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Bifurcation and chaotic lasing regimes have been observed for the first time ever in a system of 
optically coupled CO, lasers. The regions of stable laser mode locking are determined analytically 
and numerically. The dynamic regimes in the absence of mode locking are calculated. Agreement 
between experimental and numerical results is obtained. 

INTRODUCTION 

The properties of nonlinear dynamic systems is a sub- 
ject of considerable interest in the physics of the last dec- 
ade. '-' Contributing to this interest is the observed possibil- 
ity of onset of chaos in nonlinear systems. The phase 
trajectories can become quite entangled, and in many cases 
statistical methods can be used to describe the properties of 
such  system^.^ Random motion is realized in a set having a 
dimensionality lower than that of the phase space, and this 
set, which attracts trajectories, has been named strange at- 
tractor. Progress in mathematical analysis of nonlinear dy- 
namic systems, as well as the present scenario of the onset of 
a transition to chaos,'.' have made it possible to use these 
results for the study of physical objects in nonlinear optics, 
plasma physics, solid-state theory, and others. 

The most suitable, from the viewpoint of the experi- 
mental study of chaos, are laser systems. The possibility of a 
chaotic time behavior of the radiation intensity in micro- 
wave quantum generators was first discussed in Ref. 7. It 
was demonstrated in Ref. 8 that the system of equations de- 
scribing lasing is equivalent to the system of Lorenz equa- 
t i o n ~ , ~  analysis of which yielded solutions of the strange- 
attractor type. The conditions for the transition to chaos in 
injection lasers, Q-switched lasers, and gain-switched lasers 
were subsequently determined numerically." The large num- 
ber of theoretical computations notwithstanding, the experi- 
mental results are relatively few. Bifurcation and chaos were 
experimentally observed in Q-switched and gain-switched 
CO, lasers. "'-I' 

We report here for the first time ever, on the basis of 
numerical calculation and experiment, that bifurcation and 
chaos are possible in two optically coupled CO, lasers. This 
investigation was prompted by the need for solving the im- 
portant practical problem of increasing the brightness of la- 
ser emission. One of the methods of solving this problem is to 
synchronize the fields of a set of cavities by optical cou- 
pling. l 3  Since the directivity pattern of a set of lasers is deter- 
mined by the field phases, random variation of the latter 
should make the emission brightness dependent on the char- 
acteristics of the random motion of the system. 

EXPERIMENTAL SETUP AND RESULTS 

The experimental setup is shown in Fig. 1. Two quasi- 
stationary waveguide CO, lasers 1 and 2, excited by a 10- 
kHz discharge current, exchange emission via the coupling 
mirror 3. The laser-beam polarization vector lies in the plane 
of the drawing. Matching lens 5 is used to exchange laser 
emission with minimum loss. The active media of the lasers 

are 1.5 m long, the distance between the common flat mir- 
rors 4 and 6 is 4 m. The diffractive exchange of emission 
between the lasers through the totally reflecting mirror is 
prevented by telescoping the beams in the space between the 
mirror 6 and the closest ends of the discharge tube. The laser 
detuning Awl, is effected by varying the optical lengths of 
the cavities through rotation of the totally reflecting mirror 
6. The value of Aml2 was monitored against the intensity- 
beat frequency of the laser beams brought together through 
lens 7 on photoreceiver 8 with the optical coupling blocked 
by screen 9, and also with the aid of photoreceiver 13. The 
use of a scanning diaphragm made it possible to obtain the 
spatial distribution of the radiation of the two coupled lasers 
in the far zone. The coupling coefficient was varied by intro- 
ducing into the optical channel a set of calibrated attenua- 
tors 1 1, and could be decreased to M '  - 10W4, where M '  is 
determined by the intensity fraction of the radiation injected 
from one laser into the other. Another set of calibrated atten- 
uators 12 was inserted into the laser cavities to vary the in- 
tracavity losses. The lasing dynamics of one of the coupled 
lasers was recorded by photoreceiver 13 and a digital oscillo- 
scope. A microcomputer was used for signal processing. 

When lasers 1 and 2 operated independently in the ab- 
sence of optical coupling, their outputs were modulated at 
double the pump-current frequency 20 kHz. The depth of 
this modulation did not exceed 10%. Under emission-ex- 
change conditions but in the absence of phase locking, at  a 
coupling coefficient M smaller than its threshold value M:  
(Ref. 14), the output radiation was modulated at a frequen- 
cy Awl, that was varied in the experiments in the range 1O5- 
lo7 Hz. The modulation depth in this regime (beat regime) 
reached 50-100%. At M > M k, lasers 1 and 2 were syn- 
chronized and an interference pattern with almost 100% 
contrast was observed in the far zone. Since the value of the 
coupling-coefficient phase, i.e., the phase shift in the cou- 
pling channel, was not monitored in the experiment, all the 
measurements were performed within times 10-4-10-3 s in 
which the phase remained unchanged. The operating re- 
gimes of the coupled lasers (locking, beats, etc.) were addi- 
tionally monitored in the course of the measurements with 
the aid of the devices 8 and 10 (Fig. 1 ). In  the absence of 
laser synchronization and under conditions when the detun- 
ing frequency Ao,,  approached the natural frequency 

of the radiation-field oscillations in the laser cavity,"' the 
intensity oscillations of the coupled lasers become more 
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FIG. 1. Experimental setup: 1,2-C0,-laser discharge tubes; 4,6-cavity 
mirrors; 3-coupling mirror; 5-matching lens; 7-focusing lens; 9-mo- 
vable screen; 10-scanning diaphragm; 1 1, 12-calibrated attenuators; 8, 
13-photoreceivers. 

complex and the modulation depth was almost 100%. In the 
expression above, r is the collisional-relaxation time of the 
upper laser level, while go and g, are respectively the weak- 
signal gain and the threshold gain. 

The natural frequency R was determined in experiment 
in the following manner. Calibrated attenuators 12 were in- 
troduced into the laser cavities and the threshold gain g and 
the ratio go/g, were determined from the lasing cutoff. The 
relaxation time was estimated from the known g,, and g, and 
from the measured delay of the lasing pulse relative to the 
pump-current pulse. The obtained values of go, g,, and T 

were substituted in the expression for R. The frequency R 
was varied by varying the discharge current (actually the 
parameters go and T) and a second lasing threshold was 
fixed. The lasing properties of the coupled lasers were ex- 
perimentally investigated for two values of the natural fre- 
quency R, corresponds to R/2a = 100 kHz and 150 kHz. 
For both natural frequencies, the radiation-intensity spec- 
trum exhibited at Aw ,? - R frequencies corresponding to 
doubling and quadrupling of the period 2a/AaI2. Typical 
oscillograms of the intensity for doubling and quadrupling 
of the period are shown in Figs. 2 and 3. The frequencies 10 
and 20 kHz in these figures are connected with the electric 
circuit used to excite the lasers. In individual cases, a more 
complicated intensity spectrum was observed when M%nd 
Aw ,? was varied (Fig. 4 ) .  

ANALYTIC AND NUMERICAL INVESTIGATION 

To describe the lasing dynamics of two coupled lasers 
we start with the point model for the fieldsI4 and the gains of 
the active media: 

Here A ,,, are the field amplitudes in the lasers, q, = p, - p2 
is the phase difference of the fields, go is the cavity unsaturat- 
ed gain per pass, g,,, and g, are respectively the signal gains 
and loss in the first and second lasers, respectively. The coef- 
ficient of optical coupling between the lasers is determined 
by the amplitude M and phase $ of the coupling. All the 
quantities with dimension of time, viz., r (relaxation time), 
A- '  (A is the laser-frequency detuning), and A -"the sti- 
mulated-transition time) are made nondimensional by divi- 
sion by the time of light-beam passage through the cavity. 

The implementation of the various dynamic regimes de- 
pends on many parameters of the problem: M, $, A, T, go, and 
g,. The stationary-lasing conditions can be analytically in- 
vestigated most completely at the coupling-phase values 
$ = 0, T ,  and + a/2. The laser energy needed for coupling is 
usually low ( M < < g ,  ), and the system ( 1 ) can be analyzed 
assuming M to be small. 

If the coupling coefficient is real (i.e., for $ = 0 and a)  
stationary solutions of ( 1 )  exist for A<2M. If $ = 0, the 
field phase difference in the stationary solutions is given by 

The first of the solutions corresponds to in-phase lasing, 
and the second to antiphase lasing. An investigation of the 
stability of these two solutions shows that at  $ = 0 the in- 
phase solution is stable and the second solution is unstable. 

FIG. 2. Oscillograrn ( a )  and spectrum ( b )  of radi- 
ation intensity I in the period-doubling regime. f1/ 
2rr= 150kHz, A o , ? / 2 r r = F =  l80kHz. 
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FIG. 3. Oscillogram ( a )  and spectrum (b )  of radi- 
ation intensity when the period is quadrupled; 
0-/2.rr = 150 kHz, Ao ,? /2n  = F = 192 kHz. 

At $ = a there are also two stationary solutions correspond- 
ing to in-phase p = arcsin(A/2M) and antiphase 
p = n- - arcsin(A/2M) lasing, the latter being stable. 

Thus, at real optical-coupling coefficients and for 
A<2M stationary lasing is effected for all the remaining pa- 
rameters of the problem. If the frequency deviation exceeds 
the critical value 2M, the lasing becomes nons'tationary. In- 
vestigations have shown that the highest-quality (in the 
sense of maximum conversion of the active-medium energy 
into radiation) regime is the one in which the time depen- 
dences of the field amplitudes A ,,, ( t )  are equal. This follows 
from the symmetry of the equations at $ = 0 and n-. The 
analysis of the system can be reduced to an investigation of 
the emission of one periodically Q-switched laser. This prob- 
lem was investigated experimentally and numerically in 
Refs. 10 and 12, where a possibility of onset of chaos in the 
system was observed. In contrast to Refs. 10 and 12, where 
the Q-switching period was set by external devices, in the 
present case of coupled lasers the period is determined by the 
equation for the phase 

@=-AT2M sin cp, 

where the upper and lower signs correspond to coupling- 
coefficient phases $ = 0 and tC, = rr, respectively. 

In the case of an imaginary coupling coefficient at 
$ - + a/2  the condition for the existence of stationary so- 
lutions takes the form'" 

2MZ go ! A )  <--. 
go- g1 g ,  

If ( 2 )  is satisfied, four stationary solutions are possible with 
close field amplitudes and with the following phases: 

The first two solutions correspond to in-phase and antiphase 
lasing, and the second pair corresponds to lasing with a 
phase shift close to n-/2. Even if (2 )  is satisfied, however, 
the stationary solutions may turn out to be unstable. In ac- 
cord with the Hurwitz criterion, the system ( 1 ) linearized 
for small perturbations near the stationary solutions leads to 

1 4M2 ->- sin2 cp, 
go- g ,  

FIG. 4. Intensity spectrum of chaotic signal. 
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FIG. 5. Stability pattern of in-phase lasing at g,, = 1.4, g, = 1.4, M = 0.3, 
and tl, = r / 2 :  1-stable lasing; 2-unstable. 

Figure 5 shows the stability region of the stationary solu- 
tions for $ = f a/2, in terms of 1 / r  and A. 

Various physical factors goS,ern the stability of station- 
ary lasing regimes at real and imaginary values of the laser 
optical-coupling coefficient. If the coupling coefficient is 
real, the lasing is stable because the field-energy losses in in- 
phase (or antiphase) lasing are minimal. If the field mis- 
match time of the two lasers ( - l /A) exceeds that evolution 
time of the in-phase (or antiphase) field structure ( - M  - I )  

the stationary regime is stable. This condition is equivalent 
to M >  A and agrees with the rigorous mathematical analy- 
sis. 

In the case of an imaginary coupling coefficient the re- 
gimes are stable because the relaxation time of the medium is 
finite. The point is that a single laser with an active medium 
is equivalent to a damped oscillating system. The deviation 
of the intensity or of the gain from stationary values leads to 
damped oscillations with a frequency 

FIG. 7. Calculated dependences of the intensity ( a )  and spectrum ( b )  for 
the quadrupled period. 

and a decrement (1/2) (g,,/g,r) (it is assumed that 
f l 'B f (g,,/g, r ) .  Detuning leads to power oscillations in the 
lasers, and the relaxation of the medium tends to damp these 
oscillations. Clearly, stationary lasing is possible at a suffi- 
ciently large optical-coupling coefficient and at a sufficient 
damping decrement. Note that slightly above the lasing 
threshold 

the stationary regime is stable in the limit as ~ - + 0  if the in- 
equality A < 2Mis satisfied, in analogy with the case of a real 
coefficient. 

In the parameter region where stationary solutions do 
not exist or are unstable, the dynamics of generation by the 
coupled lasers was investigated by numerically integrating 
the system ( 1 ) . Phenomena typical of nonlinear dynamics 
systems9 were observed. By way of example, Figs. 6 and 7 
show the temporal and spectral dependencies of the emission 
intensity of the lasers, corresponding to the period doubling 
and quadrupling regimes. The fundamental period is equal 
to the time of energy transfer from one laser to the other. 
Thus, for an imaginary coupling coefficient, the fundamen- 
tal period is determined by the detuning and by the ampli- 
tude of the coupling coefficient 

I b  The corresponding phase portraits for the period doubling 
and quadrupling regimes are shown in Fig. 8. In these re- 
gimes the frequencies of energy exchange between the lasers 
were chosen to be close to the frequencies of the relaxation 
oscillations in the lasers. Besides the frequency components 
F, F 12, and F/4corresponding to the fundamental, doubled, 
and quadrupled bifurcation periods, the emission spectrum 
showed also components resulting from frequency combina- 

f 
tions in the nonlinear systems: 3/2F, 2F, 5/2F (Fig. 3) and 
3/4F, 5/41: (Fig. 7) .  Upon variation of the parameters the 

FIG. 6. Calculated variations of the intensity ( a )  and spectrum ( b )  for the calculations revea1ed regimes 
doubled period. of the period, and more complicated ones corresponding to 
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FIG. 8. Phase portrait. Doubling ( a )  and quadrupling 
( b )  of the period. 

onset of chaos in the system. This behavior is illustrated in CONCLUSiON 
Fig. 9, which shows the time dependence of the interference We have thus shown experimentally, for the first time 
term J = A,  (t)A,(t)cos p ( t ) .  It is seen that the character of ever, that a complex dynamic behavior of the emission inten- 
the pulsation is similar to the self-modulation regime in the sity can be observed in a system consisting of two optically 
region of the Lorenz attractor.' coupled CO, lasers if the frequency of energy exchange 
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between the laser is close to the natural frequency R of the 
relaxation oscillations. The transition to chaos is via bifurca- 
tion of the period-doubling type. The conditions for the real- 
ization of various regimes are not stringent when the gain 
exceeds a threshold value on the order of unity, and are 
achieved by retuning the natural frequency of one of the 
lasers. By varying the gain, the cavity Q, and the gas-mixture 
pressure it is possible to shift rather simply the regions where 
various regimes are realized and vary the spectral composi- 
tion of the output radiation. The emission brightness of the 
two lasers depends on the phase shift p of the fields. In a fully 
developed chaos there exist field phase differences near 
which the trajectories exist substantially longer than at the 
other values of p. The probability of finding a system at a 
definite value p is determined by the correlator of the inter- 
ference term J = A,A,cos p ( t )  and is expressed in terms of 
the correlation time, the correlation being one of the charac- 
teristics of the a t t r a ~ t o r . ~  We note in conclusion that a study 
of the dynamics of generation of two optically coupled lasers 
is the first step in the investigation of the possible generation 
regimes of assemblies of lasers. 
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