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We derive the kinetic equations for the density-matrix components and the quasiclassical 
transport equation for densities and fluxes for a two-dimensional electron system with spin-orbit 
interactions. Using the transport equations we evaluate the main characteristics of combined 
resonance-the amplitude, line shape, linewidth, and saturation. We also consider nonlinear 
resonance effects-second-harmonic generation and rectifying effect-and spin resonance when 
alternating electric and magnetic fields act simultaneously. 

1. INTRODUCTION 

The two-dimensional electron gas in heterojunction 
MIS structures or on the surfaces of semiconductors is the 
result of size quantization in an axisymmetric potential well, 
so that the symmetry admits the presence, in the Hamilto- 
nian of these electrons, of a spin-orbit term which is linear in 
the momentum'-3: 

A r,, =-'12 [OVI i;. (1 )  

by the present authors and Khmel'nitskii8 the manifestation 
of CR was studied for an electron system coupled to a dislo- 
cation and described by a Hamiltonian similar to (2) .  It was 
shown that the shape of the CR line observed experimental- 
ly9 enables one to explain a number of specific properties of 
the electron system. In the two-dimensional case the C R  
picture turns out to be even richer and can offer new possibil- 
ities of studying the properties of electron systems. 

2. KINETIC EQUATIONS AND TRANSPORT EQUATIONS 
The vector V which has the dimensions of a velocity, is here 
oriented at right ang lz  to the plane of the two-dimensional We shall start from the Liouville equation for the 

states. The operator X",, modifies the normal spectrum of Wigner 

the electrons in a magnetic field which connects the Landau r+u/z  

quantization with the spin.' Resonance absorption of an al- j (p , r )=  jduerp(ipu+i- e ~ d l ) j ( r - - , r + -  u , 
ternating electric field occurs at frequencies which depend ,-,,,: 2 " )  2 
on V and which can be realized either as cyclotron resonance 
(CY) corresponding to transitions without spin changes, or wheref (rl,r,) is the density matrix-a 2 x 2 matrix in the 
as combined resonance (CR)-transitions between the spin Win indexes-which has the form 

branches without a change in the number of the Landau + 

level. ' 
An analysis of the experimental data4.5 about resonance 

absorption in the ~ a ~ s - ~ l , ~ a ,  , A s  heterojunctions was 
given in Refs. 2 and 3 ,  where the manifestation of the spin- 
orbit interaction ( 1 ) was revealed and an estimate was given 
of the spin-orbit constant a = f i V / 2 .  Dorozhkin and 
Ol 'shan~kii ,~ using their own measurements and also those 
of Ref. 7, estimated the spin-orbit coupling constant for the 
hole channel on the ( 1 10) surface of silicon using the discon- 
tinutiy in the Shubnikov oscillations of the conductivity. Ac- 
cording to the estimates in those papers the spin-orbit con- 
stant is a-  (1-6) X eV.cm. We use in the present 
paper the transport equations for the densities and the fluxes 
to obtain the basic characteristics of the resonance absorp- 
tion of two-dimensional electrons in an arbitrarily oriented 
magnetic field B and alternating electric and magnetic fields. 
We consider nonlinear effects-saturation of the resonance, 
resonance excitation of the second harmonic, and rectifica- 
tion effect. 

To describe the two-dimensional system we use the 
Hamiltonian 

where fi = - iV - e A / c ,  A is the vector potential, and 
fl, = gp,B. It is well known that in semiconductors the 
band mass m is smaller than the "spin" mass m, which deter- 
mines the spin magnetic moment of the electron. In a paper 

Here [ , I  indkates, respectively, a commutator o rzn  anti- 
commutator, S t ( f ) is the collision operator, and 2Y is the 
same as ( 2 )  with the quasimomentum p replacing the opera- 
tor fi. Equation (2 )  is valid for electricnand magnetic fields 
which vary slowly in space. If we write f (p,r)  in the form 

we get from ( 2 )  and ( 3 )  a set of equations for the scalar F o  
and the vector F parts of the distribution function: 
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It is necessary to note that if the external fields are constant 
in space, the kinetic equations ( 3 )  and (5a), (5b) are ex- 
act-they do not contain the semiclassical approximation. 
In particular, when E = 0 and the magnetic field is at right 
angles to the plane, the equilibrium functions F:  and F, 
making the left hand sides of Eqs. (5a) and (5b) equal to 
zero can be obtained from the exact wave functions and 
eigenvalues of the energy.2 

In what follows we conduct our analysis in the semiclas- 
sical approximation E,, T$O,. In that limit we can use the 
classical expression for the collision integral.8 In the case 
when the mean free path is considerably shorter than the 
other spatial scales of the problem, such as the size of the 
specimen in the z = 0 plane and the electromagnetic wave- 
length, and the spin-orbit interaction is weak, 

we can obtain from the kinetic equations (5a) and (5b) 
transport equations for the densities and fluxes: 

Herep and p are the particle and spin polarization densities 
per unit area (the magnetic-moment density is M = pBgp/  
2), I; and I,? are the components of the particle and spin 
polarization flux densities (here and henceforth the upper 
index in I F  refers to the spin and the lower one to the coordi- 
nate). One can show in the same way as in Ref. 8 that in the 
transport equations one gets from the collision operator, in 
the leading order in V, relaxation terms that are diagonal in 
the flux components and have the same relaxation time r for 
I: and IF. The set of transport equations is the following: 

dp d l :  
-- + --- = 0 
d t  d r ,  ' 

Here p = xoB is the vector of the equilibrium spin polariza- 
tion (xo is the static spin susceptibility), 5 = B/B is a unit 
vector along the constant magnetic field, eq, is an antisym- 
metric unit tensor, f2 = rB/mc, and 

for the degenerate and nondegenerate cases, respectively. In 
deriving these equations we have used the approximate rela- 
tions 

and we have also introduced the phenomenological spin- 
spin ( T,) and spin-lattice ( T, ) relaxation times. We assume 
that T,,, S T .  Furthermore, we consider the spatially uni- 
form case when we can drop in Eqs. (8a)-(8d) the terms 
with spatial derivatives. 

3. COMBINED RESONANCE 

We consider the situation when an alternating electric 
field E ( t )  = E exp( - iwt) acts upon the two-dimensional 
electrons, as dues a constant magnetic field B oriented at an 
angle 8 to the normal n, to the surface (the x axis lies in the 
plane of the vectors C; and n, ) (Fig. 1 ). It is convenient to let 
the upper indexes (of the spin polarization) refer to the 
(6,q = n, ,C;) coordinate system and the lower indexes of I; 
and I,! to the (x,y) system in the plane. Moreover, we intro- 
duce circular components of the fluxes and the spin densi- 
ties: 

Z,=Z,+ ial,, ZB=ZE+ipZq, 
p,fi=pc+i BPV~, P=* l ) .  

To take into account saturation effects it is necessary to write 
down not only the equations for the alternating components 
I:, 12, If, and ,u\ but also the equations for the rectified 
components,ii5and~~ (the components p$T$, and ji" are of 
higher order in the small V than top", l t ,  and respective- 
ly, and we therefore need not consider them for CR) 

FIG. 1. Oreintation of the coordinate systems. 
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We introduced here the static mobility v  = er /m and the p' can be written in the form 
diffusion coefficient D = p 7 / 2 m 2 .  Eliminating the spin 
fluxesI2, I f ,  a n d l f ,  we get equations for ,uc and@ which mvB ( l + a G . ) v . ( e ) ~ . x b ) ,  

p ' = - x -  a ( 1 0 )  
are the same as the Bloch equations. It follows from the set 
( 9 )  that thespin density componentp', which contributes to where the v ,  ( w )  = v / (1  + i 7 (a fZRc  - a ) )  are the circular 
the flux I:, experiences resonance at the frequency w  = R, mobility components, made up of the transverse 
[see Eq. ( 9 b )  I .  The expression for the resonant spin density (v,, = vyy ) and Hall ( vxy  = - vyx ) components, 

is the resonance susceptibility, 

l /T ,= i /T2t - ' l ,D ( m  V )  ' l i e  S ( a ) ,  

1 1 1  
-=- + T ~ ( m ~ ) 2 x  (I+-,%Z) 
IT, T, , 1 + ~ ~ ( 6 2 , + u ~ , 6 2 , ) ~  ' 

T2 and T,  are, respectively, the spin-spin and spin-lattice 
relaxation times, 

is the shift in the resonance frequency, and 

The corrections to the spin-spin and spin-lattice relaxation 
times arise due to the random changes in the spin precession 
axis in scattering by impurities and phonons (Ref. 1 ) . " Us- 
ing Eq. 9 ( a )  we write the conductivity flux density in the 
following form: 

where 0:' = ep,v, ( w )  and the part of the effective conduc- 
tivity which describes CR has the form 

The intensity of the absorbed energy per unit area of the 
conducting layer is 

The resonance absorption of a wave which is linearly polar- 
ized at an angle p  to thex axis ( E ,  = E, exp i ap )  is given by 
the following expression: 

where 

~ c ; ; "  =-'.'; (nz V )  'By, ( o )  ( ~ ~ . , + i ~ ~ v ~ ~ )  ', (15a) 

u=;R ---'I: (nzV)?Bx(o )  ( g = ~ ~ , i  i ~ ~ ~ ) ~ ,  ( 1 % )  

If the magnetic field is not at right angles to the conducting 
layer (cz # 1 )  the absorption is anisotropic and depends on 
the direction of the polarization: 

In particular, if the magnetic field is parallel to the surface 
( f z  = 0 )  there is no resonance absorption for waves which 
are polarized at right angles to the field. 

The basic characteristics of the resonance-amplitude, 
shape, width-depend significantly on the relations between 
the reciprocal relaxation time I/T and the characteristic fre- 
quencies R, and R, . 

1 .  The simplest case is when R, 5 R, < l / r .  In this case, 
irrespective of the dependence on the orientation of the mag- 
netic field and the polarization of the wave, the absorption 
curve has an antiresonance shape with a dip in the region of 
the spin frequency. The resonance width equals. 

and the resonance frequency shift Aw is much smaller than 
its width. For a wave polarized along the x axis the ampli- 
tude is independent of the direction of the magnetic field and 
for a wave polarized along y the amplitude is proportional to 
f : .  

2. In the opposite limiting case R, 2 R, & l / r  there oc- 
curs not only spin resonance, but also the broader and 
stronger cyclotron resonance the frequency of which de- 
pends on the inclination of the field ( f z  R,  ). When the reso- 
nance frequencies are the same ( f z  = R, / R c  ) the charac- 
teristics of the spin resonance are changed appreciably. The 
spin-resonance frequency shift 

and its width 

depend resonantly on the inclination of the field and the 
frequency shift changes sign for f ,  =. 0, /a,. The shape of 
the CR curve has for any polarization of the wave the shape 
of ordinary Lorentz resonance for practically the whole f ,  
range and is distorted only in a small neighborhood of a 
"resonance" inclination of the f i r ~ l ~ l  " Whpn 

542 Sov. Phys. JETP 68 (3), March 1989 A. E. Koshelev and V. Ya, Kravchenko 542 



rent response which is proportional to the square of the elec- 
tric field: 

FIG. 2. Curves of combined resonance in a strong magnetic field for dif- 
ferent orientations of the field relative to the normal to the surface: 1- 
9 = 0", 2 -9  = 22.5", 3-9  = 35.3", 4-8 = 90" ( R ,  = 12, cos 9 ) .  We 
used the following parameter values: E,T = 15, SZ, T = 6 ,  a, T = 2, m V'T/  
2 = 10 '. 

gz = R,/R, the CR curve takes the antiresonance shape 
and the "dip" occurs in the center of the broader cyclotron- 
resonance curve. The CR amplitude also depends resonantly 
on the inclination of the field and for a wave polarized along 
the x axis 

and for a wave polarized along y 

We show the CR features mentioned here in Fig. 2. 

4. RESONANCE SECOND-HARMONIC GENERATIONZ' 

As the electron system described by the Hamiltonian 
(2) has a center of inversion, here is a second-harmonic cur- 

We note that there is no rectified conduction current 
(although there are spin responses ,TiB and 7: at the zeroth 
harmonic). Formally this is connected with the fact that in 
the homogeneous case, under electric excitation, the connec- 
tion between I 0  and the spin polarization in (8c) is realized 
only through dp/at. 

To evaluate 1: ,, we need add to the set (9a)-(9f) equa- 
tions for the second harmonics p$iiO and Iz;fic: 

On the right-hand side of Eq. (21d) one must substitute the 
first harmonic of the spin polarization pB obtained by solv- 
ing the set (9b)-(9f). The second harmonics of the spin 
polarizations pf1 and pfI, which determine the response of 
the conduction current ( 2  la) ,  have resonances both near the 
spin resonance [when w z R ,  the right hand side of (21d) 
with p' is at resonance] and near half the spin frequency 
[when w =: R, /2 the resonance is caused by the first term of 
(2 I b ) 1. In the region of the resonances the coefficients 
of the (20) have the form 

1. When w=:R, 

2. When w -- f l ,  /2 

We note that the second harmonic is generated provided the 
external magnetic field is not at right angles to the conduct- 
ing layer. The ratio of the resonance responses at the first 
and the second harmonics is, to order to magnitude, equal to 

For parameter values V- lo5 cm/s, B-0.1 T, and v- lo3 
cm2/V.s the characteristic value of the field strength at 
which the responses at the two harmonics are comparable is - lo2 V/cm. Near half the spin frequency (w =: R,,/2), a 
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spike appears also on the first harmonics. The amplitude of 
this second harmonic in the current is 

5. SIMULTANEOUS ACTION OF ALTERNATING ELECTRIC 
AND MAGNETIC FIELDS 

One often measures in experiment resonance reflection 
or transmission of an electromagnetic wave (e.g., Ref. 4) .  In 
that case the spin resonance can be excited both by the elec- 
tric and by the magnetic component of the wave. Moreover, 
the presence of an alternating magnetic field leads to a new 
effect-the resonant generation of direct current (rectifying 
effect). 

For variable electric and magnetic fields acting simulta- 
neously, the resonance part of the spin polarization can be 
obtained from Eqs. ( 10) and ( 1 1 ) through the substitution 

where 2, = B( + is,, is the circular component of the alter- 
nating magnetic field. When energy is absorbed there oc- 
curs, beside the terms which describe "pure" CR and ESR, 
an "interference" term proportional to the product of the 
electric and mangetic fields: 

The first term describes here the electric dipole contribution 
to the absorption, which is given by Eq. (14), the second 
term describes the usual ESR: 

and the third term 

gives the interference contribution to the absorption, caused 
by the superposition of the fields causing the spin transitions 
(the magnetic field and the effective magnetic field from the 
spin-orbit interaction). 

The presence of an alternating contribution to the cyl- 
cotron frequency leads to resonance generation of a direct 
current: 

where the coefficient b,,, and c, are given by the equations 

6. CONCLUSION 

The analysis of the transport equations shows that the 
amplitude of the CR is in reality determined by the responses 

of the conduction current I :  and the spin flux 12 to the 
variable electric field. One should therefore expect that the 
expression obtained for this amplitude [Eq. (13) ] remains 
valid in leading order in V also in more complicated situa- 
tions (e.g., when l / r ,  T 5  R,cz and the Shubnikov oscilla- 
tions of the conductivity become important), provided we 
replace v, ( w )  by the real mobility value that determines the 
response of the current to the alternating field. This state- 
ment can immediately be checked for free electrons in any 
Landau level and also for states which are localized at an 
impurity (in that case one can in the approximation which is 
linear in V evaluate the dipole moment matrix element be- 
tween states with different spin directions). In both cases 
Eq. ( 13) gives the correct value of the CR amplitude (see 
Appendix). 

The CR line shape is determined by the relation be- 
tween the different components of the mobility (the real and 
imaginary parts of the diagonal and the Hall components). 
In particular, when a , ,  w < l / r  and the real part of the diag- 
onal component of the mobility is larger than the other com- 
ponents, the line has an antiresonance shape. 

The transport equations (8 )  do not give a spin-orbit 
splitting of the cyclotron resonance (this splitting was evalu- 

ated in Refs. 2 and 3 for V - S  fl, under conditions which 
were te opposite of the ones used by us when we wrote down 
the transport equations). One can obtain the splitting by 
expanding the scheme used: the equations for the fluxes con- 
tain is a link to higher moments (( pip, - (p,p, ) ) fD ), 
which we neglected. If we take this link into account and 
write down equations for these moments we can obtain a 
splitting of the cyclotron resonance frequency Afl ,  -m V2. 
We assume, however, that the inequality A R C  < l / r  holds 
and we neglect this splitting. 

The ratio ofthe CR and ESR intensities is ofthe order of 

If we take typical values for the hole channel on the ( 110) 
surface of Sib: m z0.35m0, V=. 10%m/s, and v z 3  X lo3 
cm3/V.s, we get an estimate QCR /QESR - lo6, if the electric 
and magnetic field strength have the same values. However, 
the mobility changes within wide limits depending on the 
frequency, the magnetic field, and the impurity density, and, 
moreover, due to the large value of the permittivity in semi- 
conductors, the electric field strength in an electomagnetic 
wave is smaller than the magnetic induction and therefore it 
may turn out that real situations where the CR and the ESR 
are of the same order of magnitude can in actual fact be 
realized. It was shown in Sec. 5 that the absorbed power 
contains not only terms describing "pure" CR and ESR but 
also an interference term proportional to the product 2 ~ .  
This contribution, in particular, changes sign when one var- 
ies the direction of the wave propagation and it can be shown 
experimentally. 

Nonlinear resonance effects-second harmonic genera- 
tion [Eq. (17)-(19)] and therectifyingeffect [ (21) ,  (22a), 
(22b) ]-may be of interest for experimental observations. 

The authors are grateful to D. E. Khmel'nitskii for dis- 
cussions. 

APPENDIX 

Let us assume that in the description of the electron 
quantum states we can take the spin-orbit operator ( 1 ) to be 
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a perturbation. We show that the CR amplitude, i.e., the 
absorption of energy from a variable electric field E ( t )  in 
transitions between spin sublevels of any Landau level [or of 
a state localized at an impurity] is determined by the re- 
sponse of the velocity to the field E ( t ) ,  i.e., by the quantum- 
mechanical value of the mobility, similar to Eq. ( 1 3 ) .  

The quantum mechanical expression for the absorption 
Q in a transition from a state ( TA ) to a state I LA ), where A is 
the number of the Landau level, under the action of the per- 
turbation - e E ( t ) r  has the form 

Here ,u$ =f in - f is the spin polarization of the level A, 
i.e., the difference between the probabilities of occupying the 
sublevels with down and up spin, respectively, r, = x + iay 
( a  + 1 ) .  The wave functions with first-order corrections 
in F5, of ( 1 ) are the following: 

Here the 4 ( 0 )  are the circular components of the mobility, 
determining the response of the velocity of the variable field 
E.  Indeed, onecaneasily show that (A 10, [ A  ) = ( m ) E ,  for 
the perturbation - eEr. Using ( A 3 )  in ( A l )  we get for the 
loss an expression of the type of the ( 14) with an appropriate 
u:: which is the same as ( 13) when in the latter we change 
from a Lorentz resonance to a 6 function. 

"In atomic semiconductors the times T I  and T, are determined by the 
spin-orbit interaction, modulated by the lattice vibrations; according to 
Ref. 11, T G1 cc (Ag)'/r, where Agittheshift in thegfactor upondefor- 
mation. Since Agx V, both terms in T , > I  are of the same order of small- 
ness in the spin-orbit interaction ( a V2).  

"The nonresonance response to the second harmonic at high frequencies 
( w s l l , ,  1/71 is considered in Ref. 12. 
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