (Ref. 7) and this is of the order of 1 
eV, which is many times greater than the value of T. Conse- 
quently, in contrast to hopping conduction involving shal- 
low the Coulomb correlation effects are important 
at all temperatures. 

The dependences a, a ws T n  and tan $(w, T) = u,/a, 
can be analyzed conveniently by means of the w-T diagram 
shown in Fig. 2. [Strictly speaking, the separation into re- 
gions shown in this figure is meaningful only for points suffi- 
ciently far from the curves. Therefore, these "phase" curves 
represent in reality bands within which a smooth transition 
takes place from one case to another.] 

At sufficiently high frequencies such that w > w, in Eq. 
(53 and sufficiently low temperatures so that T <  T2 in Eq. 
(47), we have the tunnel adiabatic jumps [see Eqs. (5 1 ) and 
(59) ] characterized by n = 0 and by 4 < s < 1 - h , / 4  W 

FIG. 2. Schematic form of the temperature-frequency diagram describing 
the various mechanisms of hopping of small polarons: TA-tunnel adia- 
batic; AA-activated adiabatic; TN-tunnel nonadiabatic; AN-activat- 
ed nonadiabatic. Curves 1 and 2 are described, respectively, by 
T =  T , ( w )  ofEq. (32)  and T =  T,(o) ofEq. (47).  

when the latter is very close to unity [Eqs. (52) and (55) 1. 
When temperature is increased, we have the activated adia- 
batic case when aI(w,T) is described by Eq. (30) and 
tan $(w,T) is described by Eq. (60). Equation (30) is char- 
acterized by n = 1 and s of Eq. (31), where s <  1 and, like 
tan $, it decreases on increase in temperature. A further in- 
crease in temperature in the range T >  TI of Eq. (32) results 
in transition to the activated nonadiabatic case [Eqs. (34) 
and (61 ) 1. In this case [see Eq. (36) ] quantities s < 1 and 
tan $begin to increase with temperature whereas the power 
exponent n reaches several units and falls with temperature. 
Therefore, in the hf range defined by w > w, the temperature 
dependences( T) has a minimum, whereas n ( T) has a maxi- 
mum at TZ TI of Eq. (32), both of which shift toward high- 
er temperatures on increase in the frequency. 

At low frequencies such that w < w, in Eq. 53, the con- 
ductivity is described by Eqs. (34) and (57) and tan $ k 
given by Eq. (61 ). Then Eq. (57) corresponds to 

s=1-3 ln-' (~,/o), (62) 

where Yo ( T) is described by Eq. (56). We can see that in the 
nonadiabatic case the value of s < 1 rises on increase in tem- 
perature, whereas n ( T) > 0 behaves nonmonotonically 
reaching its maximum value for T - h a .  

The fullest experimental data on the ac conductivity 
have been obtained for amorphous germanium (a-Ge) .2 We 
shall now analyze them. 

A characteristic feature of amorphous germanium is a 
nonmonotonic temperature dependence of the power expo- 
nent s: at temperatures T<40-100 K and for frequencies 
w =: lo4-lo5 Hz this quantity falls from 0.88-0.95 to 0.6-0.7 
on increase in temperature and then exhibits a tendency to 
rise but all the time it remains less than unity. The power 
exponent n is of the order of 4 in the region of the minimum 
of s(  T) and at helium temperatures it approaches zero. At 
sufficiently high frequencies w > w , of Eq. (53) these depen- 
dences can be deduced quite satisfactorily from the small 
polaron model [see Fig. 2 and also Eqs. (52), (3  1 ), and (36) 
listed in the order of increasing temperatures]. Moreover, 
the presence of a minimum in the functional dependence 
S( T), reported also for a-Si and a-As in Ref. 2, could not be 
explained by any other method.'' 

The exception to this rule is the model proposed by 
Long2 which combines contradictory ideas on large polar- 
ons (low temperatures) and small polarons (high tempera- 
tures), localized at the same defects. Moreover, this model is 
used to describe the effects observed in covalent (homopo- 
lar) semiconductors (Ge, Si, As) which the existence of po- 
larons with a large radius r, is very problematic; the experi- 
mental results can be matched to the theory based on this 
model if we assume an anomalously small value of r, (of the 
order of few angstroms) and it fails to account for the low- 
temperature saturation of the dependence s(  T) which is due 
to the tunneling in the heavy subsystem (see Sec. 5) .  

It follows from Eqs. (3  1 ), ( 11 ), and (36) that particu- 
larly in the model of small polarons at sufficientlv high tem- 
peratures, when jumps are thermally activated, the power 
exponents n and s depend only on the ratio T /  W. This allows 
us to explain also the universal nature of the dependences 
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n ( T) and s (  T) for samples of a-Ge:H with different hydro- 
gen concentrations2 if we assume that an increase in the hy- 
drogen concentration enhances the polaron shift. The values 
Wz0.1 eV obtained in this way agree with the barriers gov- 
erning the characteristic frequency w, - exp ( - W/2T), 
which corresponds to a peak of dielectric losses a, (w)/w 
(Ref. 2). 

The small polaron model also accounts quantitatively 
for the experimentally determined loss-angle tangent of a- 
Ge if we assume that at w =: lo4 Hz the hopping is nonadiaba- 
tic and it is described by Eqs. (61 ), (34),  and (57) with 
Wz0.1 eV, h,=:O.Ol eV, and yo =: 1013 Hz. 

We considered the ac conductivity due to small polar- 
ons in the case where the preexponential factor I Jo I in the 
electron tunneling integral is greater than the polaron shift 
W. The opposite case ( IJo I < W )  is analyzed in Ref. 12. We 
can easily show that in the latter case it follows from Ref. 12 
that s-0 when T- 0, and then this power exponent rises 
monotonically with increase in temperature. However, this 
behavior of s(  T) has not been observed in the case of amor- 
phous and glassy  semiconductor^.^ 

As pointed out above, the ac conductivity at acoustic 
and low radio frequencies exhibited by glassy chalcogenide 
semicond~ctors~~~ and clearly also by a-SiO, (Refs. 18 and 
19) is due to the hopping of small bipolarons. Since bipolar- 
ons are essentially three-level systems,20 a quantitative theo- 
ry of a (w)  involving bipolarons requires a separate discus- 
sion. Clearly, in this case the nonadiabatic hopping is not 
realized because of the large (of the order of I U,, I -- 1 eV) 
unreduced configuration barrier. However, the main fea- 
tures of the behavior of a(w,T) due to adiabatic jumps of 
small polarons, particularly the monotonic fall of s(  T) and 
the rise of n ( T )  (Ref. 2), can be explained exactly as in the 
case of the small-polaron model. 

The authors are grateful to V. G. Karpov, V. I. Perel', 

M. I. Klinger, B. I. Shklovski, and A. L. ~ f r o s  for valuable 
discussions. 
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