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A method is developed that permits the influence of electromagnetic interaction on the rate of 
one-electron tunneling to be taken into account outside the scope of perturbation theory. Such an 
account is possible because of the semiclassical character of the carrier motion and the weakly 
varying electromagnetic field. The method is used to calculate the zero-bias anomalies of the 
current-voltage characteristic and to solve problems involving the Coulomb blockade of the 
tunneling; a number of new results are obtained. 

Two classes among the diverse phenomena in tunnel 
junctions cannot be explained in the framework of the one- 
particle scheme and are due to interelectron interactions. 
The first class comprises the zero-bias anomalies. ' These are 
small deviations from Ohm's law (SR / R  a V "' or ln V) ob- 
served frequently in the current-voltage characteristics 
(IVC) of a tunnel junction at voltages V< 10 mV. In Ref. 2 
and in preceding papersL4 these effects are attributed to the 
influence of interelectron Coulomb interaction on the car- 
rier energy density. 

The second class of phenomena, actively investigated of 
late, is connected with the Coulomb blockade of the tunnel- 
ing (see Ref. 5) .  This blockade was indirectly observed also 
in an experiment6 under conditions when the tunneling 
between the metallic banks was via conducting granules,im- 
bedded in an insulating interlayer. In this case the need for 
charging the granule on passage of an electron and the corre- 
sponding increase of the Coulomb energy of the system lead 
to suppression of the tunneling at a potential difference 
-e/C, where C is the capacitance of the granule. Experi- 
ments were reported in which this phenomenon was ob- 
served also without granules, in which case Cpertains to the 
capacitor formed by the banks of the junction. A well devel- 
oped theory exists for this phenomenon, makes use of the 
concepts of network theory, and is therefore phenomenolog- 
ical. However, in view of the advances in the experimental 
techniques, the need increases for a microscopic corrobora- 
tion of the employed approach. 

Since both phenomenon classes are of the same nature, 
it is natural to treat them from a unified point of view. The 
problem of electron tunneling in the presence of electromag- 
netic interaction can be divided into two, by considering sep- 
arately electron motion in a specified external field and the 
fluctuations of this field. Note that the phenomena of inter- 
est to us take place at low contact potential differences, 
e V<E,, and at low temperatures, T 5  e V. Under these con- 
ditions the tunneling rate is determined by the behavior of 
the system over relatively long times, of order (e V) - ', so 
that account need be taken of only the low-frequency part of 
the electromagnetic field. The field fluctuations can then be 
regarded as quadratic, and the carrier motion as semiclassi- 
cal. This permits a departure from perturbation theory and 
consideration of large deviations of the IVC from Ohm's 
law. 

The plan of the article is the following: The method 
employed is described in Sec. 1. In Secs. 2 and 3 the zero-bias 
anomalies are calculated for a simple symmetric geometry, 
and a comparison is made with the available theoretical and 

experimental results. The connection between the Coulomb 
blockade and the zero-bias anomalies is considered in Sec. 4, 
and the corrections to the results of the phenomenological 
theory are determined. In Sec. 5 is considered a new type of 
low-voltage IVC anomaly that takes place in long junctions, 
and the possibilities of observing this effect in experiment are 
determined. 

1. We use the tunnel-Hamiltonian method, which we 
modify to take the electromagnetic interaction into account. 
The total Hamiltonian of the problem consists of the follow- 
ing parts: 

h 

Here H,,, describe the carriers in the two banks of the junc- 
tion and the interaction of these carriers with the electro- 
magnetic field; it is convenient to use the gauge of this field in 
the form g, = 0, 

Vis the potential difference across the junction. The Hamil- 
tonian H ,,, describes carrier scattering by the impurities 
and the boundaries of the metals. The tunnel term H,. de- 
scribes the transitions of the carriers through the insulating 
interlayer: 

at A = 0. The corresponding expression for the current oper- 
ator is 

1-i d ' r  d b r .  T (x, x' )$~~(x)$(x ' )  + C.C. 

Finally, the term H,, is the free-photon operator. In this 
scheme it is necessary to take into account the modification 
of the tunnel amplitude by the electromagnetic field. To de- 
termine this modification it is necessary to use gauge invar- 
iance premises as well as the facts that a )  the electron tunnels 
along the most probable trajectory, and b )  as stated in the 
Introduction, only the low-frequency part of the electro- 
magnetic field is important. This makes it possible to write 
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where the integral is taken along the most probable trajec- 
tory-a straight line joining the points x and x'. 

Our purpose is to calculate the current in second-order 
perturbation theory in the tunnel Hamiltonian, as well as in 
the context of the standard approach. The expression of the 
current for arbitrary Vcan be obtained by analytically con- 
tinuing to the complex plane the Matsubara current Green's 
function determined at w ,  = 27~Tn, as well as H ,  taken at 
v=  0: 

This Green's function can be written in standard fashion 
(see, e.g., Ref. 7 )  in the form of a functional integral over the 
Fermi fields of the electrons and over the Bose fields of the 
photons. Taking the Gaussian integral over the Fermi fields, 
we express the sought quantity in terms of the Green's func- 
tion of electrons in an external electromagnetic field: 

The angle brackets denote averaging over the electromag- 
netic-field configurations 

j 11 dA ( x ,  r )  erp (-s ( A )  ) . 

The field fluctuations can be regarded as Gaussian, 

T 
s (A )  = z I d l i  d3rf A;, ( x )  D'P (x ,  x f  ) A!.,, ( X I ) ,  

*" 

where D ::O(x,xl) is the Green's function of a photon in the 
medium. Equation ( 2 )  was symmetrized with respect to R 
and L; it is implied thereby that the banks are made of the 
same material. 

We proceed now to the Wigner representation 
G ( x , x f )  - G ( x , p )  for the Green's function of the electrons, 
and integrate with respect to the variable f = ~ ( p )  - p .  
These transformations allow us to write a clear expression 
for I: 

+B 

I = ~ e {  j dr enp (io.r) 1 d'r d2xr d2n d2n' W ( n ,  x; n', a') 
-P  

Here is the electron Green's function integrated with re- 
spect to g, n parametrizes the Fermi surface of the metal, x 

and x' have values on the surfaces of the right and left banks, 
and W(n,x;ni ,x )  has the meaning of the probability of car- 
rier tunneling from point x with momentum p ( n )  to point x' 
with momentum p ( n l ) .  The factor F ( A )  stems from the 
modification ( 1 ) of the tunneling amplitude 

F ( A ) =  exp{-ie j d z [A( z ,  r,+r)-A(-, r ) ] } .  

In the approximation we need it is easy to obtain an 
explicit expression for 8: 

G(x ,  n; r l ,  r2 I A )  -6. ( T ~ - T ~ )  exp { - i ~  z [erp(iwnrl) 

\ ' I  

d 
(w. + - uR ( n )  + sign on IL. (n ,  nf ) d2n1)  jz,, (x. n;  ~ 1 )  

dx, 

Here 

and the probabilities w(n,nl) of scattering by the impurities 
have been introduced. The derivation and discussion of the 
limits of validity of Eq. (4 )  for our problem can be found in 
the Appendix. The path integral with respect to A in Eq. ( 3 )  
has a Gaussian form and can be evaluated. It is natural to 
assume that the tunneling takes place between nearest points 
of the metal-insulator surfaces; this can be written in the 
symbolic form W(n,x;nf,x' ) = w (n ,n l ;x )S (x  - x' ) . From 
( 3 )  and (4)  we obtain 

+I3 

X ~ ~ x p [ - S ( r ,  n. n'. x )  I 1 ,,,, -+.v+,o , } 

[jlf is determined here from F ( A )  1, and these relations do 
solve our problem. The matter has now been reduced to solu- 
tion of a kinetic equation for the quantities jRzL and of the 
material part of the Maxwell equations, and to solution of 
the electrodynamics equation for D :D. 

If we consider now, as will be done below, space-time 
scales for which the kinetic equation can be replaced by the 
diffusion equation, and assume the junction to be homoge- 
neous, we can neglect the dependences of S(r ,n ,nr ,x )  on n 
and n' and of B(n ,n l , x )  on x .  The result is a simpler equation 
for the current: 

+R 
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FIG. 1. 

The coefficient in (5a) must be determined as follows: 
since we are interested here in low-voltage IVC anomalies, 
we separate in S(r) the part responsible for these anomalies. 
Subtracting this part from S(T) we find that I =  Vas V- CC. 

This enables us to express the coefficient in terms of R,, 
which is the junction resistance in the absence of anomalies. 

We note in conclusion that the described method is sim- 
ilar to the procedure used to exclude infrared divergences in 
zero-spin quantum electrodynamics.' 

2. We consider now an actual junction geometry (Fig. 
la) .  Two metallic half-spaces are separated by an insulating 
liner of thickness 2a, and the z axis is perpendicular to the 
liner. We determine the influence exerted in the IVC by field 
fluctuations of space and time scales much larger than the 
electron momentum relaxation time r,,, and the mean free 
path I. This allows us to change from the kinetic equation to 
the diffusion equation. For the isotropic part ofjR,L we have 

scribes carrier diffusion. The second corresponds to propa- 
gation of electromagnetic perturbations in the space near the 
liner. In real time the excitation of these perturbations can be 
visualized as follows: the tunneling act produces on the sur- 
faces, near a certain point in the layer - r,, excess charge 
densities of opposite sign on the different banks. The electro- 
magnetic field produced by these charges excites conduction 
currents in the metal, and this causes the charge spot to 
spread out like r a t 3 I 4 .  AS 7- cc we have 
S(T)  = const + r - ' I2 .  This corresponds to appearance of 
an increment a v3I2 to the tunnel current. Note that S(T)  
tends to a finite limit as r- co , remaining always small. This 
allows us to expand the exponential in (5)  in terms of this 
quantity and retain only the first term. The answer depends 
substantially on the ratio of the carrier diffusion coeffi- 
cient and the magnetic-field diffusion coefficient 
D * = (4770) - 'cz , which depends in turn on the purity ofthe 
metal. In the "pure" limit (k , l>c/e2 ,  impurity density 
< 1 % )  we have D * <D, andin the "dirty" limit D *>D. We 
ultimately obtain in these limiting cases 

R,6I/V 
Here D is the carrier diffusion coefficient and q is a wave 

4e2 D '" 
vector lying in the liner plane. From this and from ( 1 ) we get ( e k ' / Z ~ ) ' [ l + ( ~ )  I ~ ( v , / v ) ]  , D'>D 
for j 

2e2 
7 

e-llZ(O, z, q )=8(a - i s l )+0 ( l z l - ( i )~ \ l ) ( - I z i6 ) ,  - (eV/2no)"(ln V,/V) , D'< D 
e-lJz' " 3nc 

(0, z, q)=-sign z [ O  (1~1-a)exp(-IzlG) iq', j / 6 ] ,  (8)  
13~=q'+I w,,I/I). V1=4naac/eD. VIB V .  

It is convenient to represent S(w, ) in the form For a given V, the anomalous part of the resistance de- 
creases with increase of the bank-material purity: 

e J d  z ( z ) - l U ~  (:> /2c, 
R,c?I/Va I - 3 1 2  for kFl<c/e2, 

and for A" we have the electrodynamics equation R,,c?I / V a  - ' I 2  for k ~ l B c / e ~ .  

(o,2/c2+rot rot)A=4n [ja(A) +jWa(x) ] /c, ja(A) =0, I zl <a. 

(6 )  

For materials with good metallic conductivity the De- 
bye length r ,  and the resistivity o ' are much smaller than 
the spatiotemporal scales of interest to us. This permits the 
use of the electroneutrality condition, which has in this case 
the form divA = 0 in the metal; with this, P ( A )  = oAa. 
Solving (6 )  and calculating S(T) we obtain 

The size of this correction makes it possible to determine it 
reliably using the characteristic dependence on Vin the 1-10 
mV range. 

The zero-bias anomalies were calculated in Refs. 2 and 
4 under the assumption that the tunneling rate was deter- 
mined only by the density of states of the carriers in the 
junction banks. This assumption, which is undoubtedly cor- 
rect within the scope of the one-particle scheme, does not 
take correct account of interaction effects (in the scheme 
described here this corresponds to a splitting of the mean 

sin2 (o,r/2) values 

<GRGL>A+(GR>A(GL>,  

and to neglect of the retardation). In the dirty limit D * > D 
the results (8)  agree with the conclusions of Refs. 2 and 4, 

6,2=q2+/1xol o,a i /c2 .  
( 7 )  apart from a numerical factor and a small logarithmic term. 

In the opposite limiting case the difference between the re- 
We call attention to the denominators. One of them de- sults is more substantial: the dependence of the correction on 
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u and on the diffusion coefficient changes. There are unfor- 
tunately no experimental data for this limiting case. We note 
only that in the experiment of Ref. 8, where one of the banks 
was pure and the other dirty, the observed dependence of 61 
and u was intermediate between the pure and dirty cases. 

We note in conclusion that the density-of-states correc- 
tion investigated in Refs. 2 and 4 can be easily obtained with- 
in the framework of the scheme employed here by using the 
relation 

and the diffusion equation. No account is taken in this case, 
however, of the Fermi-liquid effects allowed for in Refs. 2 
and 4. In all other respects the results are the same. 

3. Let us complicate the geometry somewhat (Fig. l b ) .  
The banks are now films of thickness d $  I ,  separated by an 
insulating interlayer. Equations (6 )  must be solved with 
allowance for this circumstance. I t  turns out then that 
f (0,x) = 0 on the outer boundary of the films and, accurate 
to - IwI/u, the electromagnetic field does not leave the 
films. The frequency and wave-vector regions of interest are 
w < D / d  2, D * / d  and dq< 1. In this limit we get for S(T) 

S ( r )  =Be2a j dq q ~ z  sin2(o.r/f) 

Just as in ( 7 ) ,  the first denominator describes here the prop- 
agation of electromagnetic excitations, and the second the 
carrier diffusion. The spreading of the spot is slower here 
than in ( 7 ) ,  so that the degree of divergence of S(T) in- 
creases. For long times s ( ~ )  cc In r .  This means formally 
that at sufficiently low Vand T the IVC distortions become 
large, but this takes place in the region 

This region cannot be reached in practice, since e2R < 1 in 
the range in which our analysis is valid. We consider here 
therefore a small correction to the tunnel current, expanding 
the exponential in powers of S ( r ) .  We have 

The cutoff frequency w,,, is here the lowest of the following 
three frequencies: 

This agrees in order of magnitude with the results of Refs. 3 
and 4, the difference occurring in the logarithmic factors. It 
is possible that this is just the deviation noted in Ref. 4 from 
the experimental data. 

4. We consider now the description of the Coulomb 
blockade of the tunneling within the framework of the 
scheme employed. We take into account the finite longitudi- 
nal dimensions of the films (Fig. 2a),  assuming that the film 
linear dimension L is much larger than its thickness d .  As 
noted in the preceding section, the electromagnetic field ex- 
cited by the tunneling does not go outside the films. This 

FIG. 2. 

permits a trivial allowance for the finite dimensions in the 
case, e.g., of a square film, by replacing in ( 9 )  the integration 
with respect to q by summation over the discrete values 
q, =n-nL p'andq, = m L - I :  

= i e n e 2 a ~ - z z  TZ sin"(o,~/2) sinz (qXx) s i d  (quy) 

q 0, 
( ( on I +4no daq2) ( I on 1 +Dq2) ' 

(11) 

In  this case exp ( - S(T)  ) in ( 5 )  is replaced by 

It  is now appropriate to state how the potential differ- 
ence between the films is maintained. I n  the literature (e.g., 
in Ref. 9 ) ,  there is some confusion due to the literal applica- 
tion of the concepts of network theory. I t  can be understood, 
for example from Ref. 10, that Coulomb blockade can be 
observed for dc voltage if the internal resistance R,,  of the 
voltage source satisfies the condition eC2 < Ri,  4 R,,, which 
we assume. The decisive contribution to (9 )  a t  long times 
will then be made by the zeroth harmonic; in this case 
S(T) = e2r/2C, where C i s  the capacitance of the capacitor 
whose electrodes are the films. For the current we have 

0, I Vl t e / 2 C  
v - sign V ~ D C ,  1 v 1 > e / 2 ~  

i.e., the tunneling is totally suppressed at  I V / < e/2C. This 
result was first obtained in Ref. 6. Here we calculate the 
correction for the remaining harmonics in (9 ) .  Expanding 
the exponential in terms of the contribution of the nonzero 
harmonics in ( 5 )  and integrating, we obtain for T = 0 

FIG. 3. Second derivative of the current with respect to voltage vs the 
voltage, for the case of a long tunnel junction. 
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This correction to the resistance is small, R , e2, and the 
characteristic scale of its variation is of the order D / L  2 ,  the 
reciprocal of the time of carrier diffusion over a distance of 
the order of the film dimensions. For V  - e/2CB D / L  ' we 
obtain SR a In V. 

At still higher voltages V-adaL -', i.e., V  approxi- 
mately equal to the reciprocal time of propagation of the 
electromagnetic excitation over the entire film, relation ( 12) 
is replaced by ( 10).  

The corrections to the results of the "phenomenologi- 
cal" theory of the Coulomb blockade are thus small. I t  
should be noted that this holds true only if the films have 
metallic conductivity and if the geometry ensures a long 
( $ C / e 2 )  discharge time of the capacitor made up by the 
films. 

5. Let us examine the result of lengthening the film in 
one direction (Fig. 2 b ) .  I t  is clear from ( 1 1  ) that once the 
film resistance reaches the quantum limit e - 2  all the har- 
monics with wave vectors along the larger axis of the film 
become significant. For the infinite strip shown in Fig. 2b we 
have 

For T = 0 we have S ( r )  = (ever) ' I 2 ,  where V, = e3(X / 
re); 2 and are the resistance and capacitance per unit 
length of the strip. For the second derivative of the current 
with respect to voltage we can obtain the analytic expression 

3'1 exp (- V , / 4 V )  
---- R, V ,  = - a v2 2 [ n ( v / i 7 c ) 3 ~ 1 ) 2  ' 

The shape of the IVC is shown in Fig. 3. The divergence of 
S ( r )  as r-  w is weaker than in the case of the Coulomb 
blockade, therefore the tunneling is not fully blocked any- 
where, even at T = 0 ,  although it is substantially suppressed 
at  V< V,.  The value of V, in terms of the geometric dimen- 
sions and the mean free path can be estimated at 
V c - e a ( k i L 2 d l ) - 1 .  For a,  1-10 P\ and I ,  d -100 P\ we 
obtain V, - V. The phenomenon will be observed at  
T<eVc  -0.1 K. 

The author takes pleasure in thanking K. K. Likharev 
and D. V. Averin for calling his attention to the questions 
discussed and for a number of helpful discussions. 

APPENDIX 

Let us examine relation ( 4 ) .  The electron Green's func- 
tion integrated with respect to 6 satisfies the equation 

d d { -  (= + %)+ iuz(n)  - - eu"[AE ( r l )  - A E ( r , )  ] / e )  
dx" 

1 

Here St stands for scattering by impurities and Z is the self- 
energy part given in the Born approximation by 

Z ( n )  = 1 d2n'w (n ,  o f )  G (n ' )  . 

The conditions for the validity of ( 13 ) are: eA /c <p,. and the 
characteristic spatial and "temporal" scales of the field var- 
iations must be r, t s p ;  ', EF I .  

We consider first the scales r, t <  1, and r,,, . In this 
case we can neglect the collision term and Eq. ( 1 3 )  can be 
easily integrated: 

This result agrees with ( 4 )  if impurities are neglected. We 
now modify ( 14) in such a way that the first correction with 
respect to A to the Green's function 8 is correctly described 
by ( 14) .  We obtain then the relation ( 4 ) .  

We now substitute 8 in the form ( 14) in ( 13). We get 

J ~ r z ~ w  (., n r )  TC sign on [exp ( i r lw . )  - erp  (ir,w.) 1 
"n 

x L c p w  ,"(n)  - V w n  (n')  I 
P 

= d2nrw ( n ,  n') d r 3 e  ( ~ ~ - 7 3 )  Go (r3-72) 
0 

- exp { i [q  ( n ,  r 2 )  -rp (n', 7 2 )  +q (n',  r , )  -cp  ( n ,  7 , )  I 1) 

For simplicity, we have taken C here in the Born approxima- 
tion. This equality is valid in the limit p ( n l )  - p ( n )  < 1. The 
isotropic part p  can also be of order of unity and larger. 

This situation can be realized when r, t  < I ,  r,,, . The 
isotropic part of the Green's function is then much larger 
than the anisotropic, and the diffusion approximation used 
in the problems treated in the text is valid. 

Relation ( 4 ) ,  which is valid for r,t <I,r,,, for arbitrary 
fields A, is thus valid over large scales if eAl / c<  1 .  This is 
equivalent to the condition that the electron distribution be 
weakly distorted by low-frequency fluctuation-type electro- 
magnetic perturbations, and is well satisfied in metals. 

What is the physical meaning of retaining in ( 4 )  the 
terms nonlinear in A? After averaging over the configura- 
tions of the field A, the expressions for the Green's function 
should describe the processes of emission and absorption of 
electromagnetic photons and exchange of virtual photons as 
the electrons move. Inclusion in (4)  of terms of finite order 
in A means allowance for processes in which only a finite 
number of photons participate. The use of expression ( 4 )  for 
8 corresponds to allowance for processes with an arbitrarily 
large number of photons, and under the assumption that 
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each act of emission, absorption, and exchange is indepen- 
dent, which corresponds to a semiclassical treatment of in- 
teraction with electromagnetic excitations. 
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