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The interference contribution to the spectrum R ( o )  of unpolarized light reflected backwards 
from a turbid medium is considered. I t  is shown that this contribution is highly sensitive to the 
presence of internal degrees of freedom of the scattering particles. Thus, the back-reflection has a 
line spectrum even when the distance between the scattering-particle levels is much less than the 
reciprocal free-path time of the light wave. Analytic expressions are obtained for R (w) at  various 
relations between the frequency of the transition between the particle levels and the broadening 
due to the motion of the latter in real space. The angular dependence of the interference 
contribution to the back-reflection coefficient is analyzed. In contrast to the integrated intensity, 
the wings of the reflection spectrum are determined exclusively by multiple scattering. An 
investigation of R (w) makes it therefore possible to separate in experiment the multiple- 
scattering contribution and to obtain information on the internal structure of the scattering 
particles. 

1. INTRODUCTION 

Very many studies have been made of wave propagation 
in media with random inhomogeneities. It is known1-' that 
on satisfaction of the condition 

(where k = R / c  is the wave vector and I is the wave absorp- 
tion length) the wave-energy transport is described in the 
zeroth approximation by intensity-transport equations in 
which interference effects are neglected. 

Interference effects in multiple scattering of light have 
recently become the subject of intensive study. Interest in 
this problem is due to the possibility of observing for light 
waves weak-localization effects heretofore investigated for 
electrons in metals.435 I t  has been found that experimental 
observation of these phenomena for light waves is preferable, 
for in the case of electrons, as a rule, the important inelastic 
processes are those leading to phase relaxation. 

The principal interference contribution in scattering by 
stationary inhomogeneities was considered in Refs. 6-1 1. It 
is shown in them that the interference contribution to the 
total cross section is small relative to the parameter ( 1 ). For 
backscattering, however, it is of the order of the differential 
scattering cross section. The reason is that waves passing 
along the same trajectories in opposite directions acquire in 
the case of elastic scattering equal phases and add up coher- 
ently when scattered backwards. 

A number of experiments on coherent backscattering of 
light in various media have already been performed by 
now.12-lh The subjects of these references were the angular 
dependence of the scattered-light line as well as polarization 
effects. These effects were theoretically considered in Refs. 
12-25. 

The statement that the waves add up coherently in 
backscattering is correct only if one neglects processes that 
violate the invariance of the scattering to time reversal. In 
particular, interference is upset by the motion of the scat- 
tered particles. Since the forward and backward waves pass 
through the same inhomogeneities at different instants of 
time, motion of the particles causes the phase shifts of these 

waves to be different, and the interference is suppressed as a 
result. This phenomenon was considered in Ref. 26 for the 
case of sound scattering by bodies located on a wavy sea 
surface under conditions when single scattering by the sur- 
face and by the scatterer is significant. For multiple scatter- 
ing in a volume this phenomenon was investigated in Ref. 17. 

Our present purpose is to consider the spectrum of 
backscattered light. The form of this spectrum is determined 
by the nonstationary behavior of the scattering system [the 
spectrum for scattering by static inhomogeneities has the 
form S ( a ) ,  where w is the frequency difference between the 
incident and scattered waves]. I t  must be noted here that, in 
contrast to the integrated intensity, the reflection-spectrum 
wings are governed exclusively by multiple scattering. A 
study of the spectrum of the reflection coefficient R (w) per- 
mits therefore experimental separation of the contribution 
of the interference effects. 

We shall assume that the scattering particles have an 
internal degree of freedom. We shall simulate this degree of 
freedom by a two-level system with distance k,, between 
levels and a mobile mass center. Physically such a system 
can be, for example, the rotation of a scattering particle in a 
suspension. We assumed that k, 9 T, where T is the tem- 
perature of the scattering system. [If several levels turn out 
in a real situation to be in the region of energies lower than T, 
our results will be somewhat modified, namely, expressions 
(5)-(7) below for the phase difference must contain all the 
possible transitions.] 

The invariance of the system of time reversal is thus 
violated in the system considered both on account of particle 
motion and on account of elastic scattering of the waves by 
the particles. If the condition ~ , , 7 , ~ $  1 is met, where r13 is 
the characteristic wave relaxation time relative to a transi- 
tion between the levels of the scattered particles, each scat- 
tering act with a transition between levels leads to collapse of 
the phase of the wave. Iffurthermore r I2 =:T = 1 /c,  where Iis 
the wave free path time and c is its velocity, the interference 
contribution to the multiple scattering is completely sup- 
pressed. The width of the scattered-wave spectrum is then of 
the order of w,,. Of much greater interest is the case 
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which we shall in fact consider hereafter. 
In this situation it can be assumed that the light propa- 

gates in a medium with a dielectric constant 1 + S ~ ( r , t ) .  The 
correction SE is small, changes rapidly with change of the 
spatial variable, and has a weak time dependence." We ex- 
amine now how this temporal change influences the spec- 
trum of the reflection backwards. We disregard for simpli- 
city its angular dependence (see the sections that follow), as 
well as all effects connected with light polarization. 

To obtain the spectrum of the reflected light we must 
calculate the unequal-time correlator (A( t)A * (0 )  ),, , 
where A is the amplitude of the light wave and the angle 
brackets denote averaging over all possible configurations of 
the correction to the dielectric constant taken at some in- 
stant of time. Each of these amplitudes can be represented in 
the form A = Z,A,, where A,  is the amplitude of the light 
wave propagating along the ith trajectory. These trajectories 
consist of straight-line segments along which the light wave 
propagates, and have kinks at the scatterer locations. We 
know that the interference contribution is determined by 
closed trajectories, and the main contribution to the correla- 
tor is made by amplitude products of form A+ (t)A * (O), 
which describe motion along one and the same trajectory but 
in opposite directions. In this case the difference between the 
starting times in the loop in the two directions is equal to t 
(we assume t > 0) .  Let the light negotiate the given closed 
trajectory in a time to. Let the parameter of the coordinates 
r ,  of the loop be the time t ,  needed for the light to travel 
clockwise from the intersection point to the point r ,. Moving 
in the opposite direction, the light reaches the point r ,  ( t ,  ) at 
the time t,, - t , .  We assume that the light started to move 
along the loop clockwise at the instant - t0/2, and in the 
opposite direction at the instant t - t,,/2. It reaches then the 
point r , ( t , ) t  the respective instants of time t - t0/2 and 
t + t0/2 - t , .  By virtue of the inequality ( 1 ) and the small- 
ness of SE, the amplitudes A have a semiclassical form and 
the correction to the phase of a plane wave moving clockwise 
can be written as 

l n / 2  

while for the wave moving in the opposite direction we have 

where R, is the frequency of the incident wave. 
We now must average the quantity exp[i(p + - q~ - )  ] 

over all the realizations of SE. We assume that the phase 
difference has a Gaussian distribution: 

The problem reduces thus to calculation of the correlators 
(SE(T, ( t , ) , t )  . S ~ ( r ? ( t ~ ) , 0 ) )  with different spatial and tem- 
poral arguments. Since the corrections to the dielectric con- 
stants depend strongly on their spatial arguments and are 
independent at different points of space, we assume that the 
coordinate correlator is a S-function and depends little on 
the time as a parameter. (We want to describe quasielastic 

scattering.) In this case it can be represented in the form (cf. 
Ref. 2 1 ) 

A ( t )  =cos (oat) exp (-D,k2t). ( 7 )  

Here D, is the diffusion coefficient of the scatterers, the fac- 
tor cos w,t corresponds to a transition between their energy 
states, and exp( - D, k 2t)  describes motion in real space. 
We have assumed, here, of course, that during the time of 
motion along the loop the molecules manage to collide many 
times with one another or with the solvent molecules, i.e., 
the conditions 

are met, where L is the scatterer mean free path. 
Note that at kL > 1 the values of A ( t )  would vary like 

exp( - k '(vf)t '), where ( v f )  is the mean squared scatterer 
velocity, corresponding to a Doppler broadening of the lev- 
els on account of the particle motion. The calculation is in 
this case similar to the one given below, and we omit it for 
brevity. 

Ultimately we get 

Only trajectories on ~ h i c h ( ( A p ) ~ ) ~ ,  < 1 contribute to in- 
terference effects. ( I t  follows here from the derivation that 
t,t,, > T .  For an approximate discussion we assume for simpli- 
city that all the free-path times are the same.) This is possi- 
ble only if the second term of ( 8 )  differs little from unity. 

We must now establish the dependence of the pre-expo- 
nential factor on the time t,, of motion over the loop. We take 
into account the small inelasticity only to the extent that it 
leads to relaxation of the light-wave phase. The pre-expo- 
nential factor can therefore be estimated in the same way as 
in the elastic approximation. In this case both pre-exponen- 
tials are independent of the time t and are equal. Their de- 
pendence on the time of motion over the loop is determined 
by the probability of the light returning to the initial time 
after the time to, i.e., it is proportional to t ,; I"*. We get as a 
result 
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To obtain a final expression for R (w) we must take a Fourier 
transform with allowance for the parity of the correlator (9)  
under the substitution t - - t. 

Let us analyze the R(w)  spectral dependence for the 
parameters of greatest interest from our point of view. A 
more complete and accurate analysis will be given in the 
sections that follow. We begin with the simplest situation, in 
which the dominant phase-relaxation mechanism is motion 
of the scatterers in space. It is so fast that the characteristic 
time to is insufficient for the scatterer to go over to another 
energy state. The phase relaxes in this case in a time r2 - (T/ 
D, k 2,  ' I 2  (Ref. 17; seealsoRef. 27), and thecondition postu- 
lated above can be written in the form (w0/ 
D, k ' ) ' 1 2 ( ~ 0 ~ )  ' I 2  & 1. We have then 

and 

This expression is valid in the frequency region 
7 - I  $a $ D, k 2; it is important here that the characteristic 
times are to$ r. 

Let us consider the inverse limiting case 
1 9  (a0r) ' I 3 $  D, k 2/w0. In this situation the expression for 
R(w) can be written in the form 

x e n p {  j 5- 11 - coe ( a ,  (t+tU-2r,) 1 
- t ,P  

It is seen from ( 1 1) that as 7' --* w the correlator 
(A(t)A * ( t ) )  is periodic in t, and therefore the interference 
effects are significant near the points t ,  = 2m/w,,, where 
( ( A p ) ' )  & 1. The physical reason for this is simple. If scat- 
terer energy-level spacing is &,,& T, the probability of find- 
ing a scatterer in a given state oscillates with a period 2rr/w0. 
  he light incident i n  the scatterer at instants of time that 
differ by t, is scattered then by a molecule in the same state, 
and the interference contribution to the unequal-time corre- 
lator near these points is not small. 

We make in ( 11 ) the change of variable t = t,, + St. If 
the characteristic width of the peak is less than 0,; ' the inte- 
gral with respect to  t can be represented as a sum of integrals 
around each peak, and by virtue of the rapid convergence of 
each term we can let the integration limits in them tend to 

We consider next for simplicity a situation in which the 
peak width is determined by scatterer transitions from one 
energy state to another (the second term of the expansion 

cos[w,,(t + to - 2t, ) ] ). This damping is nonlinear in the 
times t and to, and the characteristic phase-relaxation time 
due to these processes is r, - r (w0r)  (Refs. 17 and 28). 
We are now interested in the case r, gr,. We retain in the 
phase relaxation due to the scatterer motion only to the ex- 
tent to which it violates the correlator periodicity, i.e., we 
retain only the term 21 t, lt0/.r;. The sum over n [which we 
denote by F(w) ] is then easily calculated, and the integral 
over St is simply Gaussian. Ultimately, 

t,' 

where 

We consider the spectrum region in which peaks exist. 
They are due to poles of the function F(w),  and contribu- 
tions to them are made by small enough trajectories 
to g w0r;. Let us examine the form of an individual peak. To 
this end we put w = nw, + Sw, 6 0  &w, and examine for the 
time being only the region wr, 9 1. In this case 

The integration region is cut off by min(r3,wl,r~ ) on the side 
of large to and by t,,, = max(r,w2r: ) on for small to (see the 
argument of the exponential). To be specific, we assume that 
r,$w0r:. Expression ( 13) can then be represented in the 
form 

It is valid under the condition t,,, gw,ri. It is seen from 
( 14) that in the frequency region w2r: & T  the peaks have 
equal heights and widths. The width is of the order of D, k 2.  

The ratio R (Gw = O)/R ( S w ~ w , , )  is of the order of 
( ~ ~ ) r ~ / r ) ' / l n ( w , , r ~ / r )  $1. 

In the frequency region w2r: $r  the peaks begin to 
broaden and their amplitudes begin to decrease. The reason 
is that nonlinear damping begins to increase here. The char- 
acteristic peak width 6w becomes of the order of w2r: /r: 
and they are resolved at %&wo, i.e., to frequencies lower 
than (wOr:/.< ) I". The peak amplitudes decrease in this fre- 
quency region like w p 4 .  At higher frequencies the peaks co- 
alesce to form a continuum. Expression (14) is no longer 
valid here. The continuum is described by trajectories with 
to$w,,r:, and F i s  of the order of unity in this region. In the 
upshot we have at frequencies (w0r:/r: ) ' I 2gw & 1/r, 

469 Sov. Phys. JETP 68 (3), March 1989 V. V. Afonin and Yu. M. Gal'perin 469 



We proceed now to the highest-frequency region 
wr, ) 1. Following the change of variable t,, -+ t,(wd ) - ' I 2  it 
is expedient to reduce in this region expression ( 12) to the 
form 

This integral has a saddle point in the complex plane and its 
modulus is of order unity, so that with exponential accuracy 
I ~ ( w ) l  - ( ~ T ~ ) ~ ~ ~ I .  

One can thus expect in experiment a highly variegated 
behavior of the scattered-light line, depending on the ratio of 
the characteristic times of the problem. The following is 
noteworthy. It is known that the interference-contribution 
intensity averaged over the spectrum is determined by pro- 
cesses of low multiplicity and only a small temperature-de- 
pendent increment is determined by multiple scattering. At 
the same time, the scattering line wings are determined sole- 
ly by multiple scattering. A study of the spectrum of the 
interference contribution to the reflection coefficient seems 
to us quite interesting for the analysis of phase-relaxation 
processes and also for the study of the scatterer spectrum, 
since it permits resolution of levels that differ by less than 
fi/rI2. 

2. GENERAL EXPRESSIONS FOR THE INTERFERENCE 
CONTRIBUTION TOTHE UNEQUAL-TIME CORRELATOR 

We now formulate briefly the method of calculating 
R(w).  To make the results not too unwieldy, we confine 
ourselves to the scalar model customarily used for effective 
depoiarization of the radiation. [Note that polarization ef- 
fects are very important for the study of backward reflec- 
tion." This simple model, however, yields correct frequency 
dependences for R (w) in the case of experiments with nor- 
mally incident depolarized light.] In the context of this mod- 
el the field is characterized by one component A of the vector 
potential. We must take into account effects connected with 
light scattering by two-level systems. This can be done by 
introducing into the equation for A an additional term 
gik $*$A : 

where $; and $, are the scatterer-field operators over which 
averaging is to be carried out; i and k are the numbers of the 
states, and g,, is the coupling constant. In this case we can 
write down the formal solution of Eq. ( 17) by expressing the 
potential A in terms of the extraneous current j,,: 

Here D(r,r ,  ) is the Green's function of Eq. ( 17), for which 
we can write the usual integral equation that permits iter- 
ation in powers of g, t+b:t+b, . We must write down now the 
diagram expression for the correlatorA ( r  , )A * (r, ) and aver- 
age it thermodynamically over the fields $. We assume a 
polarization interaction of the light with the scatterers. 

Writing down the bare propagator of the light in the form 
standard for bosons: 

we can write, after averaging over the fields $, the following 
expression for the vertex: 

where 2a,, is a matrix made up of the molecule polarizabili- 
ty operators. 

In the diagrams we represent the bare photon propaga- 
tor by a thin solid line, and the bare vertex g corresponding 
to interaction of a photon with a scattering particle, by a 
light square. Since we are considering particles with two dif- 
ferent internal states, the vertexg is a matrix over the states 1 
and 2 of the scattering particle. The self-energy part of the 
photon Green's function is shown in Fig. 1, where the 
dashed lines represent the propagators of the scattering par- 
ticles, and the dark square represents the total vertex part. 
Note that a diagram of type 2b does not enter in the averaged 
equations. I t  can be verified that in the limit of interest to us 
the total vertex part contains only diagrams corresponding 
to interaction between particles. We can therefore introduce 
an effective scattering-particle propagator represented by 
the diagrams of Fig. l c  (summation over the indices i and k 
is implied). 

We shall study the quantity 

where the angle brackets denote averaging over an ensemble 
of scatterers and over the density matrix of the radiation. In 
the general case, I i s  a matrix in the vector indices ofA. In the 
case of monochromatic spactially coherent radiation we 
have I = IA,(2exp [ i (kp - f i t  ) 1, where A,, is the wave am- 
plitude, k the wave vector, and R the frequency. For p = 0 
and t _  = 0 the value o f I i s  proportional to the light intensity 
at the point r and at the instant t. 

We assume that a plane monochromatic wave with fre- 
quency and wave vector k is incident on the boundary of the 
medium. To determine the scattered wave intensity 
I ( r , t+  Ik,R) (k,fi  are the Fourier components of I in the 
variables p and t- ) we must analyze the integral transport 
equation shown by Fig. 2a. In this figure the thick lines cor- 

FIG. 1 
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respond to averaged Green's functions of the waves, and the 
square corresponds to an irreducible four-point diagram. 

In the case of a coherent wave the intensity I i s  indepen- 
dent of the variable t,; to continue the calculation we shall 
find it expedient to transform to a momentum representa- 
tion in terms of the variable r (we denote the corresponding 
momentum by q). As a result we need to analyze the behav- 
ior of a four-point diagram with a momentum arrangement 
clear from Fig. 2b. It is known that the four-point diagram P 
has singularities when the difference momentum q and the 
total incoming momentum Q = k + k' are small. The first 
and second singularities lead to the need for summing ladder 
and fan diagrams, respectively. The net result is 
P =  Y + V. It  is precisely this relation which determines 
the interference effects that are of importance in backward 
scattering ( k '  = - k) .  To calculate this contribution we 
can iterate the equation of Fig. 2a. I'  

To make the final equation simple we confine ourselves 
to normal incidence of the wave on the medium. The reflec- 
tion coefficient R(w,s = kl/k) can then be expressed in 
terms of the values of _4a (q,w) and V(q,o) obtained for the 
case of a spatially homogeneous region, with the aid of the 
specular-reflection method. Acting in the spirit of Refs. 17 
and 21 we obtain R(w) = R(w)/R, at Is,l<< 1, where 

Here a z 1, the medium occupies the half-space z > 0, and q 
stands for the difference momentum in the expression for Y' 
and for the total incoming momentum in the expression for 
V. The expression for R ,'"' has been quite well investigat- 
ed.'7s2' It is known that the interference contribution to R, is 
of the order of unity in the angle interval 6~ (kl)  - '  relative 

FIG. 2. 

to the normal to the surface. Note that the multiple scatter- 
ing is not separated in the expression for R, and makes a 
contribution of the same order as the low-multiplicity pro- 
cesses. At the same time, multiple scattering makes the main 
contribution in the region of the spectral-line edge, as will be 
shown below. 

Thus, to calculate the interference contribution to the 
scattering we must analyze V(q,w) with q = k + k'. The 
sum of the diagrams for this quantity is shown in Fig. 2c. 

3. CALCULATION OF THE SUM OF FAN DIAGRAMS 

To analyze V(q,o) (to cooperon) we derive more spe- 
cific expressions for the Green's functions. We determine 
first the propagator K of the scattering particles. To this end 
we must consider the dashed-line loop shown in Fig. lc. 
There are three types of such a loop, corresponding to the 
indices 1 and 2 of the discrete levels and 12 of the off-diag- 
onal part. It is expedient to calculate them by the Abriko- 
sov-Maleev but first in the framework of the 
Matsubara technique, and followed by analytic continu- 
ation. As a result we have at +ia << T 

It was assumed in the derivation of these expressions that the 
following conditions are met: 

where r ,  is the scatterer free-path time and the + and - 
signs designate below the upper and lower levels of the pair, 
respectively. The physical meaning of these conditions is 
that the scattering-particle motion is diffuse. To calculate 
the self-energy part Z of the photon Green's function we 
must substitute (22) and (23) in the standard expressions 
for Z and sum over the channels. When the conditions R,T/  
fis a,, are met the result is a standard expression for damp- 
ing due to Rayleigh scattering: 

The values of T , ,  r,, and T , ,  differ only by factors proportion- 
al respectively to the vertices g: , g2  and g:, ; in the quasi- 
elastic approximation with condition ( 1) met the propaga- 
tors K lead to contributions of the same order. 

If the scatterers move ballistically and Doppler line 
broadening obtains, it is necessary to replace the last factors 
of (22) and (23) by ( ( w  + pv, + i/r, ) - I )  and 
( ( a  + PV, f wo + i / ~ ,  )-I) ,  respectively. Here 
T, = L /v, (w,w0$ r ,  I )  and the angle brackets denote aver- 
aging over all the directions of the scattering velocities v,. 
All the subsequent calculations are performed similarly (cf. 
Ref. 27). 

To determine V(q,w) it is necessary to sum ladder dia- 
grams in the particle-particle channel. Calculating this sum 
by the Matsubara technique and continuing the result ana- 
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lytically in analogy with the procedure used in Ref. 29, we 
arrive at the following integral equation for V: 

do' d3k' 
v(o, q )  =vo (w,  q )  + J 2n v ( o l ,  9 )  

N  ( o )  [ N  ( o f )  -N (a'-o)  1 
X 

N ( o ' )  

X DR(Q-o', k')  DA (Q-o+o ' ,  q-k')  

Here N ( w )  is the Planck function, and summation over a 
means summation over the channels. The quantity v , ( q , w )  
is the contribution of a diagram with one crossing. In the 
approximation 017-4 1 of interest to us we can put - 
V, = Vo[l + ( ~ r ) ~ ( n , q ) ~ ]  - I ,  where n, = k / k  and 

The succeeding analysis of Eq. ( 2 6 )  is similar to that of 
Ref. 28: the functions N ( w )  are expressed in semiclassical 
form, followed by integration with respect to a,. with the 
quasielasticity of the scattering taken into account. This cir- 
cumstance signifies the calculations considerably, since 
/ k /  = ( k f ( .  It is convenient next to introduce an auxiliary 
function v defined as 

and change to a temporal representation with respect to the 
variable w.  The result is the integral equation 

where 

and t>O. 
We shall consider hereafter only the hydrodynamic sit- 

uation for the scattering particles. In this case 

Expanding F(k ,q )  in spherical harmonics, we readily verify 
that the principal role is played by a contribution that is 
independent of the angle between k  and q. The equation for 
this part is obtained from ( 2 9 )  by making the substitution 
( ~ r ) * ( n , q ) ~ - - +  ( q l l 2 / 3 .  

Equation ( 2 9 )  can be analytically solved by the Evans 
method (see Ref. 2 8 ) .  For t> T it can be written in the form 

where 

Note that expression ( 3 3 )  can be substantially simplified in 
two limiting cases, D, k 2 > ~ , ( ~ , , r )  L 1 3 ( 7 / r 1 2 ) 2 1 3  and its in- 
verse. In the first case the principal role in the wave phase 
relaxation is played by the motion of the scattering particles 
in real space. In this situation one needs retain only the first 
two terms of ( 3 3 ) ,  while in the second case one can neglect 
all terms but unity in the square brackets. Note also that at 
the accuracy of interest to us we can neglect the differences 
between Vand V and between ( v , )  and V,. 

4. ANALYSIS OF LIGHT REFLECTION FROM A HALF-SPACE 

A. We begin the analysis with the simplest case, when 
light scattering with transitions between the levels of the 
scatterers is of no importance: 

In this situation 

dt' Dskz(7+--)], t r Z  2t ' /  t 1 
v ( q , t ) =  J T e x ~ [ - 3 T -  o 

where we have used the explicit expression for V,, at 
k  = - k'. 

The Fourier transform of this expression with respect to 
t ,  normalized to the integral over all w, has at the accuracy of 
interest to us.the form 

I J " I  (Y"' ~ , k ' - - ]  ti2 ~ ( 0 ,  t , ) ,  V ( ~ , O ) = ~  -exp[--TT- 
D.k 0 t t 

where 

To calculate the normalized contribution to the reflec- 
tion coefficient in accord with Ref. 21, this expression must 
be integrated with respect to q, with weight q ; / ( q :  + 1 - 2 ) 2 ,  

putting q, = ks, . We have then / q /  = k0, where 0 is the an- 
gle between the scattered-light direction and the normal to 
the surface. Note that the integrand in ( 3 5 )  was obtained 
under the assumption that q, I <  1. It makes sense therefore 
to integrate only over the region q, 5 I '. This region makes 
the main contribution only if t , / >  1, as is the case in the 
region of the spectral-line edge. Taking this into account and 
using the condition kL & 1 we arrive at the following expres- 
sion, normalized to unity, for the interference contribution 
to the reflection coefficient: 
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where rD = (6D, k ' ) - I  and the function M ( x )  was ob- 
tained by integrating with respect to q, with the weight indi- 
cated above in absolute-value limits - I  - '; for x < 1 we have 
M- 1 and for x $ 1 

M(x) = (nix.?)'". (39) 

The function 
m 

determines the angular dependence of the elastic scattering 
and is calculated in a number of papers (see, e.g., Ref. 21 ). 

It can be seen from (38) that the characteristic width of 
the spectral line is determined by the parameter 7,. The 
approximations above make it possible to consider the re- 
gion a r ~  $1. We can use here the asymptotic expression 
(39) for M ( x ) ,  after which the integral in (38) can be readi- 
ly analyzed. I t  can be seen that there exists a critical angle 

At 848, the absorption spectrum is independent of the an- 
gle. If 

we have 

If, however, the conditions inverse to (42) is met, we get 

Thus, the farthest wing of the spectrum has a Lorentz 
shape and an effective width of order rD 3 / 4 ~ p 1 / 4 $  T; I .  

At 8$ 8, the spectrum begins to depend strongly on the 
scattering angle. If the condition 

is met the result coincides with (43). In the opposite limiting 
case 

We have thus again a Lorentz wing with effective width 
($c/8)r;3/4rp1/4. Ultimately its spectrum becomes nar- 
rower when the angle is increased, and the angular width of 
the peak decreases for a given distance from the spectral-line 
center. 

We compare now the width of the spectral line of inter- 
ference scattering with the linewidth of ordinary diffuse 
scattering. At kL 1 the frequency transfer in the first case is 
of order D, k z T;  I ,  which is smaller by a factor ( r / r D  ) ' I '  
than the interference-line characteristic width. When the 
scattering particles have an internal degree of freedom, the 
characteristic scattering linewidth is of order wo. Since we 
shall assume that w,,r< 1, we see that in this case the interfer- 
ence-scattering width is larger. 

B. We proceed now to the inelastic case, when the quasi- 
discrete character of the scattering-particle spectrum is of 
importance: 

(The remaining criteria are listed in detail in the discussion 
of the qualitative picture.) In this situation, a ( t )  in (32) can 
be expressed as 

We shall see that allowance for the second term is important 
here, the inequality (47) notwithstanding. 

I t  can be seen that expression (32) for the fan diagrams 
has in the vicinity of the points t ,  = 2m/w0 singularities 
that lead to a quasidiscrete scattered-light spectrum. The 
interference contribution to the scattering can be not small 
only in these vicinities, where the rate of phase collapse is 
small. I t  is therefore natural to break up the region of inte- 
gration with respect to t ,  into intervals (2n - 1 ) ~ /  
o, < t ,  < (2n + 1 )T /w~.  I t  can be easily verified that in these 
vicinities the integrals with respect to t ,  converge rapidly 
and it is possible in the calculation of the contribution of an 
individual integral to iterate in the range ( - cc , cc ) and also 
expand cos w,t in a series: 

The expression for (w) takes ultimately the form 

where 

I E ( o , ~ ) = -  -- exp 
2n'"oo 

n=-m 00 

while f, ( 8 )  is the integral off, (w,r )  over all the frequencies 
w .  When the contribution x <w,,rD is met the sum over n can 
be represented as 

where s = (w - w, )rD is the dimensionless distance to the 
nearest maximum in the spectrum (s<w,,.rD ) . 

We obtain ultimately 

3 0 ~ 7 ~ ~  3 
x e r p  [ - - ( k ~ ~ ) ~ l : - -  + -iozx-- 

200275 2 8712 

I t  is convenient next to introduce a time 7, that plays the 
role of the time of phase relaxation on account of inelastic 
scattering: 

Introducing a new variable 
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we easily reduce the argument of the exponential to the form 
- Aq, (z) , where 

n= (3Ih/4) (wG)" ,  (55 

cp (2)  =~~/3-2iz+I/z+z0~/O,~,  (56) 

0,=2 (o z ) ' "  (3'"kl)-'. (57) 

We begin with the case of small angles, 8<8, If the 
condition 

is satisfied, the integral has no saddle-point peak. To analyze 
this case it is convenient to introduce 

We examine first the frequency region x, ) 1. Note that 
expression (52) has meaning if 

In this case 

The characteristic width of the peak in frequency units is 
thus of the order of x,/T,. For the width of the nth peak we 
have 

and the peaks are resolved at I?, <wO. Hence 

The peak envelope is given by 

~ O T D ~  - * z ( ~ )  U O ~ D  f (no , )  = ----- - - 
25cx,,,' 9n z12 n4 ' 

In the frequency region x, 1 the argument of the logarithm 
in (61) is ( 1  +s2) '" .  

Another situation is realized for x, , w,~, if the condi- 
tion W ~ T , T / T ~  < 1 is met. In this case the function x /  
(x' + s2) in (5  1 ) must be replaced by 2.rr2/wO~, . We obtain 
then 

At w -- n,,, wO expressions (64) and (65 ) become nearly 
equal with value on the order of r/w,r,. The characteristic 
width of the Lorentz wing is in this case -?/T:. Under the 
condition wOrD / T ~ / T ,  however, there is no Lorentz wing in 
the reflected-light spectrum. The peaks, remaining resolved, 
begin to decrease in amplitude rapidly (exponentially) [see 
(6611. 

We turn now to the case of the highest frequencies, 
when conditions inverse to (58) are satisfied. In this situa- 
tion the principal role in the integral with respect to x is 
played by the saddle point zO = exp(ir/4),  q, " (z,) = 0, and 
there exist therefore three steepest-descent directions. Pass- 
ing the integration contour through the saddle point and 
proceeding in standard manner, we obtain 

The modulus of the reflection coefficient is thus 

The line profile is ultimately "cut off' at values w - T; I .  

We consider now the angular dependence of the reflec- 
tion coefficient. It is necessary for this purpose to analyze 
expression (56) with account taken of the coefficient 
8 '/8 . The principal role is again played here by the saddle 
point to = exp(ia/4). In the upshot, the argument of the 
exponential acquires an additional factor 3.2-"'(8 /Om ) 2,  

and the rest of the expression remains unchanged. The argu- 
ment of the exponential is thus 

We note in conclusion that even in the lower-frequency 
region the peak widths and amplitudes also depend on the 
angle 8. This dependence begins to manifest itself at angles 
8 2 8, , where 

The corresponding expressions for f, (w,8) can also be 
easily obtained from (52). 

"It must be pointed out here immediately that our qualitative interpreta- 
tion is purely illustrative. The point is that the spectral dependence of R 
is very sensitive to the method used to average the phase difference ( 5 ) .  
Naturally, an accurate calculation, which will be carried out in the fol- 
lowing sections, does not have such a leeway and is therefore necessary 
from our point of view. 
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