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Static states and dynamic low-temperature processes in homogeneous one-dimensional 
structures made up of small-area tunnel junctions are considered. It is shown that effects of 
correlated single-electron tunneling produce in such structures topological solitons and 
antisolitons with charges + e. The form and intrinsic energy of a single soliton in a long structure 
are obtained, as are the energies of its interaction with an external electric field, with other 
solitons, and with edges of the structure. It is shown that for a finite number of transitions N the 
dependenceof the density of a static soliton lattice on the external field exhibits hysteresis. Monte 
Carlo calculations of the soliton-lattice dynamics are carried out for the case of a nonzero external 
transport field. It is shown that narrow-band "single-electron" oscillations can take place in 
systems with sufficiently large N, with average frequency f = ( I  )/e, where ( I  ) is the average 
transport current. 

1. INTRODUCTION 

Several recent theoretical  paper^'^ predict a number of 
new effects that should be observed in systems of metal- 
insulator-metal (M-I-M) tunnel junctions of very small 
area at low temperatures. These effects have been jointly 
named correlated single-electron tunneling, since their com- 
mon feature is establishment of a correlation, of one form or 
another, between the tunneling acts of individual electrons 
under the influence of their Coulomb interaction (see the 
review in Ref. 4).  

The type of correlation depends substantially on the 
system considered. In a single tunnel junction through 
which a fixed current I is fed from the outside, a temporal 
correlation of successive acts should established, and by the 
same token periodic "single-electron" oscillations of the 
junction voltage V should set in, at a frequency' 

f=I/e. (1) 

It is unfortunately very difficult to determine the current in 
experiment, in view of the influence of the capacitance 
between the current leads.4 The prediction of the theory has 
therefore not yet been unambiguously confirmed. We point 
out, however, attempts made to attribute to just this effect 
(or an analogous effect for Cooper pairs') unusual phenom- 
ena observed in scanning tunnel microscopyh.' and in two- 
dimensional granular structures near the percolation thresh- 
old. xs9 

Such a reliable confirmation was also obtained"," for 
another system-two series-connected tunnel junctions 
with a fixed voltage V across them (this fixing, on the con- 
trary, presents no problems). In this system, however, only a 
mutual ("spatial") correlation of the acts of tunneling 
through the junction is realized, and there is no temporal 
autocorrelation of these acts in any of the junctions.' 

Obviously, interest attaches therefore to systems in 
which both the temporal and the spatial correlations of sin- 
gle-electron tunneling can be observed under conditions 
when an external voltage Vis applied. The simplest system of 
this type is a homogeneous chain (Fig. l a )  of N> 1 tunnel 
junctions with sufficiently small capacitance C and with tun- 
nel conductance G (Ref. 4) : 

where T is the temperature in energy units. Analysis of the 
processes in such a chain is in fact the task of the present 
paper. 

As will be shown below, to obtain physically finite re- 
sults account must be taken of electrostatic interaction not 
only between neighboring metallic electrodes of the system 
(an interaction characterized by the capacitances C)  but 
also of other components of the electrostatic energy, i.e., 
other components of the matrix of the mutual capacitances 
CV.  We assume in the present paper a very simple model in 
which, apart from C,,,, , = C, only the diagonal elements of 
this matrix differ from zero, Cii = C,,. This model is ade- 
quate enough for those system physical realizations used at 
present for experimental research. Recognizing that it is pos- 
sible to measure the various external potentials at the end 
points of the chain, we arrive at its equivalent circuit shown 
in Fig. Ib. 

2. BASIC RELATIONS 

According to the general theory of correlated single- 
electron tunneling (see, e.g., Ref. 4 )  for systems satisfying 
the second relation in (2 ) ,  a Markov approximation can be 
used, in which the probability of an individual tunneling act 
per unit time is fully determined by the difference between 
the free energies of the system before ( F )  and after (F') this 
event: 

G F'-F 
= -  e  m ( c i ) =  1 - e x p  U ( - e U I T )  ( 3 )  

For the system shown in Fig. lb, the free energy can be writ- 

FIG. 1. Investigated one-dimensional system of Nsmall-area tunnel junc- 
tions ( a )  and its equivalent circuit ( b )  M-metal, I-tunnel-thin insula- 
tor. 
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i-k ten in the form 

Here pi are the electrochemical potentials of the electrodes 
and Q, are the total charges flowing through the external 
sources of the voltages V+ - : 

while m+ (m - ) is the number of electrons that have tun- 
neled into the interior of the chain through the outer right- 
hand (left-hand) junctions. 

Using Eq. (5)  jointly with the continuity equation, it is 
easy to express the potentials pi in terms of the electric 
charges Qj = QOi + eni of the system metallic electrodes: 

The Qoj depend both on the difference of the work functions 
of the electrode materials" and on the locations of the 
charged impurities in the dielectric layers4 Experiments"' 
show that the diffusion of these impurities causes Qoi to re- 
lax to values close to zero ( 1 Q,, I <e) . We assume hereafter 
Qoi = 0. 

For practical calculations it is easier to use not Eq. (4)  
itself but the simple expression that follows from it 

where ( i  f 1 ) is the number of the site to which the electron 
tunnels from site i. It is sometimes convenient to use a differ- 
ent representation of the same quantity: 

where p je' is an "external" potential that can be obtained 
from the system (5)  by decreasing ni by unity, while pi (') is 
the "internal" potential, i.e., the solution of the system (5)  
for Q, = eSji and p0 = pN = 0 in the ith site. Accordingly, 
p i:, is the solution of (5)  for Q, = eSi, ,J and 
p0 = pN = 0 in the ( i  1)st site. 

3. SINGLE-ELECTRON SOLITONS 

The most important feature of the system ( 5 )  is the 
possibility4 of existence, in a long chain ofjunctions, of soli- 
tary solutions in the form 

e 
e-k,ml cpi=*x(i-j) , x ( m )  = - e-Ll"l E --. 

2Csh h ce!, 9 (8 )  

This solution describes a topological soliton (antisoliton) 
with charge + e, formed in an initially electrically neutral 
system (ni = O )  upon addition (or removal) ofone electrode 
to (from) the electrode numbered j. This causes a substan- 
tial electric polarization of approximately 2M = 2R - '  
neighboring transitions (Fig. 2) (in this sense, such a soliton 
can be called a classical polaron). 

Using Eq. (4)  it is easy to verify that the energy on a 
single soliton is positive and is equal to 

i- k 

b 

3 ~ E J j g ~ ~ E  
k-2k-i  k k * r  k.2 

FIG. 2. Distribution of the electrostatic potentials q ,  of the system elec- 
trodes and of the charges Q, = C(q,  - q ,  , ) of its tunnel junctions, 
induced by a single-electron soliton, for C, JC = 0.1 ( a ) ,  and the circuit of 
such a soliton ( b ) .  

Equations ( 8)-( 1 1 ) show that in the case C,, C which is of 
greatest interest the single-electron soliton has a large "di- 
mension" 2 M z  2 (C/CO) ' I 2  and an energy greatly exceeding 
the natural unit e2/2C (Refs. 1-4). 

The soliton energy ( 11 ) is independent of its position 
(j) provided it is quite far from the edges of the chain or from 
other solitons. Otherwise, the interaction of these objects 
begins to manifest itself. For the interaction of two solitons 
we obtain from (4)  

where j,,, are the positions of the soliton centers. Solitons of 
like sign are repelled and of opposite sign attracted (this can 
lead to annihilation of a soliton-antisoliton pair). 

Interaction of a soliton with the "passive" edge of a 
chain (in the absence of an external voltage) is described by 
the equation 

where j is the distance from the edge. It can be seen that the 
soliton is always attracted to the passive edge and tends to 
drop out of the chain. It is convenient to interpret Eq. ( 13) 
as the result of attraction between the soliton and its antipo- 
lar image at the edge of the chain; such an interpretation 
yields also a correct expression for the distribution of the 
potentials in this case: 

cpi=x (i-j) - ~ ( i +  j). (14) 

Finally, an external voltage Vapplied to the end of the 
chain causes an additional interaction 

the sign of which corresponds to soliton repulsion from the 
edge of the chain if the sign of V is the same as that of the 
soliton charge. 

The foregoing equations make it possible to draw a sim- 
ple physical picture of the behavior of a long (NA & 1 ) chain. 
In the absence of external fields ( V ,  = 0)  and at low tem- 
peratures ( T < E )  only a state without solitons (n, =O, 
pi -0) is stable. A weak field (e.g., po = V- + O )  applied to 
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one end of the chain penetrates only to a depth 
- M = A ' N. If, however, this field exceeds the thresh- 
old value 

it causes a successive injection of unipolar solitons, which 
begin to drift into the interior of the chain by virtue of their 
mutual repulsion. 

Everything depends now on the value of the field at the 
other end of the structure. If V+ = V - ,  the soliton chains 
meet at the center of the structure and a certain distribution 
of unipolar solitons is established in it and constitutes in fact 
a one-dimensional Wigner crystal. Let us examine this im- 
portant case in greater detail. 

4. STATIONARY STATES 

In the limit as AN- co and T-0 the problem of the 
stationary state of our system reduces to the well known 
problem of equilibrium distribution of classical particles (in 
our case, single-electron solitons) with mutual repulsion 
over the sites (here-metallic electrons) of an infinite one- 
dimensional discrete lattice. Recall that for a fixed particle 
concentration ( n )  (per site) this distribution was obtained 
in Refs. 13 and 14, and the dependence of ( n )  on the total 
Gibbs energy H of one soliton (in our case H = E - eU, 
where U = V+ = V-  ) was obtained in Ref. 15. This depen- 
dence takes the form of a devil's staircase with horizontal 
steps for all rational values of ( n )  =p/q. 

It follows from the general equations" that in our case 
the position of the left edge of the step with mutually primep 
and q is given for O< ( n )  < 1 by the equation 

where rj  are integers satisfying the relations 

The length of the step, however, depends in general only on 
4: 

E ch h-l 
AU,=U+-U,=2-  

e chkq-I  ' 

It follows from Eqs. ( 17) that the steps do not overlap and 
cover jointly the entire horizontal axis (Fig. 3 ) .  The picture 
of the steps has translational symmetry with periods 
A ( n )  = 1 and A U  = 2(E/e)coth(A/2);  it is furthermore 
centrosymmetric with respect to the points ( n )  = k + + and 
U =  AU(k+ f ) .  

We call attention to the fact that the value U, = E /e at 
which soliton entry becomes energywise favored is always 
less than V, [Eq. ( 16) ] at which such an entry actually takes 
place. This points to the presence of "overheating" effects 
connected with the edge pinning of the solitons, in analogy 
with the situation for quantized magnetic-flux vortices in 
superconducting structures. Therefore the hysteresis-free 
dependence of ( n )  on U, shown in Fig. 3a, can be realized 
only for tunnel chains with smooth variation of the param- 
eters at the edges.'' In a homogeneous chain, on the other 
hand, the real dependences of (n )  on U at T =  0 exhibit 

FIG. 3. Average soliton concentration ( n )  vs the external field U: equilib- 
rium dependences for N- GO and T-0 ( a )  and for finite Tand n (c ) ,  and 
also nonequilibrium dependences for finite N at T = 0 ( b ) .  For all curves 
C,,/C = 0.1 and f i  = e2/2CT. 

hysteresis, i.e., they contain sections of metastable states. 
We emphasize that a very deep analogy exists between 

single electron tunneling in the structure studied by us and 
vortices in a long homogeneous Josephson junction, which is 
described by a dynamic equation of the sine-Gordon type 
(see, e.g., Ref. 16). This analogy with the Josephson effect is 
valid also for other manifestations of correlated single-elec- 
tron t ~ n n e l i n g . ~  We note, however, that this analogy is only 
qualitative: single-electron tunneling is static even as T-0 
and it cannot be described by any dynamic equation. An 
attempt made in Ref. 17 to derive such equations on the basis 
of qualitative considerations made most of the results there 
incorrect. 

Calculation of the stability limits of these states for an 
arbitrary step of the devil's staircase is impossible even in the 
limit AN- a, since the complicated structure of the states at 
the sites with AjB 1 (Refs. 13 and 14) is at any rate addition- 
ally reconstructed near the chain edges which determine in 
fact the stability. We have therefore carried out a number of 
Monte Carlo computer calculations. 

In this method, which is suitable for any T, one obtains 
first for a fixed soliton configuration { n ,  ), from the system 
of linear equations (5 ) ,  aggregates of the values of { p ,  ) and 
{ p ,  '1." Equations (3 )  and (6 )  are used next to determine 
the probabilities T,' of all 2N possible independent events 
corresponding to tunneling of one electron in two directions 
through each of the Njunctions. The probability of preserv- 
ing the initial soliton configuration varies with time in this 
case like 

N 

where t,, is the instant of the preceding event that led to this 
configuration. Therefore if random numbersp are generated 
with a probability uniformly distributed over the segment 
[O, 1 1,  the times t obtained from Eq. ( 18) give adequate 
random realizations of the instants of the subsequent tunnel- 
ing. It remains then only to determine the number of this 
next event; this can be done, for example, by breaking up the 
interval [O,1] into segments proportional to T,' and addi- 
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tionally selecting a random number on this segment. This is 
followed by replacing the soliton configuration with a new 
one corresponding to the segment in which the random num- 
ber landed, and the entire process is repeated until stationary 
mean values set in. The described numerical method is quite 
economical; for example, for a chain with N = 20 the calcu- 
lation of one tunnel event consumes only 10-' s of micropro- 
cessor time of a relatively small computer. 

Figure 3b shows the dependences of ( n )  on U obtained 
by this simulation for two close values of N (even and odd). 
Since the condition AN> 1 is met for these values, the stabil- 
ity threshold of the step with ( n )  = 0 agrees well with Eq. 
( 16). It can be seen that the main difference from the limit 
N -  cc is the presence, in the staircase, of only steps corre- 
sponding to the values ( n )  = p / ( N -  I ) ,  and also the al- 
ready discussed appreciable hysteresis section correspond- 
ing to the metastable states. 

Finite values of the temperature lead to a finite lifetime 
r, of these states; according to (3 ) ,  for small T < E  these 
times are of the order of r,, exp{ - E /TI ,  ro z C /G.  If the 
relaxation time used to calculate ( n )  is longer than T,, the 
dependences of ( n )  on Ubecome single-valued even at small 
T (Fig. 3c). Its deviation from equilibrium (Fig. 3a) is then 
decreased. With rise of temperature the steps of the staircase 
become smoother, starting with those having the smallest 
width AU, . For T%E the steps vanish altogether and ( n )  
tends to U/AU; the state of the system corresponds then to 
constant intense thermal generation of soliton-antisoliton 
pairs and to their annihilation at all lattice sites. 

5. DYNAMICS OF SOLITON STRUCTURES 

If the values of V +  and V are not equal, i.e., a longitu- 
dinal electric voltage 

v=T'-- V+ (19a) 

is applied to the chain, permanent motion of solitons along 
the chain of tunnel junctions can set in, so that a current with 
nonzero mean value (I) will flow through the chain. Figure 
4a shows a number of typical I-V characteristics of the chain, 
obtained with a computer for the case T-0 and for different 
values of the average potential 

The curves show distinctly horizontal sections ( (I ) = 0 for 
/ V I < V, ) corresponding to the "Coulombblockade" typical 
of all systems with correlated single-electron tunneling. The 
mean field U influences substantially the threshold value of 
Vr (Fig. 4c).  U influences substantially the threshold value 
of V, (Fig. 4c).  It might seem that at A N S I  the stability 
limit of this stationary state relative to the entry (exit) of 
solitons on one edge of the chain should not depend on the 
value of the field on the other edge. The plot for each period 
would comprise then an envelope of N - 1 broken lines: 

where UL and U i  are the edges of thepth step on the plot of 
( n )  against U (Fig. 3b). In Fig. 4c the envelope is the solid 
line. 

The real values of V, i points in Fig. 4c),  however, lie on 
this envelope only in certain ranges of U, particularly at 

FIG.4.Chaincurrent-voltagecharacteristics:a) T =  0, I-(I)  = GV/N, 
2-U/(e/C) = 0,3-U/(e/C) = 0.25,4-U/(e/C) = 0.5; b)-T #0, 
N = 21, C,,/C = 0.1, f i  = e"2CT, I-(I ) = GV/N; c )  dependence of 
threshold voltage V, on the static field U at T = 0, N = 21, C,,/C = 0.1. 

U z k A U a n d  U z  ( k  + f )AU.  The reason is that most steps 
on Fig. 3b are degenerate, i.e., each corresponds to several 
soliton configurations having the same sum n ,  . The stability 
limit of each configuration depends then on both fields V ,  
even if AN31,  so that a nonzero longitudinal field lifts the 
degeneracy and leads to a more complicated Vr ( U) depen- 
dence. 

FIG. 5. Typical realizations of Q, ( t )  for chains with N = 21, C,,/C = 0.1, 
and T = 0 for various values of V/(e/C): a-1.76, b-2.86, c-3.50. 
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FIG. 6. Frequency spectra of Q, fluctuat~on: a-N = 21, C,,/ 
C =  0. I, Z'= 0, V/(e/C) = 2.76 ( I ) ,  2.36 (2), 3.50 ( 3 ) .  ( I ) /  
(eG/C) = 0.05 ( I ) ,  0.10 ( 2 ) ,  0.23 (3); b-N = 32, C,,/ 
C=0.01 ,  T =  0, V/(e/C) = 4.90 ( 4 ) ,  5.47 (5) ,  6.80 ( 6 ) ,  ( I ) /  
(eG/C) = 0.005 (4),0.010 (5),0.019 (6).Thearrowsmarkthe 
theoretical position of the spectrum maximum. 

Raising the temperature smears out the threshold and 
smooths out gradually the I-V characteristics (Fig. 4b). In 
the strong-field limit ( V$ V, ) the I-V characteristics always 
tend to the ohmic asymptote 

The most important problem encountered if (I) #O is 
the temporal coherence of the single-electron tunneling acts 
in the junctions of the chain (see the Introduction). Figure 5 
shows examples of random realizations of the charge 
Q, ( t )  = C ( p ,  - p,) of one of the chain junctions. It can be 
seen that at not too large values of the current and tempera- 
ture successive tunneling acts are substantially correlated. 
This correlation can be simply interpreted as the result of the 
Coulomb repulsion (12) of the solitons: at small excesses 
above the threshold (16), a soliton produced on one edge 
and drifting to the other suppresses, until it moves away a 
"distance" - M  = R -I, the probability of creation of the 
next soliton. Thus, a quasi-equidistant chain of vortices is 
produced in the junction and drifts along the chain of the 
junction. In such an ordered motion, the frequency spec- 
trum of the fluctuation (see Appendix 1) of Q,, 

FIG. 7. Change ofthe IVC of a chain with N = 32 and C,,/C = 0.01 under 
the influence ofan external signal of frequency r~1/2i~ = 0.005(G/C) and 
amplitude A [see Eq. (23) 1. 

(as well as of any other variable describing our system) ac- 
quires a relatively narrow peak (Fig. 6 )  with central fre- 
quency 

corresponding to the "single-electron ~sc i l l a t ions" '~~  (the 
last equation follows simply from the continuity equation 
and from the assumption of a complete temporal correlation 
of the tunneling acts). Note that both computer simulation 
and analytic calculation show that, besides the simple trans- 
lational motion of the soliton center, another process (hav- 
ing nearly the same probability even at T = O), can occur in 
the system, namely, creation of a new soliton-antisoliton 
pair in front of the initial soliton, followed by annihilation of 
the antisoliton with the initial soliton. Multiple processes of 
this type can also occur. 

The degree of correlation increases (and consequently 
the linewidth Ao  of the single-electron oscillations de- 
creases) as the chain length N and the soliton dimension 
2M = 2R - ' increase (Figs. 5b and 6b). The minimum Am/ 
w, is reached for such currents when the distance between 
neighboring solitons is somewhat less than M, thereby en- 
suring their most effective interaction. 

The single-electron oscillations (22) (just as all other 
narrow-band self-oscillations) can be synchronized by an 
external periodic (e.g., harmonic) signal at either the funda- 
mental frequency ( a ,  = w ) or harmonics and subharmonics 
( n o ,  = m u ) .  By virtue of the fundamental relation (22),  
quasi-horizontal steps appear on the IVC of the tunnel chain 
and are separated by intervals A1 that are commensurate 
with the "quantum" ew/2.rr (Refs. 1,  4, 5 ) .  An example of 
such a picture is shown in Fig. 7; it was obtained by assuming 
V +  to be equal to zero and by varying V as" 

V-=V+A cos ot. (23) 

This phenomenon is more promising for an experimental 
observation of single-electron oscillations than a direct ob- 
servation of this process, which has a rather low power 
PS lo-'" at the transition parameters realized at present 
( C 2  lo-' F, Refs. 10 and 11 ). 

6. DISCUSSION OF RESULTS 

We have considered the main properties of one-dimen- 
sional long chains of small-area tunnel junctions. The most 
interesting of these properties is undoubtedly the possibility 
of motion, in such chains, of quasiperiodic one-dimensional 
single-electron soliton structures, accompanied by genera- 
tion of narrow-band oscillations with a central frequency 
(22) ,  even if the external voltage (but not the current) is 
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fixed. It has been indicated many times (see, e.g., Ref. 4 )  
that such a coherent process can result only from the coexis- 
tence, in one system, of a discrete transport of electrons 
through the tunnel junction, and a quasicontinuous charge 
transport in the system surrounding this junction. The ques- 
tion is-what ensures such a quasicontinuous transport in 
the investigated structure that consists of only tunnel junc- 
tions? 

The answer is quite obvious from Fig. 2: the electric 
polarization of the chain by a single soliton extends over 
several (many, if /I < 1 ) tunnel junctions surrounding the 
charged electrode. If the soliton moves over to the next site, 
the induced charge of all the junctions (except the one 
through which the electron has tunneled) changes by an 
amount AQ<e, i.e., quasicontinuously. Thus, for each chain 
junction the remainingjunctions assume the role of a resistor 
that fixes the quasicontinuous current I =  (I ), accurate to a 
small quantity N - ' that is independent of the processes in 
this junction. Since the experimental observation of single- 
electron oscillations is hindered mainly just by the difficulty 
of determining the current, one can hope that the use of long 
homogeneous chains of junctions will permit observation 
and investigation of this new phenomenon, which is impor- 
tant both theoretically and practically. 

This raises the important question of the influence of 
inevitable inhomogeneities of the transition parameters on 
the properties of the chain, and in particular on the degree of 
coherence of the one-electron oscillations. Although a quan- 
titative investigation of this question is yet to be performed, 
simple quantitative arguments can be advanced in favor of 
the assumption that this coherence is not greatly suppressed 
by inhomogeneities. 

In fact, the inhomogeneity of the parameters C and C,, 
leads mainly to a substantial dependence of the soliton self- 
energy E o n  the position of its center. In particular, E will 
have the same deep minimum on the electrodes of a tunnel 
junction with a minimum capacitance, C = C,,,,,, , and the 
soliton will be substantially delayed prior to tunneling 
through this junction. According to the result of Ref. 1, how- 
ever, for an appreciable temporal correlation of successive 
acts of tunneling through this junction we need only that the 
current I be sufficiently well determined. This, obviously, 
can be achieved not only if C of the other junctions is much 
larger than C,,,,, , but even if relation ( 2 )  is not met for these 
junctions (it is necessary only that the second of these rela- 
tions be met for a total chain conductance 
G = l/Z:_ , G , ' ) . Thus, even in strongly inhomogeneous 
media the coherence of single-electron oscillations should be 
preserved, at least in terms of some separate variables (for 
example, in the voltage on the junction with smallest C) . The 
same consequences should follow also from the inhomo- 
geneities of the junction tunnel conductances G. 

The second unanswered but important question is the 
stability of our results to a decrease of the physical size of the 
electrodes. The point is that to raise the upper temperature 
boundary of the effects of correlated single-electron tunnel- 
ing it is necessary to decrease this size as much as possible 
[for an ordinary transfer to the usual helium range-to val- 
ues lower than 1000 A, and in the nitrogen range to values of 
order 30-100 A (Ref. 4 )  1. For these sizes, the finite time 7 ,  

of the energy relaxation of an electron in a metallic electrode 
can become important (in our theory this time is assumed to 

be negligibly small compared with C/G) .  In addition, the 
discrete character of the energy levels of the metallic elec- 
trodes can come into play. With decrease of size these factors 
should undoubtedly cause a transition from effects of corre- 
lated single-electron tunneling (where the position of the 
electron at any instant of time is well determined) to effects 
of resonance tunneling in the produced superlattice of the 
tunnel junction (where the electron, conversely, is deloca- 
lized). A more exact determination of the boundary between 
these values, including allowance for the possible inhomo- 
geneities of the structure, seems to us a very urgent problem. 

APPENDIX 

Calculation of the frequency spectra 

The specific character of the variables describing the 
processes in our system (they are piecewise-constant ran- 
dom fluctuations of the time, see Fig. 5 )  calls for a nonstan- 
dard approach to the computer calculation of their frequen- 
cy spectra. 

We have actually used the equations 
T A + l  

The region [ t , c ]  breaks up into subregions in which 
Q(t )  Q({) is constant, and in each of which the integration is 
carried out analytically, so that the spectrum calculation re- 
duces to double summation. To improve the accuracy we 
carried out simple averaging of the functions sp ( a )  over M 
realizations. However, even at the rather high values 
T--, 100/f,, A =. T /lo,  and M--, 10 the fiducial range of the 
calculation remained relatively large, AS /S=: f 15%. 
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"Moscow State University. 
"In practice there is added to the initial vector {p,) a vector 

{Ap, ) = {p : - (D, ) that depends, according to Eq. ( 5 )  only on the in- 
crement of the vector {n,) that corresponds to the selected event. The 
aggregate of 2 N  vectors {Ap, ) is calculated by the tridiagonal inversion 
method and is stored in the computer memory. 

"This necessitated a modification of the described Monte Carlo method, 
wherein the selection of the random events was made at each time inter- 
val At<2?r/o. 
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