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The problem of the traversal of ultrashort light pulses through a thin layer of surface resonance 
atoms under conditions of two-quantum absorption is solved. Analytic solutions are given and an 
analog of the McCall-Hahn "energy theorem" for the optical radiation passing through or 
reflected by the resonance layer is formulated for the case when phase modulation is absent. An 
anomalous traversal of ultrashort light pulses through the resonance layer occurs for large values 
of the nonlinearity parameter. 

1. INTRODUCTION 

At the present time processes arising in propagation of 
ultrashort light pulses (USP) under conditions of two-quan- 
tum absorption in an extended resonance medium whose 
size exceeds the characteristic nonlinear-absorption length 
have been well studied. I-' In particular, it was established in 
Ref. 1 that under the condition r, < T2, where 7, is the length 
of the USP, and T2 is the polarization relaxation time, it is 
possible to form solitary 2n-pulses that are the analogs of 
single-soliton solutions of the problem of self-induced trans- 
parency (SIT) of McCall and Hahn in the theory of the one- 
quantum resonance.' The distinctive features of the mecha- 
nism of nonlinearity in the case of two-quantum absorption 
are manifested in the existence of the so-called energy 
theorem and lead to analytic solutions for the energy of the 
USP in the case of homogeneous broadening of the reso- 
nance transition line. This theorem describes the evolution 
of the energy of the USP light in an extended resonance me- 
dium under conditions of two-photon resonance and is the 
analog of the "area theorem" of McCall and Hahn in the one 
quantum case. 

Interaction processes of USP light under resonance 
conditions in another limiting case, when the nonlinear me- 
dium is a thin layer of resonant surface atoms whose thick- 
ness is considerably less than the wavelength of the lightX"' 
are no less interesting. In the case of one-quantum reso- 
nance, a similar problem can be solved exactly by use of the 
method of the inverse scattering p r ~ b l e m . ~  In this case the 
interaction of light with the thin layer of resonance atoms 
reduces to the problem of scattering on a point potential, 
taking into account the presence of a reflected wave. 

It is well known that under these conditions the nonlin- 
ear connection between the field of the light wave passing 
through the surface layer and the optical properties of the 
resonance medium play an important role. Because of the 
coherent character of the interaction of the USP with the 
resonance layer, it is possible to have nonunique solutions 
for the "area" of the optical pulse passing through the layer." 
We note that this nonuniqueness of the solutions in the case 
of the quasi-stationary action of light is manifested in the 
phenomenon of optical bistability in the absence of a cav- 
ity."' 

Therefore, it is of interest to consider coherent interac- 
tion of USP light with a thin surface layer of resonance 
atoms under conditions of two-quantum absorption. The 

simplicity of the choice of a physical model together with the 
specific mechanism of nonlinear interaction of light pulses 
with a resonance medium at the two-quantum resonance 
leads to analytic solutions having a sufficiently general char- 
acter without resorting to the method of the inverse scatter- 
ing problem. In particular, in the absence of phase modula- 
tion it is possible to "track" analytically the energy of the 
optical radiation passing through and reflected from a sur- 
face layer. 

2. BASIC EQUATIONS AND METHOD OF SOLUTION 

The system of equations for the field and the medium 
under conditions of two-quantum interaction can be ob- 
tained by traditional methods. The difference of our bound- 
ary-value problem from the problem of transmission of USP 
light in an extended resonance medium lies only in the use of 
appropriate electrodynamic conditions connecting the fields 
on the boundary between the two media rather than the 
Maxwell equations. 

We consider a thin layer of resonance atoms situated on 
the boundary of two linear media (z  = 0 )  with dielectric 
constants E, and E ~ .  We limit the detailed analysis to TE- 
waves on1 y . 

Let the electric field of a light wave incident from the 
first medium on the interface be given by the expression 

E, ( x ,  z, t )  =E, ( x ,  z ,  t )  exp (iot-ik2x-ik,"z) , (1 )  

where E,,(x,  z, t )  is a slowly varying amplitude, k >nd k," 
are the components of the wave vector in the first medium, 
and w is the frequency of the incident light wave. 

The reflected and transmitted wave are respectively giv- 
en by 

E,' ( x ,  z, t )  =E, ( x ,  z ,  t )  exp (iot-ik,"x+ikZnz) , 
( 2 )  

E,"(x, z, t )  =E ( x ,  z, t )  e s p  (iot-ik,bx-ik:~). 

The boundary conditions describing the relation between 
the amplitude of these waves are 

E,(x, Of, t )  -E,(x, 0-, t )  =0, 
Bz ( x ,  Of, t )  -Bz ( x ,  0 7 ,  t )  =O, (3) 

where P, (x,t)  is the surface polarization density at the 
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boundary of the media. Using boundary conditions (3 ) ,  it is 
easy to express the slowly varying amplitudes of the electric 
fields E,,, E,, and E of the incident, reflected, and transmit- 
ted light waves, respectively, in terms of the amplitude of the 
polarization P, on the boundary of the media at z = 0: 

2A E=-- 4n o 
E, - i ------ 

A+B C ( A + B ) ~ "  
A-B 4no 

E, = - Eo-i ------ 
A+B C ( A + B ) ~ "  

where A and B are the Fresnel coefficients ( A  = cos 8,, 
B = &y2 cos 8,, and 8, and 8, are the angles of incidence 
and refraction). 

The amplitude of the polarization P, in the right-hand 
side of Eqs. (4 )  can be obtained by usual methods in the 
theory of the two-quantum resonance (see, e.g., Ref. 6) :  

Here, contributions of the resonance and nonresonance 
types are taken into account, with n the inverted population 
of energy levels, referred to a single resonance atom, and No 
is the surface density of resonance atoms in the layer. The 
coefficients k , ,  and k12 describe the Stark shift of resonance 
energy levels. 

k , ,  is the matrix element of the two-photon transition: 

the coefficient k,, takes into account the contribution to the 
polarization from nonresonance impurities, and the angular 
brackets indicate averaging over the frequency spread with- 
in the limits of the inhomogeneously broadened line of a 
spectral transition: 

(Aw = 2w - wz, is the resonance defect; the functiong( Aw) 
describes the form of the inhomogeneously broadened line), 
and the component of the Bloch vector P satisfies the follow- 
ing equations: 

Wenote that, in writing the system ( 6 ) ,  we used the approxi- 
mation of ultrashort light pulses and discarded terms de- 
scribing the processes of relaxation of polarization and pop- 
ulation inversion. 

In the following we consider the passage of USP of light 
through a resonance layer with a homogeneously broadened 
line of radiation [ g (  Aw) -b(  Aw) ] at exact resonance 
(Aw = 0) .  In this case the basic system of equations has the 
form 

2A 4n w A-B 4no E=- E ,- i ------ PF, E -- E,  - i ------ 
AS-B C ( A + B )  .-A+B C ( A + B )  Pp7 

I t  is necessary to note the following in connection with 
the use of Eqs. (7) .  In solving the analogous problem for 
conditions of one-quantum resonance, the nonresonant 
terms in the polarization are usually discarded because they 
are small (of order Aw/w, where Aw is the deviation from 
resonance) in comparison with the resonance terms. In the 
case of two-quantum resonance, it follows from Eqs. (5  ) and 
(6 )  that the nonresonance part of the polarization is of order 
NOk, ,E and is linear in the field, while the resonant part of 
the polarization is N,,( I k2,  I '/fiAw) E ' and is nonlinear in the 
field. As a result we obtain for the ratio of the resonant to 
nonresonant contributions 

P, I k21 IZE2 o 

where E, is a characteristic intra-atom field. 
However, in our case of a homogeneously broadened 

line and exact resonance, Aw should be taken to mean the 
Stark frequency shift which, in order of magnitude, is 

Thus, the resonance and nonresonance terms are of the same 
order. 

It follows from the boundary conditions ( 3 )  that the 
amplitudes of the field of the transmitted and reflected 
waves are connected by the simple relationship 

Therefore, we consider in detail the characteristics of the 
field of the transmitted wave. We take for the amplitude of 
the electric field of the USP light incident on the resonance 
layer 

We seek then the slowly varying amplitudes of the field of 
the transmitted wave and the component of the Bloch vector 
in a form that allows phase modulation 

We obtain after separation of the variables 

where the constants 6,, and f i  are determined by the nonre- 
sonant ~olarization and by the parameters of the resonance 
layer: 

~o=p[ko+t/2(kli+k2,)+'12(k,Z-ki1) n o ] ,  
p=4noNo/c (A+B) , 
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no is the initial value of the inversion (in the absence of a 
field), and F is expressed thorugh the Fresnel coefficients A 
a n d B : F = 2 A / ( A + B ) .  

Finding a general solution of the system ( 9 )  is quite 
difficult because of the possible phase modulation. We note 
that by obtaining analytic solutions valid for an extended 
resonance medium it is possible, by renormalization of the 
wave number, to exclude the term due to the nonresonant 
part of the polarization.' 

We will solve the system (9 )  approximately, neglecting 
the derivative &. This is obviously possible for the conditions 

It is easy to obtain from the third and fifth equations of sys- 
tem (9 )  

Thus, the quantity U(t)  + (1/2)(k,z - k l l ) 6 n ( t )  is 
an integral of the motion, which can be taken to be zero from 
the conditions U( - w ) = 0 and 6n ( - w ) = 0. The solu- 
tion of the last equations of system (9)  follows easily: 

21kzl12no 
V =  sin Y ,  

[ (kzz-k,,) '+4 1 k21 I 'I "' 
\ <  

4 [kzi l no 
= (k2z-k,1)2+4 1 k21 1 ' (cos Y -I) ,  

where 

The first two equations of system ( 9 )  reduce to 

(1+E sin Y)8=FBo cos (9,-cp), 
(11) 

Eo8=FBo sin (q0-cp) , 

where 

from which it follows that 

cp=cpo-arctg{Eo/(l+E sin Y )) .  (13) 

It is possible to finally formulate the condition for the 
neglect of phase modulation by using Eq. ( 13): the first is 
absence of phase modulation at the entrance to the reso- 
nance medium, and the second is 

3. ENERGIES OF REFLECTED AND TRANSMITTED USP 
LIGHT IN ATHIN RESONANCE LAYER IN THE ABSENCE OF 
PHASE MODULATION 

We begin by formulating an "energy theorem" for opti- 
cal radiation passing through a resonance layer. Squaring 
each of Eqs. ( 1 1 ) and dropping the trigonometric functions 
containing p, ,( t)  and p ( t ) ,  we obtain 

(1+E sin Y)  2 8 2 + ~ 0 2 8 2 = F 2 8 0 Z .  

Integrating over time and changing to the "rotation angles" 
Y and q, leads to an "energy theorem" connecting the quan- 
tities Y and TO with the parameters of the resonance layer: 

E" E2 ( 1 + E O z  + T) Yi-48 sin2- - - sin 2Y=F2Yo. (15) 
2 4 

In the same way we obtain an expression connecting the 
"rotation angle" (and with it the energy) of the reflected 
USP light with the parameters of the resonance layer. It fol- 
lows from Eq. (8)  that 

Integrating over time and using the first equation of system 
( 1 1 ) leads to the relation 

Y,=Y+Yo-2F-1 {Y+E(1-cos Y ) ) .  (17)  

We note that Eq. ( 17) is the law of conservation of energy in 
the interaction of USP light with a thin surface layer. One 
can easily be convinced of this by using the obvious proper- 
ties of the Fresnel coefficients: 2B /(A + B) = 2 - F. Thus, 

i.e., the energy of the incident radiation is distributed 
between the energies of the reflected and transmitted waves 
and the energy absorbed in the resonance layer. 

Hence, Eqs. ( 15 ) and ( 18) allow a determination of the 
energies of the reflected and transmitted USP light for two- 
quantum resonance in the absence of phase modulation. 

We analyze the possible cases of absence of phase mod- 
ulation. The inequalities ( 14) can be satisfied for the follow- 
ing conditions: a )  <,,, < < I ,  b )  << 1, <,,&I, c )  <,,- 1, < & I ,  
and d )  {-- 1, lo$<. In these limiting situations the "energy 
theorem" takes the following forms: 

a )  Y=F2Yo,  
b) F Z Y  ,,= (1+E2/2) Y +4E sin2 (Y/2)  - ( ~ ' 1 4 )  sin 2 y ,  
C )  (l+Eoz) Y=F2Yo, 
d )  Eo2'P=F2Yo. 

Thus, the temporal form of the transmitted and reflect- 
ed USP light can differ significantly from the form of the 
incident USP light only in case b ) .  In the remaining cases 
neglect of phase modulation leads to conservation of the 
temporal form of all light pulses. 

A graph of the dependence of the energy of the incident 
USP as a function of the energy of the USP light passing 
through the resonance layer for the conditions < < I ,  and 
lo & 1 is given in Fig. 1. We note the monotonic character of 
this dependence, since the time derivatives of the functions 
q,, and !P define essentially positive quantities. We note also 
that the region for which the derivative dY,,/dY is close to 
zero broadens as lapproaches unity. Physically, this means 
that, in those regions, an insignificant increase in the energy 
of the incident light pulse can lead to a significant increase in 
the energy of the radiation passing through the resonant lay- 
er; i.e., anomalous transmission occurs. 

We estimate the orders of magnitude of the correspond- 
ing quantities. The coefficients of the Stark shift and the 
matrix element of the two-photon transition are in general of 
the same order of magnitude: k ,  , - k,, - k,, -d  '/ 
. f i w - 3 ~ 1 0 ' ~  cgs esu with d-10-" esu and w-3X 10" 
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s-I. It is clear that nonlinear effects in the resonance layer 
will occur for lo-{- 1. Hence, No-A(A + ~ ) / 8 n ~ k -  10" 
cm-', which means approximately lo2 atom layers in films 
based on LaF,. We note that in a number of cases (e.g., in 
metal atoms such as Na, Rb) k can exceed the given value by 
several orders of magnitude due to the influence of an inter- 
mediate resonance level, and can reach - 3 X 10W2' cgs esu 
(Ref. 11). In this case No- lOI4 cm-'. We estimate the nec- 
essary levels of intensity from the condition that the "rota- 
tion angles" Y should be of order ~ / 2 .  Hence, k2,E '13, / 
di- 1 and for the intensity I = cE ' / 8 ~ ,  we obtain I-&/ 
8k,,aP - 10 MW .cm-2 for pulse lengths 8, - 10-l2 s and 
k,, - 3 x lo-'' esu. 

Note added in proof (1 7 January 1989). We emphasize 
that the noted features of the interaction of USP light with a 
thin layer of surface resonance atoms were obtained neglect- 
ing the local field. In the general case the quantity E in the 
system of Eqs. ( 7 )  should be taken as the local field acting on 
the resonance atoms in the film: E,,, = E + ,uP,/a, where a 
is the characteristic distance between the atoms on the sur- 
face andp  is a numerical coefficient of order unity. The "en- 
ergy theorem" (15) remains valid also with allowance for 
the local field if we take in Eq. ( 15) for the values 1; g,,, 6 ', 6, 
the corresponding values 

FIG. 1. The dependence of the energy of the incident USP light 
on the energy of the USP light passing through the resonance 
layer for values of the parameters go( 1, g = 0.5 (curve 1 ), or 
6 = 1 (curve 2). 

where 

~ ~ ( o ) = g ( , , , ,  % a ( o ) = E p ( o ) p N ~ l S a .  
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