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The problem of calculation of T, of a superconductor with a planar defect is solved subject to 
fairly general assunptions about the defect. The equivalence of superconducting properties is 
demonstrated for a topological defect of a twinning plane type and a scattering defect in the form 
of a monolayer of foreign atoms. A system of nonlinear equations for a localized 
superconductivity is derived. It is shown that in addition to a phenomenological Buzdin- 
Bulaevskii picture [Sov. Phys. JETP 57,426 ( 1983) 1,  it is possible to provide a different 
explanation which alters radically the interpretation of the experimental results of Khaikin and 
Khlyustikov [JETPLett. 33,158 (1981);36,164 (1982); 38,224 (1983);Adv. Phys. 36,271 
( 1987) ] and, in contrast to the former, can give reasonable values of microscopic parameters. 
Systems of periodically distributed planar defects are investigated. An analysis is made of the 
possibility of reaching high values of T, in a system of this kind because of Van Hove singularities 
in the spectrum of two-dimensional Tamm energy bands. 

1. INTRODUCTION 

Khaikin and Klyustikov' discovered a localized super- 
conductivity near twinning boundaries in Sn at a tempera- 
ture ST, = 0.04 K higher than the transition at T, ~ 3 . 7  K 
in bulk tin. This effect can be described phenomenologically 
on the assumption that in a layer of thickness of the order of 
the interatomic distance a near a boundary the electron- 
phonon interaction constant R increases by an amount SR 
compared with its bulk value A, (Ref. 2).  Assuming that T, 
= T, + ST, is governed by the value of R averaged on a 
scale of {( T, ) -lo( T, ,/ST, ) ' I2  (5, is the coherence 
length), we readily obtain2 

Substituting the values ST, /T, - a / l0  - lop1, and 
A, -0.3 for tin, we find that the change in R is very large: 
SR /A, - 30. This conclusion is supported partly by the ex- 
perimental results: in small particles containing twinning 
planes the suppression of the proximity effects makes it pos- 
sible to raise T, to 12 K (Ref. 1 ). 

The following obvious questions should be asked: is in- 
deed the increase inR so large, what is the mechanism of this 
increase, and whether this mechanism can be used in deve- 
loping high-temperature superconductors? These questions 
not answered in published papers. The mechanisms pro- 
posed in Refs. 3 and 4 and based on a change in the phonon 
properties near a twinning boundary predict an effect which 
is far too small. The possibility of initiation of a localized 
superconductivity because of a superconducting transition 
in a two-dimensional Tamm energy band is considered in 
Ref. 5. For certain relationships between the parameters of a 
postulated two-band model the value of T, is close to the 
temperature of the transition of two-dimensional electrons 
which is in no way related to T,. However, in view of the 
phenomenological nature of the parameters used, it is not 
clear whether this situation is realistic from the microscopic 
point of view. Moreover, the very model used in Ref. 5 can be 
objected to: in the presence of a split-off two-dimensional 

energy band the wave functions of three-dimensional elec- 
trons cannot be plane waves in view of analytic properties of 
the amplitude of the scattering by a planar defect. We shall 
demonstrate however that under certain conditions the re- 
sults of Ref. 5 can be given a microscopic explanation. It  is 
shown in Ref. 6 that ST, - T, because of a change in the 
states in a continuous spectrum without allowance for the 
contribution Tamm levels;, we shall show that this result is 
incorrect. 

We shall attempt a consistent microscopic analysis de- 
veloping the ideas put forward earlier by the present au- 
thors' and based on an investigation of the BCS Hamiltonian 
generalized to the case of a spatial inhomogeneity ': 

where U(r) is the potential of a lattice with a twin boundary 
and V(r)S(r - r ' )  is the potential of the electron-electron 
interaction. 

2. QUALITATIVE PICTURE 

A twinning plane (Fig. l a )  differs from a monolayer of 
foreign atoms (Fig. lb )  by the following topological proper- 
ty: for a fixed selection of the coordinate (reference) system 
the electron spectra&, ( k )  and E~ ( k )  to the right and left are 
different, although they are related by a symmetry transfor- 
mation. It  is interesting to consider the following question: 
are the topological properties of a twinning plane important 
in the case of the effects reported in Ref. l? According to the 
Hamiltonian of Eq. ( 2 ) ,  the answer must be negative; in 
particular, if the actual wave functions of an electron vary 
sufficiently slowly, a rigorous theorem (Sec. 4 )  applies: for 
each twinning plane we can identify a defect of the type 
shown in Fig. lb (we shall call it a scattering defect), which 
has identical superconducting properties. In the present sec- 
tion we shall consider the simpler case of a scattering defect 
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x 
;G (energies are measured from the Fermi level and R is the 
1 volume of the system). It follows from Eq. (3) that N(E, r )  

depends only on z and can be represented in the form 

N ( E ,  z)=No (8) + N ~ , , ( e ,  z )  + N , ( e ,  z ) ,  (7)  

so that for V(r) = const we can introduce splitting of A(z): 

h ( z )  =A,+ A,,, ( z )  +A, ( 2 )  4 , - t b h  ( z )  . (8)  

Here, N, (E)  is the density of states in an ideal crystal, 
z Nc (E, 2) is the effect of changes in the states in the contin- 

uous spectrum in the sum of Eq. (6)  for s, and N,,, (E, z)  is 
associated with local levels: in the case of one level this is 

b simply the zeroth term of the sum overs in Eq. (6): 

FIG. 1 .  

assumed to be lying in the z = 0 plane. 
In view of the translational invariance in the xy plane 

the one-electron wave functions are 

Y, ( r )  =S-" exp (ilcl,rl,) cp,, ( z )  , r =  (x, y) , k,~= (/ex, k,), 

(3  

(s is the transverse quantum number and S is the area of the 
system in the xy plane), where the functions q,, (z) satisfy 
a one-dimensional Schrodinger equation describing a chain 
with a defect at the origin of the coordinate system. The 
spectrum of this equation represents a set of bands with a 
local level split off from each of them; if we allow for the 
longitudinal quasimomentum k we find that local levels 
become two-dimensional energy bands and the complete 
spectrum assumes the form shown in Fig. 2. Splitting of two- 
dimensional bands is the main effect that gives rise to a local- 
ized superconductivity. 

A natural generalization of the constant A = VN(0) to 
the inhomogeneous case is a function 

where N(E) and N(E, r )  are the average and local densities 
of states: 

..,, 
(9)  

where to (k  ) and N,, (E)  are the spectrum and the density 
of states of a split-off two-dimensional band [we are ignoring 
the dependence of q, (z) on kll  1. The quantity N,,, (E, z)  is 
positive and it increases locally A, but it can be compensated 
by Nc ( E ,  z)  (Fig. 3). 

A two-dimensional band of finite width must have Van 
Hove singularities N,, (E) a In ) E  - &,I, which can increase 
strongly N,,, ( E ,  z).  Bearing in mind that in the calculation 
of T, the singularities are truncated on the scale of the Debye 
energy w, (see the Appendix I ) ,  we obtain an estimate for 
the maximum value of SA: 

where J is the bandwidth and m is the number of the Van 
Hove singularities which can be large (in the case of Sn the 
Fermi level intersects five three-dimensional bands and, 
consequently, four two-dimensional bands and each of them 
several Van Hove singularities). Inclusion of Nc (E, z)  does 
not alter the estimate given by Eq. ( lo) ,  because 
Nc (E, Z)  <No(&). In principle, the ratio SA /A, can be large, 
but it is unlikely to be - 30. 

The difficulty outlined above can be solved as follows. 
The estimate given by Eq. ( 1 ) is based on the assumption 
that the superconducting order parameter A (z) varies slow- 
ly near a defect, so that SA is averaged on the scale of (( T). 
However, if A(z) has a sharp peak near z = 0, then the vicin- 
ity of the defect is characterized by a large weight in the 
averaging procedure and Tc is higher than predicted by Eq. 
( 1 ) .  An analysis shows that A(z)  can be represented in the 
form" 

k,, 

FIG. 2. 
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FIG. 4. Dependence of the transition temperature T, on the parameter 
A,, representing theamplitude A,,, (2); Here1  * is the lower limit ofexis- 
tence of a localized superconductivity. The shaded region identifies the 
conditions under which it should be possible to observe a localized super- 
conductivity in practice. 

A ( z )  =Ao ( z )  +.$ ( z )  , (11) 
where the function A, (z)  is localized at JzJ 5 a and $(z) 
varies on the scale of {(T). IfA ,,, 5A, [A,, represents the 
amplitude of A,,, ( z ) ]  the amplitude of the peak is small, 
A,(z) 5 $(O), and T, can be estimated on the basis of Eq. 
( 1 ); however, ifA ,,, 2 A,, it is found that A,(z) - $(O){,/a, 
i.e., the order parameter is localized at an atomic distance 
from a defect and it has only small "tails" extending to dis- 
tances - f (T); we then find that ST, - T, (Fig. 4) .  I t  is 
interesting that the strongly localized regime appears only 
when the increase in A is associated with N(0,r); however, if 
it is related to V(r) and we have N(0,r)  = const, then the 
estimate given by Eq. ( 1 ) is valid right up to SA /A,-{,/a,, 
i.e., practically always. 

According to the theory of Ref. 2, a localized supercon- 
ductivity can exist if the following quantity is positive: 

which for V(r) = const is governed by the change in the 
average density of states N(0)  and is equally likely to have 
either sign; for example, it may be positive if a Van Hove 
singularity A (Fig. 2 )  is closer to the Fermi level as a result of 
splitting of the two-dimensional band than in the unsplit 
state A ', but it can be negative in the opposite case. Experi- 
ments however indicate a shift of the probability in the direc- 
tion of a localized superconductivity: it was found in five 
metals and reported in seven papers.' According to the pro- 
posed theory, the quantity (12) must be positive only in the 
case of a weakly scattering defect when the radius of a bound 
state a is large and the amplitudes N, (E,z) and N,,, (E,z) are 
small (Fig. 3). In  the case of a sufficiently strong defect 
because of the smallness of a, we find that the condition 
A ,,, ?A, is satisfied [N , ,  (E)  in Eq. (9 )  is limited from be- 
low by a value of the atomic order] and a localized supercon- 
ductivity can exist irrespective of the value of A, (z):  the 
point A * in Fig. 5 depends on A, (z) ,  but it is always smaller 
than A,. 

Ifil,,, ?A,, the function A(z) is localized at lzl 5 a and 
T, is so low that it is practically undetectable (the sensitivity 
of the magnetometer used in the investigation reported in 
Ref. 1 made it possible to detect an ideal diamagnetic layer of 
thickness 2 10a). A localized superconductivity can be ob- 
served only in the vicinity of T, : T,, < T 5  T, ,  + 6T,,, 

FIG. 5. Dependence of the temperature range of existence of a localized 
superconductivity ST, on the distance L ,  between twinning planes (6T, 
is the value for a single twinning plane): 8)  experimental points for two 
closely spaced planes; 0) sample with a high density of twinning planes. 
According to Ref. 2, the black dots should lie on curve I and the open 
circles on curve 2. According to the theory proposed in the present paper, 
the range 6T, is 6T,, and the adopted analysis of the experimental results 
is meaningful only if Lo <<(T,)  (Sec. 7 ) ;  then, the black dots reach the 
value 2 (curve 3 )  and the open circles fit the dependence L ;  with an 
undetermined coefficient, as represented by curve 4 (the coefficient is 
selected to ensure the best agreement with the experimental results). 

when the amplitude $(z) becomes sufficiently large; if A,,, 
$A, (Sec. 6 ) ,  then 

Substituting ST,,/T,,- 10V2, and a/g, - 10 - 3, we obtain 
T,/T, - 10, which corresponds to SA /A, - 3. 

In the case of two closely spaced twinning planes the 
quantity a is replaced with 2a and the temperature range of 
existence of a localized superconductivity widens fourfold 
according to Eq. ( 1 ) and twofold according to Eq. ( 13 ) . For 
a system of twinning planes distributed periodically at  a dis- 
tance Lo <g( T, ), we find that ST, a L c ', and, according to 
Ref. 2, ST,, a L ,- 2'3 follows from Sec. 7; the true value of T, 
for A ,,, 2 A, is practically independent of L,: a reduction in 
L, simply improves the conditions for its observation ( the  
critical current, magnetic moment, etc. increase). There- 
fore, if A ,,, k A,, the predictions of the proposed theory dif- 
fer from the predictions given in Ref. 2 even at  the phenome- 
nological level, which can be used as an experimental check 
(Fig. 5) .  

I t  follows from the above discussion that in the case of 
twinning boundaries in Sn the ratio SA /A, amounts to a few 
units, whereas according to Eq. ( 10) it can be considerably 
larger. Therefore, we should seek defects characterized by a 
higher value of 6 1  /A,. For example, it is possible to intro- 
duce monolayers of a foreign material into a superconductor 
and alter this monolayer so as to control the positions of the 
Van Hove singularities. Modern apparatus can be used to 
create such structures; then, in contrast to the systems with 
twins considered above, the concentration of planar defects 
can be very high. We cannot exclude the possibility that the 
high-temperature superconductivity of oxides9could also be 
interpreted by the proposed scheme if the Cu-0 planes are 
considered as planar defects; in particular, a quasiphase 
transition at  A ,,, =A, (Fig. 4 )  can be used to interpret the 
"superconducting explosion" of 1987 (Ref. 7 ) .  
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3. INITIAL EQUATIONS 

We shall now postulate the properties of planar defects 
which we shall use later (Secs. 5-7); they will be justified in 
Sec. 4 on the basis of certain model representations. 

1. We shall assume a translational invariance in the xy 
plane so that the wave functions can be written in the form of 
Eq. (3); we shall ignore the difference between the Bloch 
functions of an ideal crystal and plane waves. 

The equations for the superconductivity of a system de- 
scribed by the Hamiltonian of Eq. (2)  are the usual Gor'kov 
equations,I0 but the Matsubara Green function G, (r,rl)  for 
a normal metal, which occurs in the above equations, s h o ~ ~ l d  
be deduced from the eigenfunctions of the Hamiltonian H,; 
in view of separation of the variables, we find that 

Iteration of the Gor'kov equation can yield an equation con- 
taining only the superconducting gap A(r) as the unknown 
function (Ref. 11 ); if we allow for the one-dimensional na- 
ture of the geometry of the problem, we find that the corre- 
sponding result is 

[nth term of the series on the right-hand side contains 2n 
functions GUkI and 2n - 1 functions A(z) with the common 
coefficient ( - 1 ) " + '1. 

2. We shall assume the presence of a split-off two-di- 
mensional band, so that one of the function p, (z), for exam- 
ple that characterized by s = 0, is localized at Izl 5; a. Separ- 
ating the zeroth term in the sum overs in Eq. ( 14), we obtain 
the splitting 

We shall ignore the dependence of p,(z) on kl l  which is ri- 
gorously justified for the spectrum ~ ( k )  = ~ , ( k  ,, ) + &,(k, ). 

3. The function G,,, (z,zl) is of the order of l/v, and it 
is localized because of the difference between the arguments 
on the scale of u,/w-{,, whereas for z,z12{, and 
- z, - z' 2 {, it is identical with the Green functions 
G j;',:, (z - z') and G 24, (z - z') for the right- and left-hand 
halves of a crystal. 

4. We shall assume that the right- and left-hand halves 
of a crystal are identical or are related by mirror symmetry 
so that the functions G (z - z') and G (z - z') are 
linked by one of the following relationships: 

(1)  ( 2 )  (2) G,,,,, (2-z') = G u k ,  ( z - z ' ) ,  G:',:, (2-z')  =Go,,, (z ' -z) .  ( 17) 

The kernel K(z,z') of a linearized equation ( 15), 

A ( z ) =  J h f ~ ( z , r ' ) ~ ( z r ) ,  (18) 

has the same value K,(z - z') forz, z' 2 lo and - z, - z 2 lo 
because of Eq. (17) and in this case we have the splitting 
which follows from Eq. ( 16) and if we ignore the convolu- 
tions GGI"~, which are small on the scale of -a/{, (see Sec. 
6) ,  we find that 

where Ko(z - z') is localized at lz - zlI 5; lo,  Kc (z,zl) at Izl, 
Iz' 1 5; {", and KI,, (z,zl) at Izl, lz'1 5 a. 

5. It follows from Eq. ( 19) and from the sum rule for 
the kernel K(z,zl) that8 

1.140, j K ( z ,  z f  I dzf=h ( z )  ln - T 7 

yields the splitting (8)  for A(z) and the function A,(z) is 
localized near z = 0 not on the scale of go, but at an atomic 
distance because of the specific alternating-sign structure of 
the kernel Kc (z,zl). 

4. ELECTRONIC PROPERTIES OF PLANAR DEFECTS 

We shall now justify the properties of planar defects 
~ostulated in Sec. 3. The eigenfunctions of the Hamiltonian 
H, will be sought in the site representation considering, for 
the sake of simplicity, just one energy band: 

~ ( r ,  rr)  v (r')  =EY ( r ) .  
I" 

In the case of defects shown in Fig. 1 a translational invar- 
iance in the xy plane is self-evident and it means that 
J ( r , r f )  = J(ri; - rll ; z,zl). Separating in Eq. (22) the longi- 
tudinal motion, we obtain 

Scattering defect. For a scattering defect (Fig. 1 b) and a 
fixed value of kll the overlap integrals JZZ, have the property 

( 0 )  J z z ~ = J , ~ - , t ~ J , , ~ .  (24) 

where S J ,  is localized in lzl, lz'i 5; a. 
1. The problem of existence of a local level can be solved 

by the Lifshitz method.'* Introducing the Green function of 
an ideal crystal GO, (z - z') and applying Eq. (24), we can 
write down Eq. (23) in an integral form. The limits of the 
spectrum ~ ( k  ,, ,k, ) for an ideal crystal with a fixed value of 
kll will be assumed to correspond to quasimomenta k ,  = k, 
and k, = k , ;  i fE=&(kil ,k , ) ,  a n d a = O o r  1, we have 
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where GE ( z )  and F ( z )  are slowly varying functions of z. 
Then Eq. (23)  yields 

Assuming that z = 0, we obtain the following equation for a 
local levelI2: in view of the divergence z, ( 0 )  = G Lo' ( 0 )  in 
the limit E - ~ ( k  ,ka ), it can exist even for infinitesimally 
small values of SJzz,. In the case of a diagonal defect we have 
SJZZ, = GJ,SzZ,, the equality Wo = W, is valid, and the level 
exists always; if Wo > 0, it splits from the upper edge of the 
energy band, whereas for W, < 0 it splits off from the lower 
edge. In the case of the nondiagonal defect we have Wo # W, 
and the situation becomes more complex: if Wo, W, > 0 the 
level splits upward, whereas for W,, W, < 0 it splits down- 
ward, for Wo > 0, W, < 0 it is absent, and for Wo < 0, W, > 0 
there are levels split off from both edges of the energy band. 
In the case of typical metals this complication is unimpor- 
tant: the Fermi level intersects several energy bands (Fig. 2 )  
and on the average one levels splits off from each band. 

2. Near the band edge any defect appears to be point- 
like so that SZZ, = WS,SZ,,, and for such a defect we can 
readily find the Green function for Eq. (23)  : 

GE(z, 2 ' )  =GE~(Z-Z')+GEO(Z) W [I-WGEYO) ]- 'GE'(-~ ') .  

The required function GekI (z ,z l )  is then obtained by the sub- 
stitution E-iw. We shall assume that near the band edge we 
have 

( E ,  is the Fermi level measured from the band edge). Equa- 
tion (27)  depends on a parameter (k:12 
= 2 r n ( ~ ,  - k i / 2ml ,  ), and integration with respect to k, ,  in 

Eq. ( 1 5 )  covers the range ( k : ) 2 > 0 ,  and also (k:12<0,  
where we have correspondingly 

In the second range of existence the important region is that 
in the vicinity of a pole ( k  :)2 = - x2, where G,, is identi- 

I 1  
cal with the function G :ill, defined by Eq. ( 16). The func- - 
tion G,, which results from the splitting of Eq. ( 16) is rela- 

I/ 
tively small, - l/u,, in the main range of the values of k ,I 
and it plays an important role in Eq. ( 1 5 )  only if its radius of 
localization in respect of z and z' is large, i.e., in the range 
E ,  - k i / 2ml ,  - E ~ :  

G,, ,, ( z ,  z') = G : ~  ( 5 . 5 ' )  f G& ( z ,  3 ' ) .  

The properties Sec. 3 are given by the system of equations 
(29) .  

3. The local density of states N(0,z) can be found from 
sgn o 

N (0, Z )  = - lim - 
'a-0 3t 

(30 )  

If we represent N(0,z)  in the form of Eq. ( 7 ) ,  we find 
that the asymptote N, (0,z) is described by 

x 0  ( x )  e-zxlzl ,  kP>x 

mIl sin 2k,z t (31)  
, kF<X 

where k ,  = ( 2 m ~ , ) " ~ .  Hence, it is obvious that A,(z)  is 
localized at ( z (  5 a. 

4. In a system of finite length L along the z axis we find 
that Eq. ( 3  1 ) remains valid to within - a/L inclusive, so 
that the contribution of a defect to the average density of 
states N ( E )  of Eq. ( 5 ) ,  which is of the order of a/L ,  appears 
only in the vicinity of the defect and can be found by integra- 
tion of Eq. ( 3  l ) with respect to z [in calculations accurate to 
within -a /L  the quantities N ( E )  and N(E,z)  should be un- 
derstood to be the functions which are smoothed out in order 
to eliminate the size quantization effects"] 

At first sight the change in N ( E )  should result in a small 
( -a /L )  shift of the Fermi level, in accordance with the rela- 
tionship 

which should be allowed for in a discussion of periodic struc- 
tures in Sec. 7.  However, the change in N ( E )  is acquired only 
in the vicinity of a defect (zj 5 a, so that a shift of the Fermi 
level causes charge separation; a charge surface density 
-e/a2 appears in a defect, whereas a compensating bulk 
density - e/a2L is formed in the bulk. Consequently, an 
electric field Z? -e/a2 appears in a sample and its energy is 
-e2L /a2 per unit cell of the surface. This energy can be 
reduced to -e2/a by: a )  a redistribution of electrons result- 
ing in screening of the excess defect charge on a scale of - a; 
b)  creation, near a defect, of a lattice deformation which 
compensates the excess electron charge because of a change 
in the ion concentration. The effects a )  and b)  suppress the 
shift of the Fermi level by altering the scattering properties 
of a defect, which should now be determined in a self-consis- 
tent manner. Under equilibrium conditions we have a rela- 
tionship similar to the Friedel sum rule14: 

where leJZ,,S is the excess charge of the ions localized near 
a defect. In the case of a point defect the relationship (33 )  
links x to Z,, . 

Twinningplane. In the simplest case a twinning plane is 
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a plane of mirror symmetry and the overlap integrals of Eq. 
(23) have the property (JIO' # J '!', ) 

If b = c, the system shown in Fig. l a  is periodic and 
there is no local level. We shall show that this level appears 
immediately b deviates from c, no matter how small the devi- 
ation. It is clear from Eq. (34) for a fixed value of kl l  that the 
spectra&, (k, ) and (k, ) for the right- and left-hand halves 
of a crystal are related by E ,  (k)  = E,( - k); near the edge of 
an energy band we have 

We shall substitute in Eq. (23) the following expressions: 

cp(z)=q(z)eiurz), u(z)-+kolzl, (z ( -+w.  (36) 

the function q ( z )  varies slowly and we can expand Eq. (23) 
in terms of gradients: 

where 

f , , ,=J, , ,  esp  [iu(z') -iu(z)]. 

Comparing the spectrun of Eq. (37) at large distances 
from a defect with the spectrum given by Eq. (35), we find 
that in the limit /zJ  - co 

W(z) -+En, a(z)  -0, p (z )  -p. (39) 

Separating from W(z) , a (z) , and D(z) the asymptotes of 
Eq. (39), transferring the corresponding terms to the right- 
hand side of Eq. (37) and introducing a Green function 
GE (z - z') for the right-hand part, we obtain 

ci,(z)=Gc(z) [ Wq(0) +Aq'(O)+Bq"(O) I ,  (40) 

where 

Equation (40) yields the following expression describing a 
local level: 

l=W'GE(0) +AGEr(O) f BGE"(O). (42) 

If lb - cl &c, then the constants W, A ,  and B in the above 
expression are small. Since out of all three functions GE (0) ,  
Gk(O), and G 2 (0)  only the first diverges in the limit 
E-Eo, we need retain only the first term on the right-hand 
sides of Eqs. (40) and (42); then these equations become 
identical with the corresponding equations describing a scat- 
tering defect [see Eq. (26) ]. 

The expression for the constant Win terms of the over- 
lap integrals is obtained from Eq. (38) and in the lowest 
order in b - c it becomes 

Here, u (z) can be ko(zl because the difference in Wassociat- 
ed with different selections of u (z) is a quantity of a higher 
order of smallness. If we ignore the lattice deformations, we 
find that 

and Eq. (43) simplifies to just the last term. When the over- 
lap integrals decrease rapidly with distance (for the notation 
see Fig. l a ) ,  we have 

If we allow just for the nearest neighbors, we find that there 
is no local level.I5 When Eq. (45) is valid, a level splits off 
always because near the other edge of the band the constant 
W is the same. 

It follows from the above discussion that the substitu- 
tion of Eq. (36) reduces the problem of a twinning plane to 
that of some (strongly off-diagonal) scattering defect. Sub- 
stituting Eq. (36) in the expression for G,, of Eq. ( 14) and 
into the Gor'kov equation (15),  we find that factors 
exp[iu(z)] cancel out in all the terms of this equation. 
Therefore, we obtain the theorem (formulated in Sec. 2) of 
equivalence of the superconducting properties of a twinning 
planeand a scattering defect in the case when the Fermi level 
is located near the edge of an energy band. 

In general, the expressions for the Green functions are 
cumbersome (see the Appendix 2) and they differ consider- 
ably from those for a scattering defect, but all the properties 
formulated in Sec. 3 are retained. 

5. TWO REGIMES OF LOCALIZATION OFTHE ORDER 
PARAMETER 

1. The temperature T, of the transition to a localized 
superconductivity state is found from the condition of solu- 
bility of Eq. (18) with a kernel given by Eq. ( 19) [it is as- 
sumed that V(z) = const]. If the Fermi level is close to a 
Van Hove singularity so that N2, ( E )  a In / & I ,  we can ignore 
the kernel Kc (z,zl) compared with K ,,, (z,zl). In view of the 
degenerate nature of the kernel K,,, (z, z') the equation ob- 
tained is readily solved by introducing Fourier components: 

The condition for self-consistency of these expressions is 

We shall divide the above integral into regions (q(  5 6 ;  I ,  

6; ' 5 191 5 o D / u F  and Iql? w,/uF; in the first region we 
shall assume that 

1,140D 1 
KO ( q )  =Ao [ ln ---- - - 

T 2 
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and in the third region we shall postulate that K, (q)  = 0; c.a 

the integral due to the second region is small. We thus obtain h,..=VN,,,(0)a-l, a r l =  j' 
- m 

(50) 

11401 1  a 
~ = ~ l o c ~ n ( ~ ) { ~ ~ [  2 ( ~ -  Td T,) ] " + I ) ,  (49) 

where 

I 

The quantity a is of the order of the localization radius of the 
function p, (z).  Then, Eq. (49) gives the asymptotes for the 
transition temperature T, :2' 

When A,,, is varied, the transition between the asymp- 
totes (5  l a )  and (5  1b) occurs in a narrow range - (a/&,)213 
near A, (Fig. 5) .  In the limit a/&,-0 the point A, is the 
actual phase transition point. The nature of the solution 

obtained from Eq. (46) can be used to demonstrate the phys- 
ical meaning of a phase transition: if A ,,, --A,, a transition 
takes place from a state localized on the scale of &( T) to a 
state localized at an atomic distance from a defect. 

The solution (52) is an even function of z. A phenome- 
nological analysis carried out by AndreevI6 demonstrates 
that a solution odd with respect to z can also exist and it has 
interesting properties. Such a solution is not obtained if 
V(r) > 0 and if there are no magnetic effects; we then have 
G, (r ,rr)  = G, ( r l , r )  and the kernel 

is a positive definite quantity. A Cooper instability appears 
in the eigenfunction of the kernel K(r , r f )  corresponding to 
the smallest characteristic value; this function has no 
nodes." 

2. If N(0,z) = const and V(z) #const, the kernel 
K(z,zl) has a structure differing from that of Eq. ( 19): 

where SV(z) = V(z) - V. The second term is localized at 
I z I  5 a,  I Z ' ~  5 &,; it is degenerate if we assume that z = 0 in the 
argument of the kernel K,. When Eq. ( 18) is solved by this 
method, the range of integration with respect to q in an 
expression of the (47) type is limited by the values Iql 5 6, ' 
and a strongly localized regime does not appear. Then, the 
transition temperature T, is described by2 

which confirms the estimate given by Eq. ( 1) and is valid if 

SA /A, 5 {,/a. Clearly, an increase in V(z) near the bound- 
ary is of no qualitative importance and we shall therefore 
assume that V(z) = const. 

3. Inclusion of the kernel Kc (z,zl) can be made by the 
methods described in the next section: the result given by Eq. 
(5  1c) is retained and instead of Eq. (5  l a )  we obtain 

for A ,,, >A *, whereas we find that ST, = 0 for A ,,, < A  *. 
The following notation is used here: 

A qualitative difference from Eq. (5  l a )  is the appearance of 
a lower limit of existence of a localized superconductivity: 

- 

By definition, we have O<A * <A,, and ifA,,, >A,, there 
is a localized superconductivity irrespective of the value of 
A, (z);  for low A, (z)  and A,,, (z)  the condition A ,,, >A * re- 
duces to the requirement that the quantity of Eq. (12) 
should be positive. 

6. DESCRIPTION OF A LOCALIZED SUPERCONDUCTIVITY 

In the range of temperatures near T,  we have to use the 
nonlinear Gor'kov equation ( 15). Substituting G,, in the 
form of Eq. ( 16) and employing the obvious symbolic nota- 
tion, we obtain 

The function GIo" cc l /aTis localized for Izl, /z'l 5 a,  where- 
as the function Gee l / a ~ ,  differs from the former in the ab- 
sence of a defect for izl, Iz'l S&,, and therefore the terms 
retained in Eq. (59) are equally important; on the other 
hand, the cross terms G"(G'"')" are of a higher order of 
smallness in a/&,. 

In view of Eq. (52) the solution should be sought in the 
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form of Eq. ( 1 1 ) , where the function A, (z) is localized for 
5 a, whereas $(z) varies on a scale of c ( T ) .  The first set 

of brackets in Eq. (59) contains terms with n factors A, and 
its order of smallness is - (a/g,)" because of restrictions on 
the range of integration with respect to zi;  only the largest of 
these terms need to be retained. We shall show later that 
$(z) < T, , and that A, (z) can be of the order of - $(z) and 
- T,, so that we should retain terms of the lowest order in 
$, but include A, of every order. In the first set of brackets of 
Eq. (59) we have to retain terms 

(as usual, retention of a term cubic in $ is related to the 
smallness of the coefficient in front of the term - $); it will 
be convenient to expand $in the second set of brackets of Eq. 
(59) later. The separation A = A, + $ can be made more 
specific as follows: 

The function G is given by Eq. (29 ) for a scattering defect 
and by Eqs. (A9)-(All)  with x = - a = n-/2 for a twin- 
ning plane. Consequently, we find that [see Eq. (21 ) ] 

and Eq. (62b) can be ignored compared with Eq. (62a), as 
was already done in Eq. (61 ). In view of Eq. (62a) all the 
terms on the left-hand side of Eq. (61a) are localized at 
I z I  5 a, as assumed for A, (z). The terms in the square brack- 
ets of Eq. (61a) are summed because of the degenerate na- 
ture of GIoc, to give the final expression 

where A, is defined by Eq. (46). 
Equation (61b) without the term cubic in $ can be 

solved for $ by adopting the Fourier representation. Since 
the term Z A , ~  does not contain the Fourier components 
with 1q12c;',itisfoundthatif IT- T,,I<T,,, thefunc- 
tion $(z) changes on the scale of ((T) as assumed above. 

After expansion in gradients of $ the term ZA,G can be 
replaced with the S function and transformed by the sum 
rule of Eq. (21 ). Retention of these properties in the pres- 
ence of a term cubic in $can be demonstrated by construct- 
ing an iteration series. We then obtain a system of equations 
describing a localized superconductivity: 

. \ , , (z)  =ho-'ll (0) h, ( z )  + dua j rp,(z) 12 ,  (65) 

where the following notation is introduced 

Equation (66) is readily solved: 

The solution A(z) is fully described by Eqs. (65) and (68) if 
we know x, and $(O), which can be found from Eq. (64). 

If& - A ,,, % (a/g0)215, the quantity x, is proportional 
to $(O) and the system can be described phenomenological- 
ly by the Buzdin-Bulaevskii theory2: 

However, the relationship between t ,  = ST,/T, and SA be- 
comes more complex [see Eq. (56) ]. 

If A ,,, -A,% (a/{(,)213, the theory of Buzdin and 
Bulaevskii2 is even phenomenologically invalid: in the 
Ginzburg-Landau equation (66) in addition to the term 
- $(O)S(z) there is also a const S(z).  The origin of this term 
is attributed in the phenomenological method of AndreevL6 
to the existence of a two-dimensional order parameter A, 
and the presence in the surface energy of terms of the 
A,$* (0)  type. The quantities KO and $(O) are related to the 
microscopic parameters by 

I 
where the parameter T governing the temperature interval Green function G,,, and the order parameter A(z) are now 
ST,, of existence of a localized superconductivity is 

- G I ,  ( Z  z = G I  ( Z )  + , - Z -  (72) A rc 87.. = y,p"  P - 7=- (71) 
T, Td, i" 

A ( z ) = ~ (  z)+ EA,(~-Z,), (73 

7. PERIODIC STRUCTURES 
I 

We shall now consider a system of periodically distrib- where z, are the coordinates of the defects and G ::ill is de- 
uted planar defects separated by a distance Lo %a. The fined by Eq. ( 16). Repeating the discussion given in Sec. 6, 
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we obtain a system of equations of the (61 ) type; in general, 
the quantity - Go does not split into a sum of contribu- 
tions of the individual defects, but the results contain only 
the quantity A, (z) [Eq. (62)], which has this property, so 
that the only change needed in the system (64)-(66) is the 
replacement of S(z) with a sum of the functions S(z - zi ). 

Linearization of the system yields an equation for the 
determination of T, : 

which for Lo%{(Tc ) reduces to an equation for an isolated 
defect, whereas for Lo 4 {( T, ) , it yields 

1 Td [l+ya;Lol. L o - L l , , ~  ( a l L o )  '" 

T, = Td[l+ y,(alL,)'"l, (Lo-h,, ,(  (alLo) '". (759 I 1.14 s ( A )  him-&" ( ~ l L o ) ' ~  

If A ,,, 22,  the characteristic range of temperatures 
where a localized superconductivity can be observed is gov- 
erned by the following quantity in the case of periodically 
distributed defects: 

and for two defects separated by a distance Lo, this range is 
described by 

In the interpretation of the experimental results (Fig. 
5 )  we must bear in mind that 6T,, has a quantitative mean- 
ing only when we compare situations in which the tempera- 
ture dependences of the physical quantities are of the same 
type: for this reason we can extend the results of Eqs. (76) 
and (77) to the range Lo 2 { ( r )  and find the coefficient in 
(76). 

The author is grateful to A. F. Andreev, M. S. Khaikin, 
and I. N. Khlyustikov for discussions. 

APPENDIX 1 

MODIFICATION OFTHE BCS EXPRESSION NEAR A VAN 
HOVE SINGULARITY 

Substituting into the self-consistency equation of the 
BCS theory 

the density of states in the form N(0) In (J/JEJ ) and assum- 
ing that A, = VN(O), we obtain 

Retaining in turn one of the two logarithmic terms, we find 
that 

The result given by Eq. (A3) was obtained in Refs. 18 and 19 
and it is valid only in the range T, 5 1 K, which is of no 
interest from the point of view of the high-temperature su- 
perconductivity. At values of T, which are not too low, we 
can obtain estimates using Eq. (A4) representing the usual 
BCS expression for the case with a Van Hove singularity, 
truncated on thew, scale. The asymptotes of Eqs. (A3) and 
(A4) are not very accurate and Eq. (A2) can yield also a 
general expression 

TC=1.14Jexp(-{2/ho+[ln(J/oD) ]2-1.31)'h). (A5) 

Dzyalo~hinskiY'~ demonstrated that when a Van Hove sin- 
gularity is associated with a self-intersection of a two-dimen- 
sional Fermi surface at a near-normal angle, an investigation 
of the range I -/l,[ln(oD/T)]2 requires summation of a 
"parquet" pattern. This is important only in the case of 
anomalously small values ofAo, because otherwise the terms 
-ln(w, /T ,  )In( J/w, ) predominate and the BCS expres- 
sion applies. 

APPENDIX 2 

GREEN FUNCTION OF ATWINNING PLANE 

In view of the mirror synmetry, the function p(z)  is 
V i  1-'hetk,z+B I v2 I -'heik,z , z>o 

P(')  = {:I v, I - ' h e - i k , z C D  I v, 1 -%e-zk.z  , Z<0 (A6)  

where k, are the solutions of the equation E ,  (k )  = E and we 
also have v, [a&, (k)/dk 1, = k m .  The coefficients A,  B, C, and 
D are related by a unitary matrix which, after allowance for 
the mirror symmetry, becomes 

B eCa cos x ieiu sin x ) (f ) 
(D )= ( i e i u  sin eia cos y 

The boundary conditions at the points z = f L /2 im- 
ply the absence of transmitted waves outside the sample: 

-4 esp(il i ,L/:!) =B exp ( ik2L/2+  icp) ,  

C e s p  (ilc,L/2) =L) exp(il;,L/2+icp). 
(A81 

If we obtain the eigenfunctions and the eigenvalues and cal- 
culate the sum overs in Eq. ( 14) for large values of z and z', 
then for z > 0, z' > 0 we obtain 

-i sgn o ---- ax { e s p [ i ( a + k 2 z - k , ~ ' )  ] 
( U l U 2  I '" 
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( 1 )  exp[ i k ,  ( z - z ' )  I 
G . k .  (2-2.)  =-i.gn 0, C , ,, , ; 

If z > 0, z' < 0, we find that 

Sin IeXp(i  ( a + k 2 z + k . ~ ' )  I G " k  ( z ,  2') = sgn @ 

The other cases are obtained from the relationship 
Gokl (z,z') = GWkll ( - Z, - z ' ) .  

"Such a splitting is not identical with the division of the order parameter 
into "two-dimensional" and "three-dimensional" in Ref. 5; the latter 
appear in Ref. 5 as components of a vector and not in a sum. 

"The results given by the system (5  1) are identical with those obtained in 
Ref. 5, where however they are expressed in terms of phenomenological 
parameters. The result ST, - T ,  is obtained in Ref. 6 without allowance 
for the contribution of Tamm levels. The source of error there is the 
incorrect nature of the oscillatory factor in the second term in Eq. (A3) 
for G ,  ( x , x 1 , k )  in Ref. 6, so that the constant Lo in the correct expression 
( 10) is found to be Lo - g o .  In reality, the expression for Lo obtained by 
the sum rule of Eq. (21 ) transforms into an integral ,f A, (z) dz-a .  
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