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We propose a theory of non-degenerate quantum liquids which is insensitive to the kind of 
particle statistics and which is applied to condensed helium and hydrogen. We take explicitly into 
account the fact that the atomic mass and its polarizability are small. We take as the zeroth 
approximation a system of hard spheres while the attractive forces and the softness of the atom are 
taken into account as small effects. We show that for temperatures Twhich are larger than the 
degeneracy temperature, but less than the temperature at which the atoms are destroyed 
(ionized), the only characteristic energy scale of the liquid is the energy K O of its zero point 
oscillations-the value of the mean kinetic energy of an atom at T = 0. "Quantum scaling" 
occurs, i.e., scale invariance of the thermodynamic and kinetic characteristics of the liquid under 
those changes in Tand the density n which leave the reduced temperature T * = T/K O 

unchanged. Through a transformation of the scales of T and n one can determine the 
thermodynamic functions of other quantum liquids, using the known experimental data of He4. 
We obtain relations between the thermodynamic and kinetic characteristics of liquid He3 and 
He4. Using the experimental data for He4 and the isotopic law of corresponding states for 
quantum systems with a large value of the de Boer parameter we determine and tabulate all 
thermodynamic functions of liquid He3 in those temperature and molar volume ranges where 
they have as yet not been measured. We propose a rough model for a quantum liquid which is 
based upon the assumption of a dominant contribution of diffusive excitations to the free energy 
of a dense condensed medium. We give a derivation of the equation of state of a quantum liquid. 
We find a relation between the equations of state of liquid He3 and He4. We use experimental data 
for He4 to determine the equation of state of hard sphere quantum liquids and compare it with 
similar equations obtained by computer simulations. We determine the ground state energy of 
spin-oriented condensed hydrogen isotopes. 

1. CRITERION FOR QUANTUM NATURE OF A LIQUID 

1. It was shown in Refs. 1-4, using liquid He' and He4 as 
an example, that the quantum and exchange effects can be 
separated for dense condensed media at low temperatures T. 
For liquids, as for crystals, there exists a wide range of T 
which are so high that the effects of the particle statistics are 
still negligibly small, and so low that quantum effects are 
already pronounced. The aim of the present paper is to con- 
struct a quantitative theory of such quantum, but non-de- 
generate, liquids and apply it to condensed helium and hy- 
drogen. Quantum liquids differ strongly in their crude 
properties both from slightly imperfect gases and from 
amorphous solids. Their uniqueness is determined by the 
concatenation of two factors: a small atomic mass M and a 
small atomic polarizability. The interaction potential v(r) 
between helium atoms is purely peripheral, as the equilibri- 
um between the strong close repulsive forces and the weak 
long-range attractive forces occurs at distances r which are 
much larger than the Bohr atomic diameter r,. In other 
words, the effective atomic diameter r,, for which ~ ( r , , )  = 0 
is appreciably larger than r, . For r > r, the rough structure 
of the potential u(r) is given by the Buckingham formula5 

u (r) =vov' ( r * ) ,  v' = exp[y (1-r') 1- >-, 
r." 

The thermodynamic and kinetic properties of helium are de- 
termined for T < lo3 K by the ratio of r,, and the mean intera- 

tomic distance a. In the whole range of densities n = l/a3 of 
interest for the theory, helium is a dense imperfect liquid: 
a 2 r,,. On the other hand, since a $ r, the optical properties 
of helium are determined by the characteristics of the isolat- 
ed atom. The permittivity of helium is thus with good accu- 
racy a linear function of its density n. 

The de Boer parameterh A2 is a measure of the quantum 
nature of a medium; it is large for helium: A2 = h 2/ 

M ~ E , , Z  10, where E" is the depth of the potential v(r); 
v,,=E,,=. 10 K. The main idea which lies at the basis of the 
theory of quantum liquids consists in the choice of the zeroth 
approximation: A2 = y = CO,  where we first assume that 
y = co and then that A2 = C O ;  y-I In A2 = 0. This approxi- 
mation corresponds to a system of hard spheres: 

u(r)=w for r<ro, u(r)=O for r>ro. (2)  

The opposite limit, on the other hand, 
y = A' = y ' In A* = co , corresponds to a perfect gas, as, if 
we put at once A2 = CO, i.e., M = O(or E~ = O), the zero- 
point oscillations break up the atom. Therefore, in contrast 
to the traditional approaches based upon comparing a liquid 
with a gas or a solid, in the theory proposed here we take the 
specific nature of helium into account. A consistent theory 
of quantum liquids is based upon expanding the physical 
characteristics of the medium in series in the two small par- 
amters l/y and 1/A2. Hence, the softness of the atom and its 
polarizability can be taken into account as small effects 
against the background of the zeroth, hard-sphere, approxi- 
mation. 

2. The approximation (2 )  is supplemented by a rather 
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general physical principle. As the main energy variables we 
choose not the temperature but a quantity which is measured 
in neutron scattering experiments-the mean kinetic energy 
K ( ~ , T )  of a single atom of the liquid. The energy K is sensi- 
tive to quantum effects, as K = + T, for a classical condensed 
medium even when we take its imperfectness into ac- 
count.The parameter K has the meaning of an effective tem- 
perature of the medium, i.e., it is its intrinsic natural charac- 
teristic. The extrinsic parameter T, on the other hand, 
characterizes not the liquid but the classical thermostat 
which is in statistical equilibrium with it. We note that with- 
out such a thermostat one cannot even define the concept of 
the temperature T. This choice of energy variable is justified 
by the simple functional dependence of the average atomic 
energy E on K: 

B(n*, T )  = [ l f v  (n*)  ]R(n* ,  T )  +E" (n* ) .  ( 3 )  

For all condensed media there is a region where Eq. ( 3 )  can 
be applied. The parameters v and E ' depend on the reduced 
density n* = nr:, and they vanish in the limit y = A2 = CO: 

v a l/y; E cc E,, SO that E = K in the hard sphere approxi- 
mation (2 ) .  Expression ( 3 )  is the first approximation after 
the hard-sphere one in the expansion o f E  in powers of l / y  
and 1/A2. For quasicrystalline media, ( 3  ) is the first approx- 
imation in the expansion of E in powers o f K / ~ , .  

We show that the functions v and Eo are only weakly, 
logarithmically dependent on Kand that one can neglect this 
dependence when 1 <K/E,  < eY''. To do this we relate the 
mean potential energy 7 to the pair correlation functions 
g ( r )  

We give a rough estimate for F i n  the structureless-medium 
approximation, when g = 1 for r > r, and g = 0 for r < r, . 
The turning point r, is defined as that value of r for which 
the kinetic energy K equals V:SK = u(r, ), where S is a num- 
ber of order unity which depends on n .  This approximation 
corresponds to taking into account only those correlations 
between particles which are connected with their finite size. 
The calculation using the potential ( 1 ) leads to the result 

2nn'" 2; 2J 
V=Y ( R )  E+E" ( K )  , v (K) = - x k 2 + - + -  , 

7 

where x ,  is the solution of the equation 

When 1 < K/v, < get from ( 5 )  and (6) ,  restricting 
ourselves to the first terms in the expansion of F i n  powers of 
I/?' 

2nn.6 
v=--( Y y uoe 

(7 )  

We perform a similar calculation with the m-6 potential 
which is unphysical, but popular, in the theory of condensed 
media: 

2nn.6 3/m .=--(") . 
m-3 6K 

Comparing ( 7 )  and ( 8 )  we verify that the potentials m - 6 
and ( 1 ) are indistinguishable in the range 1 < K /v, < eY'3 
when y = m % 1. The parameters r,, u,, _m, and y for the po- 
tentials rn - 6 and ( l ) are just in that K range determined 
from a comparison between the theory and experiment in the 
limit of a low liquid density. The potential ( 1 ) with y z  11 
and the Lennard-Jones 12-6 potentials therefore agree 
equally well with experiments for a broad class of condensed 
media. 

Expressions (7 )  and (8 )  determine the structure of the - - 
functional 7 = V(K) in the indicated K range: 

Of course, this expansion occurs also for a classical system 
with a low density n, when K = + T  and g = exp( - u/T). 
When T >  u, we have from ( 4 )  for the m-6 potential, chang- 
ing the integration variable, r = r ( p ) ,  where p = v/T, 

The comparison of ( 8 )  with ( 10) gives the value of the pa- 
rameter S in the limit of the low density n: S = f .  The linear 
function of E with K and the force constant v, are thus a 
consequence of the stiffness of the atom y = m > 1 and the 
neglect of the dependence o fg ( r )  on the attractive part of the 
potential v ( r ) ,  which is justified when K > v,. In that case the 
function g ( r )  in ( 4 )  corresponds to a system of spheres of 
diameter r, that depends logarithmically on K: 

We emphasize that the spatial structure of the liquid, which 
already exists in the hard sphere approximation, is taken 
into account here. The n dependence of the functions v and 
Eu can be found, remaining within the framework of the qua- 
siclassical approximation, by taking into account the next 
terms in the expansion of g in powers of n. In first approxi- 
mation' 

4 
g=O for I '  g= 1 + - nnrk3 

3 
for rk<r<2rft, 

Here v,, and E :  are given by the result of the zeorth approxi- 
mation ( 7 ) .  We give the numerical values of v,,, E :, a , ,  a2  
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found by comparing theory and experiment for liquid heli- criteria for quantum behavior and for degeneracy thus con- 
um: tradict one another: the stronger the quantum nature of a 

liquid, the less it is degenerate. Indeed, for a dense condensed 
v0=0.223n8, a,==I.lSfi, a2=1.014, Eo0=45.34n*(K). ( 11) medium the average wavelength 1 of an atom is less than the 

We also give the values ofthe equilibrium densities of liquid average interatomic distance a (the degeneracy criterion 

He3 and He4 for T = 0: I-a is thus not satisfied): 

We took for the helium atom diameter the value r,, = 2.556 
A. As a consequence of the smallness of the atomic masses of 
He3 and He4 the equilibrium densities n& and n& given here 
are much smaller than unity and the virial expansions are 
applicable for the parameters v and E o ,  which are insensitive 
to quantum effects, and even for a pressure P z  10"ar. On 
the other hand, in the Frenkel' limit8 A* < 1, K<v,,, so that 
the function g ( r )  has a fine structure near the minimum of 
the potential v(r) and attractive forces play a decisive role. 
There is also in this case a linear relation between E and K, 
but the expansion of E is in the powers of K/u, and the pa- 
rameter v is close to unity. We can check this by considering 
the classical limit when K = + T  and the specific heat per 
particle = ( 1 + v)+. For a true Frenkel' liquid which has 
clearly pronounced short-range order the specific heat is 
close to the value 3 for certain temperatures. Liquid helium 
does not have this feature, which is characteristic for quasi- 
crystalline media, even at a pressure Pz lo3 bar. The maxi- 
mum value oft, measured by Dugdale and Franck,' for He3 
and He4 is equal to 1.59 which is close to the hard-sphere 
limit +. Hence, when we lower T from T >  vO to T <  vO there 
does not occur an appreciable restructuring of the helium 
correlation function. A strong temperature changes in g ( r )  
would at once have been observed experimentally, as the 
specific heat of a Frenkel' liquid drops in the region of T- vo 
from a value of 3 to 3 owing to the destruction of the short- 
range order in the limit Tsu,. Comparison with experi- 
ments showed that the expansion ( 3  ) is applicable at least up 
to +TZK=: lo3 K. However, there is no restriction on the 
low-T side, as the effective helium temperature K does not 
fall below 10 K. 

3. It is convenient for a determination of the tempera- 
ture dependence of the parameter K to choose as a character- 
istic energy scale its value as T- 0: 

R(n', T) =KOYY'(n', T*), T'=:T/KO, Ro==E(n', O+). 

The limit T = O+ means that we must first put the tempera- 
ture of the degenerate liquid equal to zero and then let T go 
to zero. The difference between K(o+)  and the true value 
K(0)  determines the magnitude of the exchange effects 
against the background of the quantum effects. The effects of 
the particle statistics strongly affect only the T dependence 
of the derivatives of E with respect to T for T <  3 K. The 
energy Eitself, and its derivatives with respect to the density 
n, depend very weakly on them for any T. For helium we 
have the strong inequality: K(o)  - K ( o + )  <K(o).  

According to the usual terminology in the literature, 
the parameter K ' is the energy of the zero-point oscillations 
of the liquid. It is important that K ' is a strongly increasing 
function of n, whereas the degeneracy temperatures T, and 
TA of liquid He3 and He4 decrease with increasing n. The 

We emphasize that in accordance with the general prin- 
ciples of quantum mechanics the value of 1 is determined not 
by the temperature T, but by the average particle energy K, 
and only in the classical limit K = 4 T is the length I the 
thermal de Broglie wavelength. This is the principle differ- 
ence between quantum liquids and weakly imperfect gases. 
The motion of the atoms is quasiclassical even when T = 0, 
as the particle momenta are large and the occupation 
numbers n, small. It is this which makes it possible to take 
into account quantum phenomena while neglecting ex- 
change effects. 

A qualitative explanation of the independence of the 
gross properties of condensed media of the particle statistics 
can be given by comparing the particle momentum distribu- 
tion functions for liquid He3 and He4. For He4 the function 
n, is determined by neutron scattering experiments. It is 
characterized by small occupation numbers n, for all p, 
apart from a narrow region p = 0. The condensate particle 
density no at p = 0 is so small that its exact value has so far 
not been determined. We can therefore to first approxima- 
tion put n, = 0. There is therefore no longer any trace in the 
function n, of the Bose nature of the liquid. The Fermi na- 
ture of the liquid for He7 manifests itself in a jump z in the 
function n, a t p  =pF.I0  It is shown in Ref. 2 that the param- 
eter z is small for He' and a limit on its value is given there. 
At saturated vapor pressure z < 0.13 and at the pressure at 
which the liquid crystallizes z < 0.05. One can thus, as for 
He4, put z = 0. The function n, has then no longer any trace 
of the Fermi nature of the liquid. Hence, for studying the 
gross features of liquid He3 and He4 we can use the same 
methods, even at T = 0. Liquid helium is thus almost struc- 
tureless both in coordinate and in momentum space. The 
lack of coordinate structure is a consequence of the destruc- 
tion of the Frenkel' short-range order in the quantum limit 
A2 3 1. The lack of momentum structure is a consequence of 
the fact that the occupation numbers n, are small and the 
Pauli principle is weakened. There exists for helium a broad 
temperature range T F j  T, < T <  K " where quantum effects 
are very pronounced, but exchange effects are small. The 
inequality T<KO is the general criterion for the quantum 
nature of a condensed medium, and is applicable both to 
liquids and to crystals. 

4. In connection with the crisis of the traditional "gas" 
methods for studying helium, a new trend has recently been 
strongly developed-the theory of almost solid quantum li- 
quids. The basis of this theory is the assumption that there 
exists a strongly pronounced short-range order in a quantum 
liquid, which makes it possible to regard it for a certain class 
of phenomena as a system of particles which approximates in 
its properties an amorphous solid or a glass. ' I - ' '  The quasi- 
crystalline, lattice, and glass models of a liquid differ only in 
inessential details. They are, in fact, based upon premises of 
the molecular-kinetic theory of a liquid, developed by Fren- 
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kel'.' Making a very strong statement about the localized 
structure of a liquid, the authors of Refs. 11-15 give a com- 
parison of the theory with those experimental data which are 
insensitive to the nature of this structure, i.e., the existence 
of short-range order in helium is itself in fact postulated. On 
the other hand, there is an experiment critical for quasicrys- 
talline models, on x-ray scattering in helium,I6 in which the 
quantity most sensitive to local structure-the liquid pair 
correlation functiong(r)-is determined. The functiong(r) 
characterizes the degree of order of the liquid in coordinate 
space. For helium this order is minimal-it is a most disor- 
dered, most non-Frenke1'-like condensed medium. We note 
that in the history of the development of a theory of classical 
liquids there was a period when lattice and cell models were 
fashionable. However, the further development of the theory 
of the liquid state of matter showed that the degree of order 
in such models was too large7 and untypical not only for real 
liquids, but also for systems which could be modelled nu- 
merically with computers-computer liquids. 

2. ROUGH MODELOF A QUANTUM LIQUID 

1. To  explain the basic propositions of the rough model 
of a structureless quantum liquid we give the relation, ob- 
tained by Egelstaff, 17." between the value of the binary auto- 
correlation function (v(O)v(t)  ) at  t = 0 and the generalized 
frequency distribution g, (w). The quantity 3 is propor- 
tional to the parameter K: 

0 2  

This expression is a consequence of the fluctuation-dissipa- 
tion theorem. The function g, (w ) is normalized by the con- - 
dition K = 4 T as T- co , i.e., 

The relation connecting the mean free energy 7, the mean 
energy E, and the mean entropy S w i t h  the frequency distri- 

. bution (density of states) g (w)  = ( 1  + v)gk (w) is valid 
with the same accuracy as of the linear relation (3 )  between - 
E and K: 

We separated in the entropy of He' the spin contribution ln2: 
g, = 2; g, = 1, which presupposes that exchange effects are 
small. Expressions (17) follow from ( 3 )  and from the defi- 
nitions ofF, E, andy; they are rather general and are applica- 
ble both to liquids and to crystals. The modeling of the liquid 
reduces, in fact, to determining the w-dependence of the fre- 
quency distribution g, i.e., to finding the spectrum of the 
fluctuations of the square of the particle velocity 3. For a 
maximally ordered Debye, liquid A 2 <  1, 1 - v <  1, and the 
main contribution tog, (w) comes from the collective sound 
excitations with a characteristics frequency w, : 

g k = 9 0 ) ~ / 2 o ~ ~  for ( ~ ( ( t ) ~ ;  gk=O for ( d > o D .  (18) 

For a quanta1 maximally disordered liquid A2 >) 1, v <  1, and 
the main contribution to g, (w) comes from the diffusive 
excitations 

gk=300/n(02+ ooZ) for o<o-; gk=O for o>om. 

The introduction of the parameter w, is necessry only in 
order to get the integral, determining the value of K 

to converge. On the other hand, the convergence of the dif- 
ferenceK - K with an accuracy of exponentially small cor- 
rections is guaranteed by the factor n, ( a ) :  .. 

The zero-point oscillation energy if ' is, apart from a factor 
due to the cutoff, the same as the characteristic diffusion 
frequency w,. The n and T dependences of the reduced kinet- 
ic energy K *  is, in fact, a single-parameter one: 
K * = K * ( T *), i.e., K *has no strong explicit dependence on 
the density n. Indeed, one can obtain from (21 ) a reduced, 
exact, unrenormalized expression for K *: 

" 

where the reduced parameters are defined by the relations 

For the diffusion model we have from ( 19) 
300' 00 ao. = = 

2n 
gk-(o') =z (o.'+oo,2) 9 KO 31n(o,/oo) ' 

Hence, if g: and K * depend on n*, the dependence is loga- 
rithmic, connected with the dependence of the parameter 
w, /w, on the density n. This statement is not connected 
with the parametrization in the form ( 19) but is general in 
nature. I t  is only important that the T dependence of K is 
determined by a single (arbitrary) kind of excitations. This 
is not the case for a Frenkel' liquid. At low frequencies 
w r  < 1, where r is the settling life time of an atom on the 
disordered lattice sites, the diffusion approximation ( 19) is 
applicable. For high frequencies, however, w~ > 1, one can 
regard the liquid as an amorphous solid and the Debye ap- 
proximation ( 18) holds. We note that even for classical ar- 
gon the function g, (w) determined by RahmanI9 by com- 
puter simulation agrees better with the diffusion than with 
the Debye model. I t  is therefore natural for helium in the 
limit A2 1 to let the settling life time of an atom r go to zero, 
i.e., to forget the Frenkel' ideas about the structure of the 
liquid. The considerations given above thus give us reasons 
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for assuming that we have quantum scaling for quantum 
liquids, i.e., that there is scale invariance of the properties of 
the medium relative to those changes in the temperature T, 
the density n, the coupling constant E,, and the mass M 
which leave the reduced quantum temperature T * = T/K O 

unchanged. In the range of T higher than the degeneracy 
temperatures T, and T,, but lower than the destruction 
(ionization) temperature T" of an atom, the zero-point os- 
cillation energy K O  is the only characteristic energy scale of 
the medium since we can put T,, T, = 0, T " = oo for such 
T. The properties of helium are indeed univer~al .~  In experi- 
ment one measures in fact the reduced dimensionless param- 
eters K *, C *, S *, and F * defined by the relations 

The reduced parameters are connected with the observable 
quantities through expressions that follow from (3) :  

A detailed analysis of the experimental data has made it pos- 
sible on the basis of these relations to determine the way the 
reduced parameters K *, C *, S *, and F * depend on the re- 
duced density n* and temperature T *. We have thus deter- 
mined the characteristics (26) of an idealized quantum sys- 
tem consisting of hard spheres for which v = E' = 0, using 
the properties of a real system for which the expansion (3)  of 
E in powers of y- ' and A - 2  holds. 

2. We now turn to a discussion of the diffusion model 
and determine the T *  dependence of K *. We obtain first of 
all an interpolation formula by replacing in (22) the func- 
tion n, by its asymptotic expansion for w < 2Tand setting it 
equal to zero for w > 2T, where it is exponentially small: 

T 0 ( )  o for 0<2T; n B = O  for a>2T 

Evaluating the integral in (22) we find 

3 3 
K*=l+ - T' arctg aT' --In ( ~ + U ~ T . ~ ) ,  

n 2na 
(28) 

where the parameter a is connected with the reduced diffu- 
sion frequency: am,* = 2. Using (28) and (25) we get ex- 
pressions for the reduced specific heat C * and entropy S *: 

or*  

3 3 arctgz 
C'(T')=-arctgaT0, S'(T.)=-j- dz . 

n 
0 = 

The relations obtained suffice to determine the asymptotic 
behaviorofK*, C* ,andS*for  T * >  1 and T * < l :  

K'=S/2T*+K,'-~, In T*, C'=3/2--~,/T' for T'>l 
S*=3/2 In T ' f  .S,*+T,/T' 

where 

3 3 
K,*=I --In ae; 7, = - ; 

n n a  

3 S,' =; - 3a  a' 
2 

l n a ;  A -  A2=-. 
2n 4n 

The upper asymptotic ( T * > 1 ) is characteristic for all con- 
densed media, i.e., it is not a specific feature of quantum 
liquids. It is only important that the potential u of ( 1 ) be an 
exponential function of r for small r. The attractive forces, 
on the other hand, can be neglected at high T. The lower 
asymptotic ( T * < 1 ) is characteristic for non-solid and non- 
superfluid media, i.e., for substances with a spectrum of low 
lying excitations which does not reduce to a phonon spec- 
trum. Apart from small exchange effects the expansion of C 
in powers of T starts for T,, T, < T <  K O with a term cc T 
which is not forbidden by anything, as the value of the den- 
sity of states g, in ( 17), is nonzero for w = 0. The inequality 
T < K ' can only be realized for condensed helium and hy- 
drogen and the linear T dependence of can be discerned. 
At all other substances solidify at T >  K ' and for them the 
liquid state is metastable at T < K O. As a consequence of the 
universality, i.e., the single-parameter dependence of the 
thermodynamic functions of helium on n and T, the param- 
eters K *, , S *, ,A , ,  A,, r, in (30) depend weakly on the liq- 
uid density: 

We compare these empirical values with the analogous pa- 
rameters obtained on the basis of the interpolation expres- 
sions (28) and (29).  To do this, we fix the free parameter a 
by the condition S*, = +lna = 2.56 from (31) and (30), 
i.e., a = 5.505, and we get from (30) 

It is interesting that the interpolation formulae (28), and 
(29) agree better with experiment than the exact expressions 
forK * , S  *, and C * obtainedfrom (22) by numericalintegra- 
tion over w: 

K'=1+3/2T*+~,{lr~ y-Y ( l +y ) ) ,  y=wOb/2nT', 
C'-3 {y2UJ' (y)  -Y-'/~), (33) 

Se=3{ln I'(y) +1/21n (y/2ne) -Y (y) y+y), 

where r is the gamma function, and \V and V' are the first 
and second derivatives of the logarithm of that function with 
respect to the variable y. Determining the asymptotic expan- 
sions of (33) and comparing them with (30) we get 

We fix the value of a by the same condition S*, = 2.56, 
whence a = 4.049, w,* = 0.494, and we get from (34) 

A comparison of ( 3 11, ( 35), and (32) shows that the diffu- 
sion model with a single parameter w,* agrees very well with 
experiments for high T. At low T, however, the correction 

484 Sov. Phys. JETP 68 (3), March 1989 A. M. Dyugaev 484 



a T 3  to the linear T  dependence (30) of differs from the 
empirical one by an order of magnitude, which may be con- 
nected with the fact that we have not taken into account the 
contribution from the long-wavelength sound excitations 
and have also neglected the temperature dependence ( 19) of 
the diffusion frequency a,*. Because of the numerical factor 
271. occurring in the definition (33) of the parameter y, and 
appearing everywhere when we make the conversion w + T, 
the high temperature asymptote of S *, K *, and C * extends 
back to the region of low T  * ~ 0 . 2  almost down to the lines of 
the phase transitions of liquid He4 into the superfluid and 
crystalline states. The low temperature limit T-0, where 
the diffusion approximation is no longer applicable, is thus 
practically inaccessible, for at low temperatures the question 
arises of taking exchange effects into account. The values of 
the parameters A, and A, in (30) are determined by separat- 
ing the exchange contribution to K *, C *, S *, i.e., they are 
obtained by an extrapolation of the functions (30) from the 
range 0.1 < T  * < 0.3 to the low T  region. The frequency dis- 
tribution g(w ) can in principle be found using Eqs. ( 17) by 
considering them as integral equations with the functions; 
K, and 3 found experimentally. However, Lifshitz2' has 
shown that such a problem is mathematically incorrect, as it 
is intrinsically unstable to small variations of the functions - - 
F, K, and 3. This problem is also physically incorrect, as 
g(w)  is T-dependent and cannot be determined without ad- 
ditional assumptions, apart from ( 17), about the properties 
of the liquid. One can, nevertheless, show that the combina- 
torial expression ( 17) for the entropy 3 remains valid also 
after we take the T  dependence of g into account, but in 
defining the specific heat we must differentiate not only 
the explicitly T  dependent function n., but alsog(w, T).  The 
diffusion Ansatz ( 19) for g ,  (w) was introduced from intu- 
itive considerations based upon the assumption that the 
transition from the Debye approximation ( 18) to some oth- 
er approximation, "orthogonal" to it, when the de Boer pa- 
rameter A2 increases from zero to infinity, is a continuous 
one. As there is a low frequencey w range where Eq. (19) 
holds, even when A2 < 1, we have made the natural assum- 
tion that this other approximation can be obtained by a grad- 
ual broadening of the range of applicability of the diffusion 
approximation. The proposed model of a quantum liquid 
was considered only to illustrate the difference in principle 
between quantum and Frenkel' liquids and to corroborate 
the asymptotic expansions (30).  The results below are not 
connected with the diffusion approximation, but are based 
upon the relations (26) which are a consequence of the lin- 
earity (3 )  of E as a function of K. 

3. ISOTOPIC SCALING 

1. To connect the properties of liquid He" and He4 we 
need to find the way the zero-point oscillation energy K O  

depends on the atomic mass M. This can be done on the basis 
of an identity which connects the mean kinetic energy K with 
the derivative of the free energy per atom ' with respect to 
M 21: 

Using the M dependence of the parameter T * ,  T* = T /  
KO(M), we can find from (36) and (26) an equation for 

KO= K()(M) 

Hence K O has a power law dependence on M: 

K O  cc f i j - ~ / ( i + ~ )  (38) 

Using (38) we can establish a connection between the zero- 
point oscillation energies K : and K t  of liquid He3 and He4 
for the same densities, n3 = n4 = n: 

As the parameter Y is small for quantum liquids, the zero- 
point oscillation energy KO is to a first approximation in- 
versely proportional to the atomic mass M. This distin- 
guishes a "good" quantum liquid from a "good" crystal for 
which K O cc M -' I2 .  Using (26) and (39) we can obtain rela- 
tions between the energies E, and E,, the free energies& and - - - 
F,, and the kinetic energies K,, K, per atom ofliquid He3 and 
He4 for n, = n, = n: 

Differentiating (40) with respect to T we get a relation be- 
tween the specific heats C, andC, and the entropiesz, andz, 
per atom of liquid He3 and He4: 

Differentiating (40) with respect to n and using the depend- 
ence (39) of A on n, we find the relation between the equa- 
tions of state of liquid He3 and He4, i.e., the n and T  depen- 
dences of the pressures P, and P,: 

As the parameter Y is small, and the values of the masses M3 
and M, are nearly the same, the quantity P - in (42) depends 
weakly on T. Using the expansions 

we can simplify Eq. (42) : 

A0 (44) 
1 87s (n,  T) ~ 3 = E o + V ~ a .  Po- (n ,  2') = (1 - -) n' 
A0 dn ' 

This equation is obtained from (42) by expanding in the 
small parameter A - A, and using the identity 

(45) 
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FIG. 2. The curves give the pressure P,(n,T) of He3 as function of the 

R 3 ( n 3 ,  T ) = R 4 ( n , ,  T), C 3 ( n s ,  T ) = C l ( n , ,  T ) x ,  liquid density n(n,,, is the equilibrium density of He3), determined using 

(46) Eq. (47) and Hill and Lounasmaa's datazz for P4(n,T). The pointsare the 

1+v (123) results of r n e a s ~ r e m e n t s ~ ~ . ~ ~  of P, (n, T).  
Ss (ns, T )  -3, (n,, T )  x=ln 2, x = 

~+v(n,)" 

Equations (40)-(42) are the physical content of the isotope PJ(fl,T),bar 

law of corresponding states for quantum systems. It is satis- .go 

tied up to exchange effects and applicable not only to liquids, 
but also to crystals, for which we must put v = 1 in (39). The 
derivation of Eqs. (40)-(42) is based only on the agreement 
of Eq. (26) for 7 with the thermodynamic identity (36), 
without any modeling assumptions having been made about 5o 
the properties of condensed media. 

2. We can obtain another set of relations, if we bear in 
mind that the parameters F *, K *, C *, andS * depend weakly 
on n*. It turns out to be possible to "convert" He3 into He4 at 
the same temperature T = T, = T4, but at different densities 

The parameter x in (46) differs very little from unity, be- 
cause Y is small and the values of n, and n, are nearly the 
same. 

3. On the basis of the relations given above and the ex- 
perimental data for He4 we have determined and tabulated 
(Sec. 10) the thermodynamic functions of liquid He3 in that 
range of temperatures T and molar volumes V where they 
have not yet been found experimentally. The data for He3 
and He4 which already exist agree well with these relations. 
In the range of high densities and pressures P=: lo3 bar the - - - - 
relation (41 ) between C,, C4 and S,, S4 agrees with the data 
of Dugdale and Franck9 (Fig. 1 ) . The accuracy of the data 
for the quantities P3 and P4 is as yet insufficient to determine 
then and T dependences ofthe parameter P -. However, we 
can use (44) to find with an accuracy of 1% the n and T 

n, and n4, such that the zero-point oscillation energies of the 10 

FIG. 1. Specific heat and entropy of liquid helium at constant volume 
V = 16.25 cm3/mole. Dugdale and Franck's data. I-Specific heat C, ( T) 
of He3, 2-specific heat C,(A T) of He4, 3-Non-spin entropy S, ( T)-ln 2 
of He3, 4--entropy S4(/ZT) of He4. The parameter /Z is defined by Eq. 
(39) .  

- . . 

dependences of P, for T >  5 K in the structureless-medium - 
approximation when v = 0, A = 3, and 7, (n ) = V3(n,,) n/ 
no,. In that case the parameter P - is independent of Tand is 
a quadratic function of n: 

liquids are the same: K: (n,) = K: (n,). In that case I I / I , , , ,  

T: = T / K y  = T f  = T/K:, and using (26) weget 
0.8 1.2 1 , f i  

/fl,,7 

8-11.72 bar. (47) 

We give in Figs. 2 and 3 the function P, = p,(n;T) deter- 
mined using (47) and Hill and Lounasmaa's dataz2 for 
P4(n,T). The points on these curves are the results of mea- 
surements of P3(n, T) by Bogoyavlenskii, Karnatsevich, and 
KonarevaZ3 and by Karnaus and R~denko . ' ~  The difference 
between the measured and the calculated values of P, (n,T) 
for T <  4 K can be explained by the fact that exchange effects 
were neglected. However, for 8 < T <  14 K this difference, 
which reaches 3%, is connected with the absence of a unique 
temperature scale for T=. 10 K and is not the result of the 
assumption (47) of a structureless medium. The authors of 
Ref. 23 have themsleves noted the systematic disagreement 
of data obtained in different laboratories in the world for 
T=: 10 K. In the region T=. 10 K there is in fact no good 

P, l r i ,  T ) ,  bar 

FIG. 3. The curves give the pressure P3(n,T) of He' as function of the 
temperature T, determined using (47) and data" for P,(n,T). The points 
are for P, (n,  T).  
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thermometer. The pressure Pand the density n  are measured 
with a very great accuracy of but the temperature T 
is measured with an accuracy of 1 % which is low for present- 
day technique. Equation ( 4 7 )  holds also in the limit of a low 
liquid density where it is the relation between the virial coef- 
ficients B, and B4 of liquid He3 and He4: 

The values of B3 and B4 calculated by Kilpatrick et on a 
computer agree with the parameter fl in ( 4 8 ) ,  which for 
4 < T < 6 0  K depends weakly on T: 

The relation ( 3 9 )  between the zero-point oscillation en- 
ergies K ,O and K ! agrees with the variational computer cal- 
culations of these quantities by Manousakis, Fantoni, Pand- 
haripande, and U ~ m a n i , ~ ~ . ~ '  as can be seen in Fig. 4 where we 
have given the values of K !, AK :, and AK :, for polarized 
He3. The curve in that figure gives the n  dependence of K 
determined below by using ( 3 ) .  

4. SPIN-ORIENTED HYDROGEN 

Since all characteristics of the liquid depend on the di- 
mensionless parameter n* = nri rather than on the dimen- 
sional density n, there is also coordinate scaling, i.e., a scale 
invariance of the properties of a medium to those changes in 
the size r,  of the atom and in the density n  for which the value 
of the reduced density n* does not change. We give a formu- 
lation of the general law of corresponding states for quantum 
systems: those condensed media for which the potential v is 
determined by a single reduced function u* of the reduced 
coordinate r* = r/r,, u  = E,V* ( r*  ) , have the same reduced 
thermodynamic functions K *, S *, and C * of the reduced 
density n* and temperature T*. On the other hand, the way 
the zero-point oscillation energy K ' depends on the force 
constant E~ is determined by matching the linear relation ( 3 )  
between E and K to the thermodynamic identity which con- 
nects the average potential energy 7 with the derivative of 
the free energy :with respect to E,: 

Since E O oc E ~ ,  and Y is independent of E,, we get from ( 5 0 )  
and ( 2 6 )  an equation for IE; O = K ' ( E , )  : 

ago 
vRO= ( i i -v ) -  eo. 

380 

The zero-point oscillation energy K has thus a power-law 
E~ dependence: 

From ( 5 2 )  and ( 3 8 )  and a dimensionality analysis of the 
quantities h, ro M, E,, and n  we find an expression for *as a 
function of those parameters: 

where f, is a dimensionless function of the reduced density 

FIG. 4. The curve gives the parameter IE: of liquid He4 as function of the 
density n, determined using (74) and (76); n, = 0.01035 A-'. The 
points were obtained by varktional caJculation of the parameters of He4, 
He3, and polarized He3: *: K ':, 0: LK ':, A: LK :, . '"." 

n*, while A2 is the de Boer parameter. We can thus deter- 
mine the zero-point oscillation energy of other quantum li- 
quids in terms of the value of the parameter K! for liquid 
He4: 

where r,,, and E,,, are the parameters of the interaction 
potential of helium atoms. As vis small, the E,, dependence of 
K O  is very weak for quantum liquids. 

As the parameter E o  in ( 3 )  is proportional to E,: E* 
= E J E ,  where fE depends only on n*, we can determine it 

for all quantum liquids in terms of the value E ;  = E for 
helium: 

eo 
Eo (eo, n') =EAO (EO He,  n')-. 

Eo He 
(55  

From ( 5 4 ) ,  ( 5 5 ) ,  and ( 3 )  we get an expression for the aver- 
age energy E: 

( 5 6 )  
The dependence o f E / ~ ,  on M, r,, h ,  E ,  is thus a single- 

parameter one and is determined by the value of the de Boer 
parameter A2. It  is convenient to eliminate the functions f, 
and f, from the considerations of ( 5 6 )  and to express E in 
terms of directly observed quantities-the energies E, and 
E4 of liquid He3 and He4: 

E(n*,  7") E O  x e / ~ o = ( p s E 3  (n*,  T * )  
+(P4Z4 (n*, T') ; ( 5 7 )  

the parameters p, and p4 are defined by the expressions 
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TABLE I. 

The n* dependence of the parameter v,  determined from the 
classical value of the specific heat of helium = ( 1 + v)"',  
was given earlier [see ( 1 1 ) 1. As we did not use the smallness 
of v in deriving Eq. ( 5 7 ) ,  it also holds for quantum crystals 
where v = 1. For quantum liquids, the parameters p3 and p4 
depend very weakly on n* ( v <  1 ). 

We use the results to determine the ground-state energy 
behavior as T-0 for the spin-oriented condensed hydrogen 
isotopes H, , D l ,  and T ,  . NosanowZ8 has written a survey 
the first papers on the properties of those media. It was 
shown in Refs. 29 and 30 that the interaction potential of the 
atoms of spin oriented H I ,  D l ,  and T,  can be well approxi- 
mated, as in the case of helium, by a Lennard-Jones 12-6 
function. We give in Table I the parameters r,,, E,, A* for 
helium and hydrogen, and also the values of p3 and p4 given 
by ( 5 8 )  for v = 0 (n* = 0 )  and v = 0.2 (n* = 0.55).  We 
show in Fig. 5 i? /E,, for helium and hydrogen as function of 
the reduced density n* for 0.1 < n* < 0.5, determined from 
the experimental data for i?, and z 4 ,  and from Eq. ( 5 7 ) .  It  is 
clear that the light isotope H I  has no minimum in the i?, n* 
curve, whereas such minima exist for D, and T ,  . The gase- 
ous D l  and T ,  therefore liquefy when the temperature is 
lowered, whereas H,  can only exist in the gaseous state. As 
the values of the de Boer parameter for He4 and T ,  are nearly 
the same, their ground state energies in terms of reduced 
variables are practically the same (see Fig. 5 ) .  By transform- 
ing the scale of n and Ton the basis of the experimental data 

FIG. 5. The reduced ground state energy E / ~ , , a s  a function of the reduced 
density n* for helium and spin-oriented hydrogen: curve 1-HI , 2-Dl, 
3-T, , 4-He4. 

for helium we can thus determine the thermodynamic func- 
tions ( 5 7 )  of other quantum liquids. 

5. CLASSICAL LIMIT 

1. When we determined the values of the zero point 
oscillation energies K : and K y by comparison of the theory 
with experiment, we encountered a complication which is 
connected with the fact that helium remains liquid down to 
zero temperature only in a narrow range of densities n,, n,. 
At low densities there is a liquid-vapor phase transition, and 
at high densities a liquid-crystal phase transition. The pa- 
rameters x :, K y in the metastability region were found by 
the following physical device. By a comparison with experi- 
ment we found the density functions v,  T, , Tc which charac- 
terize the asymptotic behavior of the entropy and of the 
specific heat r, per atom of liquid He4 for T  * > 1 :  

These expressions follow from ( 3 0 )  : 7,  = Tc /K O ,  S *, = + 
ln(K ' /T ,  ) . As then and T dependence of the reduced ther- 
modynamic functions S * and C * is single-parametric, the 
density functions T, and KO differ merely by the factor 
a  = Ko/T,  which depends weakly on n. The value of a  is 
found in that range of n where helium remains liquid as T- 0 
and it is possible to determine the zero-point oscillation ener- 
gy KO:a = 5.505. Using the high-temperature asymptotic 
behavior of the entropy of any condensed medium we can 
find by the same method its characteristic energy scale.The 
entropy is the most important integral characteristic of a 
substance which cannot be determined from purely classical 
ideas, as there is no energy scale when Planck's constant h is 
zero and one can in no way make the temperature under the 
logarithm sign in ( 5 9 )  dimensionless. The general physical 
principle on the basis of which we must choose this scale, i.e., 
the system of units, consists in determing the reduced tem- 
perature T * = T/T ,  and the reduced functions S * and C * 
whose n and T dependences are single-parametric: 

There are thus two equivalent ways of finding the character- 
istic scale. One consists in determining the zero-point oscil- 
lation energy i? ' from low temperature experimental data, 
and the other in determining the parameter T, using high- 
temperature data. The energies T, and K "  have the same 
dependence, not only on the density n, but also on the atomic 
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mass M and the force constant E". This statement is based 
upon the agreement between the asymptotic expansions for - - 
F, K, and 7 and the thermodynamic identities (36) and 
(50): 

V=Eo+y(K"+3/2T-T, ln  2") for T>?, 
K=Km+'/,T-T, 111 T .  (61) 

2. The density functions T, , T, , and v are determined 
by comparing expressions (59) and (61 ) with the data from 
Hill and Lounasmaa's paper22 where values are given, not 
only for 3, C, 3, and F, but also for P, d P  /dT, and d P  /dn for 
liquid He4 at 2.5 < T <  20 K and pressures P <  100 bar. It 
turned out that these very accurate experimental data in a 
narrow range of n and Tare  sufficient to find all thermody- 
namic functions of liquid helium up to T z  lo3 K and P z  lo4 
bar using a scale transformation of n and T. Using the ther- 
modynamic identities 

aE as a p  asn, 
P=--nZ-Tn2- -=-- 

a n  an' aT a n  

and Eqs. (59) and (61) one determines the high tempera- 
ture asymptotic equations of state P = P(n,T)  of quantum 
liquids: 

To simplify the formulae we introduced in (63) the notation 

Sm= (1+v) 3/z ln T,, T,O= (1+v) T,, Em=EO+ (1+v) Km. 

The asymptotic expression (631, with the density functions 
c, found for T <  20 K, have been compared with the high 
temperature data of Tsiklis et al." and Mills et al.,'> for 
75 < T <  420 K and values of P given in the tables of Sychev 
et ~ 1 . ' ~  It was made clear that the asymptotic expression 
(63) is a true and not an intermediate one and that the ex- 
pansion (63) has an accuracy of 1% in the whole range 
7 < T <  420 K and an accuracy of 3% for 3 < T <  7 K. There 
is an "extension" of the asymptotic expression (63) into the 
low temperature region which we mentioned earlier. This 
effect occurs for all thermodynamic functions except the 
specific heat C: the high-temperature ( T * > 1 ) and low-tem- 
perature ( T  * < 1 ) asymptotic expressions for P, 3, B, and K 
have a broad general range of applicability which makes the 
analysis of the experimental data considerably easier. A no- 
table difference between (63) and the experimental values 
P(n,T) occurs only in the n,T region close to the liquid- 
vapor phase transition line where the pressure P i s  low. On 
the other hand, near the liquid-crystal phase transition line 
there are no strong changes in the equation of state of liquid 
He4. When the density n increases, expression (63) does not 
lose its region of applicability, but the comparison between it 
and experiment is made difficult by the strong disagreement, 
which reaches 5%, between data in different papers on the 
measurement of the n and T dependence of P for liquid He4 

at T z  10 K. Equation (63) exceeds in accuracy all known 
empirical equations of state of liquid helium. For instance, in 
the tables of Ref. 33 an equation of state is given with about 
80 adjustable parameters, which is based upon an approxi- 
mation of the T dependence of Pby  a power-series expansion 
in 1/T: 

In reality, however, the expansion is in powers of InT and 
T In T. Therefore the functions T ln T and In T which in- 
crease at high Tare expanded in terms of decreasing powers 
of 1/T, and this has led to a complication, unnatural for 
helium, of the equation of state given in Ref. 33. The unique 
nature of helium, its difference in principle from all other 
liquids, is that when one lowers T from room to helium ( 3 
K )  temperature there are no significant changes in the local 
properties of the liquid, i.e., of buildup of short-range order. 
For gaseous helium also we have (63) and not (65). The 
density functions c ,  and c,  in (63) are independent of the 
mass M, i.e., they are the same for He3 and He4. One can 
check this by matching (61) and (63) with the identity 

which follows after differentiating Eq. (36) with respect to 
n. We have thus an unique possibility to distinguish experi- 
mentally the classical and quantum contributions to the 
equation of state of helium, by measuring in one apparaturs 
P, (n, T)  and P,(n, T) ,  and to determine the difference func- 
tions 

1 
P3 (n, T )  - -P4(n ,  h T )  =P-(n,  T ) .  

h 

The function AP,, is sensitive to quantum effects as P is 
independent of M for a classical system. However, the func- 
tion P - (n,T) of (42) is sensitive to the clasical contribution 
to P, as in the hard-sphere quantum limit P = 0. It is, in- 
deed, useful to perform such an experiment, as the asympto- 
tic expansions for P, C, 3, and for T * > 1 are more accurate 
than the linear relation ( 3 )  between E and K which we used 
to obtain them, and there exists the possibility of experimen- 
tally determining the logarithmic term in the relation ( 9 )  
between /and K. Indeed, we determine C using (9 ) :  

In the classical limit we get from (68) and (3 )  

Hence taking the term with v, into account in the expansion 
( 9 )  of 7 leads only to replacing T, by IT, in Eqs. (59), (61 ), 
and (63).  The parameter v, is literally small, as it is propor- 
tional to l / y  and vanishes in the rigid-atom limit, y = a, 
but the parameter T, = .r,.K0 is numerically small, as the 
value of T, determined in the diffusion approximation is 
small [see ( 3 5 ) l .  The correction cc 1/T to the classical 
and 3 and the term a In T in the equation of state (63) 
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contain therefore both a quantum contribution a K and a 
classical one a v,. We can separate them only by using ex- 
perimental data for He3 and He4 which have different depen- 
dences on the atomic mass, by measuring the difference 
functions (67) and AC,, and C - defined by the equations 

In the classical limit 

As we are dealing with an experimental determination of a 
small contribution - v,v,/T to a term - T, /Twhich itself is 
a correction to the classical C3 and C4, the required accuracy - - 
of measurements of C3,C4, P,, and P4 is 0.1 %. The measure- 
ment of these quantities with less accuracy will, in fact, not 
give any information, since the thermodynamic functions of 
He3 are determined with an accuracy of 1 % using the isoto- 
pic law of corresponding states and the experimental data for 
He4. 

6. NUMERICAL RESULTS 

1. We now give the numerical values of the ~e~ param- 
eters determined using the data from Refs. 22 and 34 and 
using the set of units for the density n chosen by Hill and 
Lounasmaa": p = n/n, , where n, is the density of He4 at the 
critical point of the liquid-vapor phase transitions, 
n, = 0.01035 Ap3. This value of n, corresponds to a molar 
volume V, = 58.18 cm3/mole and an interatomic distance 
a = 4.589 A. The density n: = l /r i  = 5.787n, is too large a 
scale for n for helium and all prominent quantum effects 
occur in the range n, < n < n:. In Ref. 22, which we chose as 
our standard, the thermodynamic functions of He4 are deter- 
mined for p < 3. For suchp we have for the quantities Y, E (), 
and Fc the virial expansions: 

in terms of which the functions c, and c, in (63) are deter- 
mined. After separting the logarithmic terms in (63) we find 
the functions c ,  and c'. We give in Fig. 6 the behavior of the 
parameter P f  = P + c , T l n T + c 4 1 n T = c , T + c 2 ,  con- 
structed using the data of Refs. 22, 32, and 33. All existing 
exerimental data for the equation of state of He4 agree with a 
linear T dependence of P +. In the n,Tphase diagram of He4 
there are "blank spots" where there are no data for P. We can 
easily remove them by extending the linear T dependence of 
P + (see Fig. 6). Due to the strong increase of the zero-point 
oscillation energy, which reaches 10' K, one cannot in the 
high density r e g i o n p ~ 6 ( n *  z 1 ) find the parameters T, and 
E O  accurately, as they determine only small corrections to 
the equation of state (63).  However, for such n one can use 
(26) to obtain an equation of state (63).  However, for such n 
one can use (26) to obtain an equation of state, common to 
all T, by using the single-parameter character of dependence 
o f F *  o n n  and T: 

where the parameters pi  are defined by the equations 

In the classical limit T*) 1, Eq. (72) goes over into (63) if 
we take into account the asymptotic expansions (30) for K * 
and S *. For high T, (63) is a more accurate formula, as the 
single-parameter dependences of F * on n and T imposes re- 
strictions on the parameters K" and Tc in (64):  
K " = K * _ / K O ,  Tc = r c K O ,  whereK*, and .rc areinde- 
pendent of n. However, when n increases, these restrictions 
become unimportant, as the classical correction (69) to Tc 
becomes small compared to the background of the large 
quantum contribution r,K O. The less accurate expression 
(72) has a wider range of applicability and also holds for 
T = 0 because of the small exchange contribution to P. Tak- 
ing into account the virial expansions (71) for the classical 
quantities v and E O ,  and the T * dependences of K * and S *, 
obtained in the framework of the diffusion model (33), Eq. 
(72) contains only one density functionp, (n*) which can be 
determined by comparison with experiments. If one knows 
this function one finds the n dependence of the derivative of 
the logarithm of the zero-point oscillation energy 
K = aT, . Another direct way to determined In K "consists 
in comparing the asymptotic behavior (59) of the entropy 
with experiments for p < 5.22,9 The two different methods 
gave, at first glance, different results. The direct method de- 
termined very accurately the virial expansions for K II which 
occurs only for low p < 1.6: 

The value of the first term a n2" is fixed by the magnitude of 
the entropy of a classical perfect gas. The n dependence of - 
K agress forp > 1.6 well with the "mean free path" approx- 
imation which corresponds to a dimensional quantum-me- 
chanical estimate for K ': 

where 1 is the wavelength of the atom, a the interatomic dis- 
ance, and a, a phenomenological parameter which is of the 
order of the size of an atom r,, 

However, an indirect method gave for p < 4 a very good re- 
sult [compare with (74) ]  

- 
K,O=3.76p ' exp (O.41p) =e;q esp(Ei l ) ,  

(77) 
e,"=18,93 K, g=4.633. 

The physical (76) and empirical (77) approximations for 
K have a very wide range of n where they do not differ and 
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FIG. 6.  The parameters P,(n,T) (curve 1 )  and Pd (n,T) (curve 2 )  of 
He4as functions of the temperature T for a fixed value of the liquid density 
n = 3n, (n, = 0.01035 A-'1. The solid curves are the data of Refs. 22, 
32, and 33, and the dashed curves are calculated using Eq. (63). 

there exists a relation between the parameters E?, E:, and 
l:ln(.cO,/~; ) = S2, and 5 = S,, where S,  and S, are the coeffi- 
cients in the relation 

which holds for 0.1 < 77 < 0.6. There exists thus a range of 
average densities n, < n < n: where the mean free path ap- 
proximation (76) holds for He4. 

2. We now consider a quantum hard-sphere system for 
w h i c h v = E O = O i n  (72): 

d l nKo  - 
P=n2 - K (n*, T ' )  . 

dn 

This equation is a consequence of the universality of quan- 
tum liquids for in deriving (72) we assumed that then and T 
dependence ofK * were single-parametric. This is clearly the 
case if the diffusion approximation is applicable. Allowing 
for the model T * dependence (33) ofK * and the empirical n 
dependences (76) and (77) of x O ,  we find that Eq. (79) is 
the experimentally obtained equation of state of the simplest 
quantum liquid consisting of hard spheres. At high n and T 
this equation has the form 

Since in the classical limit K * = + T * and K * is not explicitly 
dependent on n*, Eq. (80) is based solely on Eq. (76) for 
T *) 1. However, the single-parameter n and T dependences 
of K * allow us to use the classical limit to determine the T 
dependence of P for all T, replacing T by +K. Expression 
(80) differs from all known classical equations of state for a 
hard sphere system. We give two of them: 

The left-hand expression was obtained by Wertheim3hnd 

Thiele36 using the exact solution of the Percus-Yevick equ- 
tion. The right-hand formula, obtained empirically by Car- 
nahan and Stirlir~g,~' reproduces the first six virial coeffi- 
cients found by numerical simulation of a hard-sphere 
system. The value of the limiting density n, = 6/n=: 1.91, 
Eq. [ (8  1 ) 1, is close to the value 1.95 found empirically [see 
(76) 1, but the n dependence of P is completely different.On 
the other hand, the n dependence (76) of K agrees very 
well with the variational calculation for T = 0; see Fig. 4. 
The resolution of the contradiction is that Eq. (8  1 ) has not 
quantum analog. In other words, the classical limit of the 
equation of state of a quantum hard-sphere system is not the 
same as Eqs. (81).  The fact is that a classical system of 
spheres has no energy scale at all as its potential u is either 
zero or infinite. For this system there is no expansion of the 
free energy in powers of h ' (Ref. 2 1 ), and without solving 
first the quantum problem it is impossible to determine even 
the values of T starting from which the system reaches its 
classical limit. To show this we consider the limit of a low- 
density n and determine the virial coefficient B for a soft 
poential u, and in the final answer make it rigid, which is the 
hard-sphere limit. We start from the known expression2' for 
B taking the first quantum correction, cc fi' into account: 

For the potential u = u,,exp [ y (  1 - r/rO) 1, we get from (82) 
for y s l  

In the limit of a rigid potential (y-  w ) we have from (83) 

If we put at once T = W ,  B is the same as B,., . However, if we 
first put y = cc it is impossible to take into account the next 
terms in the expansion of B in powers of fi'. We must thus 
solve the quantum problem for y = w and only afterwards 
go to the classical limit. Expression (79) is the experimental- 
ly found solution of this quantum problem. A similar hard 
sphere anomaly occurs also in scattering theory: the high 
energy limit of the total cross section for scattering by a 
quantum sphere is twice that for a classical sphere (Massey 
effect). 

7. GROUND-STATE ENERGY 

1. We consider the quantum limit T * < 1 and compare 
the true ground state energies of He' and He4 at T = 0: - 
E,(o), E 4 ( 0 )  with the values E 3 ( 0 + ) ,  E4(0+  ) determined 
neglecting exchange effects. One can easily find the param- 
eter E4(0') for He4 from experimental data2' for T> T, 
and the low temperature asymptotic expression of the ener- 
gy E4(n,  T)  obtained in the framework of the diffusion model 
(30):  

P b  El (n ,  T )  =E,  (n ,  o+) +k T 2  - - TL+EI, 
2 4 (85) 
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where E, is the small contribution from the critical fluctu- 
ations near the point of the phase transition of He4 to the 
superfluid state. Similar expansions hold for T, < T < K 2 
for the entropy 3, and specific heat c: 

In contrast to E, and S, the parameter C, is large near T, so 
that one must find the rough quantum characteristics - 
E4(O+), y4,and B4 of the liquid from the asymptotic behav- 
ior ofEand S for T> T, . Using (85) and the data of Ref. 22 
we determined six values o f E , ( n , ~ + ) ;  see the points in Fig. 
7. On the other hand, we can find parameter E 4 ( o f )  from 
Eq. (3) as T-0: 

- 
We know all density functions, v, T,, Eo,  E(Ot) in this 
expression and this makes it possible to determine the value 
of the parameter a introduced earlier. It is important that in 
a broad range of densities 2 < n/n, < 3 where, on the one 
hand, we have data for E,,22 and, on the other hand, the 
asymptotic expansions (85) and (86) hold, the parameter a 
is independent of n with an accuracy of a fraction of a per- 
cent. We can therefore use (87), and expressions (7  1 ) for Eo 
and (76) for K in the metastability region of He4 to find the 
n dependence for E4(n,0+)--the  curve&(^+) in Fig. 7. As 
there are no experimental data for E3 for T> 2.5 K for liquid 
He3 it is impossible to determine directly the parameters 
E3(n,0+ ), y, andp, in an expansion like (85) for E , ( ~ , T ) .  
However, one can find the n dependence ofE3(n,ot ) using 
the law of corresponding states (39)-the curve E,(o+ ) in 
Fig. 7: 

E, (n, o+) = ( i + ~ )  E:+EO, K; = -!- KIO. - 
h  

(88 

We have thus used the experimental data for He4 at T> T, 
to find the two quantities E4(n,0+)  and E3(n ,of )  as func- 
tions of n4 and n, i.e., we know the ground state energies of 
helium when exchange effects are neglected. 

2. We now turn to the determination of the dependence - - 
of the true energies E,, E4 on the liquid density for T = 0. To 

FIG. 7. The ground-state energies of helium as functions of the density 
n:3-for _He3, 4-focHe4. The solid curves take exchange effects into 
account: E,(O) and E,(O), and the dashedsurves neglect them: E,(Ot ) 
and E4(Ot). The points are the values of E,(O+) determined using Eq. 
( 8 5 )  and the data of Ref. 22. 

do this we integrate the thermodynamic identity connecting 
E, the chemical potential ,u, and the sound velocity u: 

The sound velocities u, and u, for He3 and He4 are measured 
with an accuracy of which makes it possible to find five 
coefficients in the expansion of E near the equilibrium den- 
sity no in the parameter x = n/no - 1: 

MU: 
E (n, 0 )  -E (no, 0)  = - ( ~ ~ + h a z ~ + h l ~ ~ + h 5 ~ ~ ) ,  (90) 2 

where no is the value of the sound velocity for n = no, and - 
E(no)  the energy E for n =no. The functions E , ( ~ , o ) ,  - 
E4(n,0) from (90) are plotted in Fig. 7. It is clear that E ( 0 )  
and E(o+ ) differ little, even at the equilibrium densities no, 
and no,, and  that with increasing n, and n, the difference 
between E ( 0 )  and E(0') vanishes completely, i.e., the ex- 
change contribution to E is small even for T = 0. The first 
coefficients A, in (90) can thus be determined with good 
accuracy without turning to experiments about measuring 
the way the sound velocity depends on the liquid density, but 
imposing the obvious boundary conditions E(o,o) = 0 and 
E(2n,,0) = E(2n0,0+ ). In other words, instead of an expan- 
sion of E in powers of n/n, - 1 we can construct a virial 
series in powers of n, requiring that when we double the 
equilibrium density there is no difference between E(0)  and - 
E(O+). Or, what comes to the same, imposing boundary 
conditions on the expansion (90) at x = - 1 and x = 1: 

As in reality the expansion of E is in powers of n* = nri 
while the equilibrium densities no, and n,,, are much less 
thant l /r i  [see ( 12) 1,  the virial series for E converges rapid- 
ly. We can check this by substituting in (91) the numerical 
values of the parameters E(nO), u,,, E(2n,,), and M: 

He': 0.478=?,,-?,,+iL.,, o..73r7=).3+l,8,+?..!; 
(92) 

. . )8.1=?k,-h,S-2.,. 0.4tj l=lv,;-k2.,,-k~.,. He" 0 O: - 
The boundary condition (9  1 ) for x = 1 turns out in fact 

to be superfluous, for when the main correction -A,x3 is 
determined it merely repeats the boundary condition (9  1 ) 
for x = - 1. Similarly, with an accuracy of 1% it is suffi- 
cient to retain only two terms in the expansion of the square 
of the sound velocity in powers of the parameter x: 

3. We can, apart from small exchange corrections, ob- 
tain a relation between the coefficients in the expansion (90) 
of for He3 and He4 using the law of corresponding states. 
We substitute these expansions into (40) and obtain in the 
rigid-atom approximation v = 0 and A = M,/M, 

As the virial expansion (7  1 ) for E "(n) converges very rapid- 
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ly and has only two terms, while we take into account three 
terms in the expansions of E, and z,, we have from (94) and 
(90) 

Substituting in (95) the numerical values of the parameters, 
we get 0.97 instead of 1. This three percent difference be- 
tween the numbers is connected with the neglect of small 
exchange effects. We have thus once again verified that the 
theory of a structureless quantum liquid is applicable to liq- 
uid helium. Determining the parameters T,, E (', and v at 
high (room) temperatures T, where helium is undoubtedly 
structureless, we were able to calculate the characteristics of 
helium at T = 0. 

P,,, bar 
r 

8. MIXTURES OF QUANTUM LIQUIDS 

The universality of quantum phenomena holds also for 
isotopic mixtures of quantum liquids, but the scaling is two- 
parametric. When we fix the density n and temperature Tof 
a mixture of liquid He3 and He4, their thermodynamic func- 
tions are additive. The energy of the mixture E,,, its kinetic 
energy K,,, specific heat c,,, and equation of state P.,, de- 
pend linearly on the concentrations x, and x, (x, + x, = 1 ) : 

These equations are a consequence of the fact that helium 
has no structure, i.e., the fact that the zero-point oscillation 
of an atom K and its wavefunction are independent of the 
isotopic composition of the atoms which make up its sur- 
roundings. The value (75) of K (' is determined only by the 
mass M of the atom itself and its wavelength, i.e., by the 
liquid density. Equations (96) agree with all experimental 
data one can find in the literature for He' and He4 mixtures, 
and their accuracy increases when n and Tincrease. Experi- 
menters traditionally compare their results with the theory 
of excess molar volumes of quantum isotopic systems which 
was developed by Prigogine": 

This equation gives less information than Eq. (96) for P,,, 
since the excess molar volume h V is sensitive to quantum 
effects even in the zeroth approximation: when A V = 0 the 
relation (97) holds only for classical mixtures. On the other 
hand, Eqs. (96) are violated only after one takes exchange 
effects into account, so that they are applicable both for clas- 
sical and for quantum mixtures. Moreover, for liquid helium 
there are in the n, T phase diagram no regions where the 
molar volumes V, and V, differ greatly, so that the param- 
eter V,, is only a weak function of the concentrations x, and 
x,. On the other hand, for the pressures P, and P, there is an 
n, T region where they have different orders of magnitude; 
nonetheless, the parameter P,(n, T,x,) depends with good 
accuracy linearly on x,. This is clear from Fig. 8., where we 
show the x, dependence of P,, for one value of n and several 
values of T, constructed using the data from refs. 39 and 40. 

FIG. 8. The pressure P,, of a Heq-He4 mixture as a function of the Heq 
concentration x, for a molar volume V =  26.45 cm3/mole. The straight 
lines are the functions (96),  the points the data of Refs. 39 and 40, and the 
numbers the values of the temperature Tin  K. 

9. THERMAL CONDUCTIVITY AND VISCOSITY OF QUANTUM 
LIQUIDS 

1. Not only the thermodynamic, but also the kinetic 
properties of helium are universal in those n, Tregions where 
we can neglect exchange effects. We consider first of all a 
hard-sphere system for which the natural energy scale is the 
quantum parameter = h ' / ~ r ; ,  and we define the dimen- 
sionless reduced viscosity v* and thermal conductivity x* 
by the relations 

(98) 

We can check that y* and x* are, indeed, dimensionless by 
using the elementary gas kinetic relations which connect x, 
7, ??, the characteristic particle velocity F, and the mean free 
paths I,, and I,, : 

One can justify these relations rigorously only in the limit of 
low density n, when the parameters I, and I ,  are, indeed, 
mean free paths. For high n one must consider the relations 
(99) as a formal definition of I,, and I,, as it is clear that 
when n increases the dimensionality of the parameters oc- 
curring in (99) cannot change. By choosing the scale of Twe 
establish from (98) relations between the thermal conduc- 
tivities x,, x, and the viscosities y j  and y, of liquid He3 and 
He4 when they have the same density, in the hard-sphere 
approximation: 

1 M, 
xS (n, T )  = - x ,  (n, LOT), q~ (nr T )  =qr(n, LOT),  Lo a -. 

ho M, 

We present qualitative arguments that enable us to go be- 
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yond the framework of the hard-sphere approximation, 
making in ( 100) the substitution A,- A, where the param- 
eter A is defined by Eq. (39). Indeed, the lengths I, and I, in 
(99) depend only weakly logarithmically on T, owing to the 
weak dependence of the particle scattering cross section c o n  
their energy which is zK. In the low n limit (6') 

However, we have shown above that the specific heat c and 
the particle velocity E have a universal reduced temperature 
T * dependence. Hence, x and r] also have a universal T * 
dependence apart from the weak non-universal K/E" de- 
pendence ( 101 ) of I,, and I,. The value of the mean particle 
velocity C can be expressed in terms of the parameter K [Eq. 
(15) l :  

ii2-vT=2~/~, K = ~ K * ( T ' ) .  (102) 

It is convenient to eliminate the lengths I ,  and I ,  from (99), 
normalizing x and ?;I by their value at some T = To,  where To 
is an arbitrary value of Tin the range T,, T, < T < ~ , e x p (  y/ 
3) where the expansion (3)  in terms of the parameter l /y  is 
valid: 

To determine the temperature dependence of x and r ]  in 
a wide range of n and T is is thus sufficient to perform a 
control measurement of x and r ]  for a single value T = To. 
The n and T dependence o f c  and K, on the other hand, were 
determined earlier. Equations ( 103 ) hold when T,, 
TA < T <  10%. 

2. There are surprisingly few experimental data for x 
and r ]  for helium in the quantum regions of n and T. There 
are none at all for 4 < T <  20 K. The preferred values of x and 
?;I for He4 given in the tables of Refs. 41, 42 are based upon 
empirical expressions which are not confirmed for high n by 
direct measurements of the kinetic coefficients of helium. In 
the range T <  4 K, the relation (100) between x, and x4 
agrees with Kerrisk and Keller's data.43 We show in Fig. 9 
the n dependence of x, ( T = 4 ) ,  x , ( T = 3 )  and 
+x4( T = 3 ), +x4( T = 2.25). When n increases, the relation 
( 100) between x, and x4 becomes asymptotically exact. We 
show in Fig. 10 the T dependences of 7, ( T) and r ]  ($ T) for 
one value of n, constructed using Betts and Marshall's data44 
for He' at 1.2 < T <  3 K and the r],(n,T) values given in the 
tables of Ref. 41. It is clear that the relation ( 100) holds also 
between ?;I, and ?;I,. 

3. It follows from (99) that in the scaleless quantum 
region TF, T ,  < T <  i? the thermal conductivity of quan- 
tum liquids is proportional to the temperature, while the 
viscosity is independent of it: 

In the limit as K "- m, i.e., M-0, the atomic mass M does 

FIG. 9. The thermal conductivity of helium as function of its density n 
(no , )  is the equilibrium density of He3): 1-x3(n,T= 4 ) ,  
2- x , ( n , T =  3 ) ,  3-x, (n,T= 3 ) ,  4 - -+x , (n ,T=2 .25) .  The data are 
from Ref. 43. 

not occur in the expressions for x and 7; the kinetic coeffi- 
cients of helium can be expressed solely in terms of geomet- 
ric quantities-the lengths I,, and I,, the interatomic dis- 
tance a, and the wavelength of the atom at T =  0. The 
asymptotic form (104) agrees with  experiment^.^'.^^ It is 
interesting that in a paper by Andreev and Kosevichl* the 
same linear law (104) was found for x in the framework of 
the glass model of a liquid. However, for the viscosity r ]  an- 
other expression was given in Ref. 12: 

where the parameter 2 is independent of T and has the di- 
mensions of energy per unit volume. In our opinion, regard- 
less of how it was derived and what were the modeling ideas, 
Eq. ( 105) contradicts the dimensionality analysis of the ob- 
served quantities. Indeed, in the scaleless T region, which 
was considered in Ref. 12, the only quantity which has the 
dimensions of energy is the temperature T itself. One must 
therefore replace .Fin (105) by T/a3 and in that case ( 105) is 
the same as (104). 

4. There is a combination of x, r ] ,  and which does not 
contain the quantum parameters of the liquid: 

This relation has the following remarkable properties: it is 
not renormalized when the helium density increase, i.e., in 
the n region where the virial expansions for x and 77 are 

FIG. 10. The viscosity of helium as a function of the temperature T for a 
given density n = 2n, : 1-7],( TI, 2-v,(/ZT). The data are from Refs. 41 
and 44, n, = 0.01035 k'. 
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1 62.20 1 52.39 1 45.24 ( 39.26 1 34.71 1 31.30 128.45 126.04 1 23.99 / 22.23 

I Vt - Molar volume of liquid He3, cm3/mole. 

TABLE 11. Mean kineticenergy per atom (in K )  ofliquid He3and He4; E,( V3,T) = E,( V4,T). 

inapplicable, we have such a combination of observable 
quantities that one can find its value in the low n limit in the 
hard sphere model, when x and 7 are independent of n and 
the mean free path is l/n. This means that the number + 
in ( 106) is of purely combinatorial origin and the lenghts 1, 
and I, which have the meaning of a mean free path only for 
low n change in the same way when n changes, i.e., as fol- 
lows: 

T' 

where no is any value n < l / r i .  
Therefore, we have between the kinetic coefficients of 

helium the relations ( loo) ,  ( 103 1, ( 106) which one can use 
to determine x and 7 in a broad n ,T range, where the parti- 
cle-statistics effects are negligibly small. 

v 4  - Molar volume of liquid He3, cm3/mole 

48.48 I 41.56 1 36.31 1 31.32 1 29.09 I 16.45 1 24.24 I 22.38 I 20.78 I 19.39 

TABLE 111. Energy E3( &,TI per particle (in K )  of liquid He' 

10. TABLES 

We give in the form of Tables 11-V for 2.5 < T <  50 K 
the average kinetic energies of liquid He4 and He" K4(n,T) 
and K3(n,T),  and the thermodynamic functions of He3; - 
C, (n,T),  3, (n,T), and E3 (n, TI, determined using the isoto- 
pic law of corresponding states (Sec. 3 )  and Hill and Loun- 
asmaa's experimental data22 for He4. These quantities have 
not been measured experimentally in a broad range of densi- 
ties n, for T >  2.5 K. The low temperature data of 
G r e y ~ a l l , ~ ~  and of Pandorf et aL4" for C, (n,T) ands ,  (n, T) 
agree with an accuracy =: 1 % with the corresponding states 
law for T z 2 . 5  K. The parameter K4 for He4 is found in 
neutron scattering experiments only in the region of low T< 
4 K at the saturated vapor pressure, and for He3 the deter- 
mination of K, entails considerable difficulties4' because of 
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TABLE IV. Entropy z 3 (  V3,T) per  article of liquid He3. 

TABLE VI. The parameters K y ,  E (', v, K**, , .r,, /1 as functions of the molar volume V,, p, = n,/ 
n, is the reduced density, n, = 0.01035 Ap3.  

0 4  1.2 1 i . 4  I 1.6 1 1.8 

'' ' 

3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 
9.0 

10.0 
12.0 
14.0 
16.0 
18.0 
20.0 
30.0 
50.0 

TABLE V. Specific heat z 3 (  V3,T) per particle of liquid ~ e ' .  
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vs - molar volume cm3/mole 

62.20 I 52.39 I 45.24 1 39.26 1 34.74 1 31.30 1 28.45 1 26.04 1 23.99 1 12.23 

v3 - molar volume cm'/mole 

39.26 I 34 74  I 31.30 1 28.65 1 26.01 1 23.99 I 22 .23  

1.447 
1.544 
1.639 
1.731 
1.821 
1.907 
1.992 
2.074 
2.152 
2.229 
2.302 
2.443 
2.574 
2.815 
3.028 
3.218 
3.390 
3.546 
4.163 
4.979 

1.361 
1.453 
1.540 
1.624 
1.706 
1.786 
1.863 
1.939 
2.014 
2.086 
2.157 
2.291 
2.420 
2.658 
2.870 
3.059 
3.231 
3.387 
4.003 
4.825 

1.623 
1.745 
1.861 
1.973 
2.078 
2.179 
2,274 
2.364 
2.451 
2.535 
2.614 
2.762 
2.899 
3.145 
3.360 
3.551 
3.723 
3.879 
4.498 
5.303 

1.722 
1.861 
1.990 
2.110 
2.225 
2.331 
2.431 
2,524 
2.615 
2.701 
2.783 
2,934 
3.073 
3.322 
3.538 
3.730 
3.903 
4.060 
4.676 
5.476 

2.500 
2.685 
2.853 
3.003 
3.138 
3.266 
3.382 
3.488 
3.591 
3.688 
3.778 
3.943 
4.093 
4.353 
4.576 
4.770 
4.944 
5.101 
5.705 
6.484 

1.533 
1.640 
1.745 
1.847 
1.944 
2.038 
2.128 
2.216 
2.297 
2.378 
2.454 
2.599 
2,733 
2.976 
3.191 
3.381 
3.553 
3.709 
4.327 
5.138 

2.305 
2.485 
2.644 
2.793 
2.925 
3.050 
3.161 
3.270 
3.370 
3.464 
3.554 
3.717 
3.863 
4.120 
4.342 
4.537 
4.711 
4.867 
5.471 
6.254 

1.840 
1.991 
2.133 
2.262 
2.383 
2.495 
2.600 
2.698 
2.792 
2,878 
2.963 
3.117 
3.259 
3.510 
3.727 
3.920 
4.092 
4.249 
4.862 
5.657 

2.139 
2.308 
2.466 
2.607 
2.731 
2.851 
2.963 
3.068 
3.166 
3.258 
3.346 
3.506 
3.651 
3.906 
4.127 
4.320 
4.493 
4.650 
5.264 
6.051 

1.979 
2.140 
2.288 
2.427 
2.552 
2.669 
2.778 
2.879 
2.975 
3.064 
3.149 
3.308 
3.452 
3.700 
3.922 
4.116 
4290 
4.446 
5.058 
5.848 



the strong absorption of neutrons by this liquid. Table VI 
gives numerical values of the parameters v ,  Eo,  K:, A, 7,, 

and K *, defined in ( 3 ) ,  (13), (30), and (39).  
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