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Expansions of the amplitudes of the elastic and inelastic scattering of light by hydrogenic atoms 
and of the dynamic polarizabilities in terms of powers of the reciprocal of the frequency w are 
derived. It is shown that these expansions include terms with half-integral power exponents of w, 
which are associated with the singular nature of the Coulomb potential. An analysis is made of the 
conditions of validity of these approximations. 

1. INTRODUCTION the values of a, and c,, are found by numerical calculations. 

Atoms in highly excited (Rydberg) states and their in- 
teraction with external fields are currently the subject of 
many experimental and theoretical investigations (see, for 
example, Ref. 1).  The low energies of the Rydberg states 
make it possible to calculate the interaction of a Rydberg 
atom with optical-frequency radiation by means of simple 
expressions derived for a number of atomic characteristics in 
the form of expansions in terms of a small parameter 
R p '  = z 2 R y / h ,  where z is the charge of the atomic core. 
We shall derive such expressions for the light-scattering ten- 
sor and for the dynamic polarizabilities, because rigorous 
calculations of these quantities meet with considerable diffi- 
culties. A highly excited electron will be described by a po- 
tential U ( r ) ,  which is created by the nucleus and the core, 
and in some cases (particularly in the case of the states with a 
large orbital momentum I) this potential can be quite acura- 
tely regarded as of the Coulomb type. 

We shall assume that w, e and w', e' are the frequencies 
and the polarization vectors of the incident and scattered 
photons. The scattering tensor for a transition of an optical 
electron from astate 11) - Inlm) to astate 12) = ln'l 'm') is of 
the familiar form (see 59 in Ref. 2) :  

where 

Equation ( 1 ) simplifies greatly in the limiting case of 
high frequencies. ( I t  is assumed then that h remains small 
compared with the excitation energy of the inner electrons.) 
Thus, at frequencies w exceeding considerably the binding 
energy of an optical electron, we have (see Ref. 2)  

This expression is independent of the quantum numbers and 
describes the shift of all the energy levels by an amount equal 
to the average vibrational energy of atomic electrons in the 
field of a wave; in the language used for the scattering cross 
sections, this expression describes the classical (Thomson) 
cross section for scattering by free electrons. The inelastic 
scattering effects (in the case when / 1) # 121) ) and the de- 
pendence (c,, ),, on the quantum characteristics of the 
states 11) and 12) appear in the next orders in w I. Terms 
proportional to wP4 in the expansion for the polarizability 
have been considered by several authors."' However, the 
method used then is inapplicable in the case of terms of high- 
er order (see Sec. 2) ,  but these terms are essential for esti- 
mating the precision of the results and also for finding the 
antisymmetric parts of the tensors a, and c,, which-as 
established by numerical calculations in Ref. 8-contain 
half-integral powers of w already in the main term of the 
asymptote. A correct expansion has been obtained only for 
the polarizability a,,  (w) of the ground state of a hydrogenic 
ion with a charge z and this has been done using an expres- 
sion for a,, in terms of a hypergeometric functiony: 

is a Green function which contains summation over discrete 
( E , , )  and integration over continuous (E ' ) spectra of the 
states of an optical electron; d , ,  are the components of the 
dipole moment of an electron. For 11) = 12) and w = w' the 
tensor c, is identical with the tensor a,, ( a ) ,  representing 
the dynamic polarizability. In addition to the coherent 
(Rayleigh) scattering tensor a,, (w),  we shall find also the 
shift, splitting, and ionization broadening of a level I nlm) in 
a monochromatic field F ( t )  = F Re{ee '"'), which are 
quadratic functions of the amplitude F. Analytic expressions 
for a, and c, can be obtained only for the hydrogen atom, 
but even in this case the results for the states with n = 2 
contain cumbersome combinations of hypergeometric func- 
tions, F, (Refs. 3 and 4) .  In the case of many-electron atoms 

where a is the Bohr radius. We can show that the expansion 
of Eq. ( 4 )  has the following structure: 

b 

where the series in terms of half-integral powers of R con- 
verge when R > 2. (The coefficients y, differ from zero for 
k> 12.) 

In Sec. 2 below we shall investigate the formal expan- 
sion of the tensor c, as a series in integral powers of u p  ' and 
describe a method for calculating the terms containing half- 
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integral powers of the frequency. In the next two sections 
(Secs. 3 and 4 )  we shall give for the scattering cross sections 
and the polarizability tensor final results which are valid 
irrespective of the values of the principal quantum numbers 
n and n'. Finally (Sec. 5)  we shall consider the conditions of 
validity of our results. 

2. EXPANSION OF THE SCATTERING TENSOR IN 
RECIPROCAL POWERSOF THE FREQUENCY 

At high frequencies characterized by h, h ' s  IE, 1 ,  
I En. 1 we can rewrite Eq. ( 1 ) conveniently in terms of matrix 
elements of the derivatives of the potential U ( r )  using the 
familiar expression 

representing the operator of the interaction with the field in 
the form of "ac~elera t ion."~~ Transformation carried out us- 
ing Eq. ( 5 )  in (cik separates explicitly terms of the orders 
of wP2 and wp4: 

Expanding now G ,,,,. + ,, formally in powers of w - 

and using the commutation relationships for the operators H 
and U, we obtain a series in powers of w -- for the scattering 
tensor: 

Here, e,,f is a unit antisymmetric tensor of rank three, 1, is 
the operator of the f th projection of the angular momentum, 
and the quantity w' is expressed in terms of w in accordance 
with the law of conservation of energy E, 
+ +h = En, + k', so that the sums over y appear simply in 

the expansion of (0') in powers of w - I. 
The first term in Eq. (8 )  differs from zero only in the 

case of elastic scattering and it is identical with Eq. (3 ) ;  the 
other terms are determined by the form of the potential 

We shall now discuss the general nature of expansions 
of the type given by Eq. (8 ) .  When the infinite sum of Eq. 
(7b) is substituted in Eq. (6) for a matrix element contain- 
ing a Green function and this is followed by integration term 
by term, the result is a series in powers of w '. In general, 
this series is asymptotic1' and it can be used to estimate the 
matrix element, but it is unsuitable for calculating the effects 
that decrease exponentially on increase in w. However, in the 
case of the potential which has a cubic singularity in the limit 
r-0 the nature of the expansion changes. For example, in 
the first three matrix elements (21 ... / 1 )  in Eq. (8 )  the opera- 
tors considered in the limit r-0 have, respectively, a singu- 
larity r-', rp6, and r--8 .  The degree of singularity rises for 
the last terms of the expansion. If we bear in mind that 
$,,,,, ( r - 0 )  a r', we find that the radial integrals in the ma- 
trix elements of Eq. (8 )  converge respectively for I + 1 '> 1, 
1 + 1'>4,1+ 1'26. Therefore, only a certain numbers of the 
first terms in the expansion (8 )  is finite (s increases on in- 
crease in I + I ' )  and then a divergence appears in the radial 
integrals. This divergence means that in the case of the Cou- 
lomb potential the nature of the functional dependence on w 
changes in the higher terms of the expansion [for example, 
Eq. ( 4 )  contains terms with w - " + "*' 1.  

I t  should be noted that if in the course of substitution of 
Eq. ( 7 )  into Eq. (6 )  we employ the spectral expansion of Eq. 
(2 )  for Eq. (7b) ,  we obtain in particular the following inte- 
grals for a continuous spectrum: 

Here, the matrix elements aU/ar,  are finite for all values of 1 
and I ' and the divergence can appear only in the upper limit 
of the integrals in Eq. ( 9 )  ( the sums over a discrete spectrum 
show no divergences). In the case of a potential with the 
Coulomb asymptote U ( r )  a - J r  in the limit r-0 we can 
obtain an estimate of the radial matrix element (n l  / a U /  
d r  El,,) for E -  a. We can do this by replacing (rl El,,) with 
a function representing free motion and estimating both 
(rlnl ) and aU/ar  in the limit r-0 (it is the vicinity of the 
point r = 0 that dominates the contribution to the integral 
with a rapidly oscillating function (rl El,,) ) : 

As a result, we obtain 

In the case of a smooth potential a matrix element decreases 
exponentially on increase in E: 
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Therefore, the integral in Eq. (9 )  for a smooth potential U 
converges for all values of p and if the potential is of the 
Coulomb type, it converges only for 2p < I + I ' - 1. 

We shall show that the first "incorrect" term of the 
asymptote for the Coulomb case contains w with a half-inte- 
gral power exponent. We shall calculate the relevant term 
using the identity 

1 N-E,, ( H - E n )  '-' . . .  - G E , + h W  = - - - - - 
Ao, ( h ~ ) ~  (ti0)" 

which gives the following expression for the matrix element 

dU c)u =(,I OX, 
-GE,t+rzu- OX, 1 1 )  = Z $ + M ~ , ' ( ~ ) ) ,  

,?=" 

wheres = ( I  + 11)/2 (1 + I'isalwayseven, seeSec. 3 )  is the 
largest number such that all the coefficients in Eq. ( 12) are 
finite. Then, the term of interest to us is obtained from an 
estimate of M ;, (w) : 

where we have retained only the integral over a continuous 
spectrum, which dominates M ;, in the limit w - w [the re- 
jected contribution of a discrete spectrum and of the low- 
energy part of a continuous spectrum is -w "+ " and it is 
of higher order of smallness in Eq. ( 13) 1. Since E&z2Ry, in 
the integrand in Eq. ( 13), we have to drop E, and in the 
calculation of the matrix elements we should use Eq. ( 10) 
and then assume that A = 0. Consequently, the integral with 
respect to E in Eq. ( 13 ) becomes 

Therefore, M ;, in Eq. ( 12) behaves as w " + . It should 
be noted that if w > 0, the integral of Eq. ( 14) is determined 
entirely by the correction iO in the denominator [which is 
lost if we use the expansion of Eq. (7b) 1 .  This technique was 
used by us to calculate c, (w - c ~ ,  ) in the Coulomb case. The 
results of the calculation are summarized below. 

3. ASYMPTOTIC EXPRESSIONS FOR THE SCATTERING 
CROSS SECTION 

Expanding the tensor c,, into scalar, antisymmetric, 
and symmetric parts cy,, cp,, and <, (Ref. 2 ) ,  we find the 
scattering cross section du/dCl' averaged over m and 

summed over the projections of the momentum m': 

where the amplitudes f,, f , ,  and f, are expressed in terms of 
c?, , c;, , and cIA, respectively. The actual expressions linking f 
and c depend on the momenta of the initial and final states I 
and 1'. Asymptotic expansions of the amplitudesf, (w) are 
obtained from expansions of c,, . We shall give the results for 
the pure Coulomb potential U(r)  = - ze/r. In the case of a 
potential other than that of the Coulomb type, it should be 
noted that n and n' should be replaced with zv and zv', where 
v and v' are the effective principal quantum numbers 
( v  = ( - Ry/E,, ) - ' I2),  and also in terms with the half-inte- 
gral powers of R we have to introduce a factor xt ,x i . , .  which 
allows for the difference in the normalization of the radial 
wave function at the origin of the coordinate system: 

As pointed out already, for arbitrary values of n and n' the 
results are different for different 1 and I ' ,  so that we shall 
consider separately three cases. 

A. Scattering accompanied by a change in I: In/) + In'! =1&2) 

For a transition characterized by I = 0 -I  ' = 2, we have 

I6 [nn' (n"-I) (n"-4) 1'" -- 
n2n''Q595 

( r 3 )  2i (L) + o (Q-')}, 
15 

whereas for transitions with 1-1 + 2 with I> 1, the corre- 
sponding expression is 

x { I -  
4 (nrz-n') 
Q (nn')  ' }+ 0 ( 6 2 @ )  ). 

where (rp'),,  are radial matrix elements described by very 
cumbersome expressions in the general case of arbitrary val- 
ues of n and n'. In the case of I = 0-1' = 2 transitions and 
lower states, we have 

For states with high values of the principal quantum 
numbers, using the method proposed in Ref. 11, we can ob- 
tain approximate expressions for the matrix elements 
( r -3)ns l t  

( r 3 )  ,,*l-z: nl" (n2-n'2)/3(nn')"z, r 3 ) +  0 ( 19) 
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where n > n', n,nf,n - n'> 1 ,  l (n '213.  It is interesting to note 
that in thecaseof (n l  ) - (n,l + 2) transitions in the Coulomb 
potential without a change in the principal number, we find 
that 

for all values of n and this specific selection rule was estab- 
lished in Ref. 12 for the hydrogen states. Such transitions are 
characterized by 

3.2"(1+ I) ( l t  2)a6 
I rzl n2[,n[+? = (21+1) (21+3) ~ '~52 ' :  [ (r-6)2i~2(+) 'Z 

and the cross section is supplemented, compared with Eqs. 
( 17) and ( 18), by additional small terms R - 3  and R 4 .  

B. Raman scattering without a change ink Inl) + In'l) 

The scattering cross section for transitions between the 
S states contains only the scalar part 

2I2a6 
lf01;-0; ( - = o = -  { (nn') -'51-'-4 (nn') -351-4,5+0 ('2') ) . 

9z6Q" 

If 1 = 1 '> 1 ,  the main contribution to da/dRf comes from the 
symmetric scattering process 

291(1+1)alZ 
I f 2 I 2 =  (r-3)21]Z{i -4(n'2-n2) }, 

(21f3) (21-1) 2"Q8 Q (nn') 

and f, and f, are of higher orders of smallness in R '. In 
particular, if I = 1, then 

for I = 2, we have 

4 [nn' (n2-1) (n2-4) (nfZ-1) (n"-4) ] " -- 
5.27 (nn') 'Q'" 2' ( + ) 6 }  7 

2 - T5a6 (n2-I) (n2-4) (n"-1) (n"-4) 
If' 1 - g.jiz8Q13 (nn') 

As in case A,  the cross sections are expressed in terms of the 
matrix elements in powers of the reciprocals of r. In the case 
of high values of n and n' we can use an expression obtained 
by analogy with Eq. ( 19): 

C. Rayleigh scattering: In/) + In/) 

In this case the matrix elements (r have the sim- 
ple form 

(r-yni, , , , = ( ~ l a ) ~ [ n ~ l t ' / ~ ) ~ ,  

V 5 n 4 + 5 n 2 [ 5 - 6 B ]  +3B[B-21 
r 6 n n  = ( 1  n7(l+'i,) B[B-2][2B-Y,] [4B-151 ' 

where B- l ( l+  l ) ,  which makes it possible to analyze the 
dependence of du/d/dR1 on both n and I. The antisymmetric 
and symmetric parts of the Rayleigh scattering cross section 
are given by Eqs. (22) and (23) with n = n'. The scalar part 
differs from Eq. (23) and in the limit of high frequencies the 
principal term is identical with the Thomson scattering cross 
section 

The corrections to the term jf,I2 in the scalar scattering 
cross section are readily obtained from the expressions for 
a, [see Eq. (30) 1 .  We can see that for fixed values of n and R 
the corrections to the Thomson cross section decrease rapid- 
ly on increase in I (for 1>2), which corresponds to states 
which are more semiclassical and have a larger orbital mo- 
mentum. This accounts also for the rapid fall of the Raman 
scattering cross sections on increase in I (cases A and B)  and 
this fall disappears in the classical limit. 

The results of the present section can be used also to 
estimate the Rayleigh scattering cross sections for nonhy- 
drogenic atoms, when terms proportional to R in c,  can 
be described for (r-'),,:,, by an approximate expression 
used widely in calculations of the spin-orbit splitting con- 
stant (see Sec. 19 in Ref. 10): 

Here the charge z of the atomic core is unity for a neutral 
atom andz, is the effective charge dependent on I, selected as 
described in Ref. 10. 

4. DYNAMIC POLARlZABlLlTY AND CHANGES IN THE 
SPECTRUM OF AN ATOM IN A HIGH-FREQUENCY FIELD 

A change in the quasienergy E,,,,, of the Inlm) state in a 
monochromatic field 

F ( t )  =F Re {ee-I"') 

in the lowest order of perturbation theories quadratic in F 
and depend strongly not only on the frequency, but also on 
the polarization of the field F ( t ) .  The expression for 
AE,,, = E,(, - E,,, can be analyzed conveniently by intro- 
ducing a scalar polarizability a:, (a), as well as antisymme- 
tric (vector) a", ((w ) and tensor a:, ((w ) polarizabilities re- 
lated to the Rayleigh scattering tensor c,, by's4 

(26) 

When this definition is used, both a%,((w = 0 )  and 
cr i ,  ((w = 0 )  are identical with the corresponding polarizabi- 
lities in a static electric field, whereas a", ((w = 0 )  = 0. In the 
general case of an elliptic polarization F ( t )  the states Inlm) 
characterized by different values of m = - I, ..., I are mixed 
by the field and ha,, are found by diagonalization of a matrix 
of rank (21 + 1) ;  the nondiagonal elements of the matrix 
then contain only the tensor polarizability a:,, (a) (Ref. 3).  
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In the case of linear and circular polarizations of the field 
F ( t )  the projection m is conserved along, respectively, the 
direction of polarization and the direction of propagation of 
the wave. Then, A&,,, is of the form 

for the linear polarization of the wave and 

for the circular polarization where A = + 1 or - 1 for the 
right-and left-handed polarizations of F( t ) ,  respectively. 

The asymptotic (in the R %  1 case) expressions for the 
polarizabilities are obtained by expanding the amplitudesf, 
in accordance with the results of Secs. 2 and 3. We must bear 
in mind that in Eqs. (27) and (28) the state is assumed to be 
nondegenerate in I. In the hydrogenic atom the field mixes 
also the states with different values of I for given n and m, 
and in general A&,, is obtained by diagonalization of a ma- 
trix of rank n - (m 1 (Refs. 5 and 13). The diagonal elements 
W,,, of the matrix contain the right-hand sides of Eqs. (27) 
and (28) [for the cases of the linear and circular polariza- 
tions of F( t ) ,  respectively] and the off-diagonal elements 
W,,,. , are expressed in terms of the scattering amplitudes 
( f2)nl,nl+ of Eq. (21). AS pointed out already in Sec. 3B 
(see also Ref. 12), it follows from the relationship (20) that 
the high-frequency expansions of these amplitudes begin 
only with the terms proportional to R 6 ,  whereas the differ- 
ences between the diagonal elements begin with the terms 
proportional to R -4. Including the off-diagonal terms by 
means of perturbation theory, we can readily see that their 
contribution to A&, if of the order of R -'. Therefore, to 
within an error smaller than f l R ,  the orbital momentum 1 
remains a good quantum number and A&,,,, are given by 
Eqs. (27) and (28) also in the case of hydrogenic levels [the 
exception are the states with I = 0 or 2, because according to 
Eq. (21) we have W , ,  a R-5.5 and approximate diagonali- 
zation is possible only to a precision worse than R-'1. 

In the case of the ns states, the polarizability is 

which is identical with the expansion of Eq. ( 4 )  in the case of 
the ground state. The expressions for the polarizabilities of 
the states with I> 1 are 

It follows from the system (30) that the vector polarizability 
a:, is small compared with aO,;'. Hence, the splitting of the 
levels in a circular field expressed bearing in mind the sign of 
m [see Eq. (28) 1 is considerably less than the splitting ex- 
pressed in terms of Im /. It is interesting to note that if R < 1, 
then a", a f l  and it is also small compared with the static 
values a?;(O), although for R - 1 all the polarizabilities are 
of the same order of magnitude. It is worth noting also the 
rapid decrease of the polarizabilities on increase in I, so that 
the effect of the field is strongest on the states with small 
orbital momenta. 

The imaginary part of the polarizability governs the 
broadening of a level due to photoionization. In the expan- 
sion of Eq. (8)  there are no imaginary parts. They appear 
precisely in those orders in R ' which cannot be calculated 
by means of Eq. (8 ) .  We find from Eqs. (6 ) ,  (7a),  and ( 10) 
that in the case of a state with a momentum I the imaginary 
parts of the polarizabilities at high values of f 1  are of the 
order of R - I- 9'2 (exactly as the first term of the asymptote 
Rea,,, containing half-integral powers of the frequency). 
This behavior of Im a,,, is in agreement with the familiar 
asymptotic behavior a,, ( a )  a w 'I2 of the photoioniza- 
tion cross sectionI4 related to Im a,, ( w )  by the optical 
theorem 

It is clear from Eq. (30) that calculations of the terms 
proportional to in the expansion of A&,,,, carried out 
earlier in Refs. 5 and 7, gives only the main term of the as- 
ymptote of the tensor polarizability a:,, and is insufficient to 
find a:, and a:, (with the exception of the trivial term 4a3/ 
z4f12 = e2/mm2) or the widths of the levels. 

5. RANGE OF VALIDITY OF THE RESULTS 

The expressions obtained can be used for the pure Cou- 
lomb potential - ze/r and also in the more general case of a 
model potential with the Coulomb asymptote in the limit 
r-0. In the case of transitions between low-lying states / 1) 
and 12) (when n - 1 and n' - 1 ) the only expansion param- 
eter is R ' so that expansions of ( f 1' and a are valid when 
R )  1. However, when n)1 and n ' s  1, the parameter of the 
expansion depends on the relationships between ti, n' and /,I '. 
For lack of space, we shall consider only the case when n -n'  
and 1-1'. If 1<n, then allowing for the dependence of the 
radial matrix elements on n 

we can easily see that the expansion for f and a deduced from 
Secs. 3 and 4 are 

a(12, o) = ~ z - ~ F ,  (Q)  , f (n, a) =n-3Ff ( Q ) ,  (31) 

so that the condition of validity of the expansion is in fact 
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R > 1. It should be noted that the scalar part of the amplitude 
f, of the elastic (n = n', I = I ',) scattering and of the polariz- 
ability a0 includes not only terms of the type given by Eq. 
(31 ), but also the Thomson term f, = - 4a3/z4R2, which 
does not contain a small term proportional to n - '. However, 
if we consider transitions between states with large values of 
I-n, we find that 

and the expansion parameter is [n3R] - I .  In this case both f 
and a have a structure (including fo and a') 

Here, an2 is the radius of the nth Bohr orbit and the charac- 
teristic frequency z2Ry/n' is governed by the energy of a 
transition to the nearest In1 ) levels. Therefore, at high values 
of I the asymptotic expansion begins to operate already at 
frequencies less than the ionization threshold z2Ry/n2 (con- 
trary to what we would expect). This demonstrates in partic- 
ular the smallness of the residues at the poles off and a, 
corresponding to the excitation to states with the principal 
quantum number n" &n,n'. 

A rigorous numerical calculation of the change in the 
hydrogen spectrum is made in Ref. 13 allowing for mixing of 
I in the case of states with n = 1-6 at frequencies of ruby 
( k ,  = 1.785 eV = 0.1312 Ry) and neodymium 
(k, = 1.16 eV = 0.086 Ry) lasers. A calculation of AE,,, 
for n = 6 and w = w ,  ( n 3 R z 2 8 )  based on Eqs. (27)-(30) 
ensures a satisfactory agreement with the exact results. 
However, if w = w, the results are close only for the states 
with I = 4 or 5. The reason for the discrepancy for the states 
with 1<3 is related not to the smallness of n"n 18 but to the 
proximity of &, to a "downward" resonance with the 
n = 3 level (AE,_, = 0.0834 Ry ). (The states with 1 = 4 or 5 
are not mixed by the dipole interaction with n = 3 levels.) 

We shall conclude by pointing out that the results ob- 
tained allow us to analyze completely the change in the spec- 
trum of an atom in a field and also the polarization depen- 
dence of the cross sections for the scattering of hf light by 
atoms. 

"The asymptotic nature of the series follows already from the fact that the 
expansion represented by Eq. (7b) loses the information on the anti- 
Hermitian part of G, which is governed by the term iO in the denominator 
of Eq. (7a). [The effects associated with the anti-Hermitian part of G 
were indeed exponentially small in the case of a smooth potential U ( r )  . ]  
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